
Pat Langley
Center for Design Research

Stanford University
Edward P. Katz

Stanford Intelligent Systems Laboratory
Stanford University

Extending an Embodied Cognitive Architecture
with Spatial Representation and Reasoning

Thanks to Mike Barley, Dongkyu Choi, Ben Meadows, Mohan Sridharan, and the
Dagstuhl on spatial cognition for useful discussions. This research was supported by
Grant No. FA9550-20-1-0130 from AFOSR, which is not responsible for its contents.

What is a Cognitive Architecture?

A cognitive architecture (Newell, 1990) is an infrastructure for
developing intelligent systems that:

• Specifies facets that remain constant across different domains;

• Incorporates core ideas from psychological theories, such as:
• Short-term memories are distinct from long-term stores
• Memories contain modular elements cast as symbol structures
• Long-term structures are accessed through pattern matching
• Processing relies on retrieval / selection / action cycles

• Cognition involves dynamic composition of mental structures

Well-known architectures include ACT-R (Anderson, 1993),
Soar (Laird, 2012), and ICARUS (Langley et al., 2009).

2

The recent PUG architecture (Langley et al., 2016) supports
embodied agents with four core ideas:
• Symbolic relations grounded in quantitative descriptions

• Relations have associated utilities that reflect tradeoffs

• Discrete skills have associated control equations

• Mental simulation creates trajectories to guide planning

A recent extension – PUG/C – unifies symbolic and numeric
processing more deeply (Langley & Katz, 2022).

The PUG Architecture

3

PUG/C incorporates four distinct types of generic, long-term
knowledge structures:

• Concepts – Define relational categories, attributes, and veracity

• Motives – Indicate utility of relations conditioned on situation

• Skills – Specify control values based on match to target concepts

• Processes – Predict changes in attributes given current values

PUG uses these elements for conceptual inference, reactive
control, heuristic evaluation, and plan generation.

PUG’s Knowledge Structures

4

((robot-at ^id (?r ?o) ^distance ?d)
:elements ((robot ^id ?r ^radius ?q)

(object ^id ?o ^distance ?d ^radius ?p))
:veracity ((linear ?d (+ ?p ?q) 10.0)))

((robot-facing ^id (?r ?o) ^angle ?a)
:elements ((robot ^id ?r)

(object ^id ?o ^angle ?a))
:veracity ((linear ?a 0.0 45.0)))

Here the function (linear obs max min) returns 1 if the observed value
obs = max, 0 if |obs| ≥ min, and |obs/(max − min)| within that range.

Beliefs are ground instances of concepts that relate specific entities.

Examples of PUG Conceptual Rules

5

?r

?o

?d

?a

?p

?q

0 45

1

((move-to ?r ?o)
:elements ((robot ^id ?r ^turn-rate ?t)

(object ^id ?o ^angle ?a))
:tests ((> ?a -90) (< ?a 90))
:control ((robot ^id ?r ^move-rate (∗ 0.3 $MISMATCH)))
:target ((robot-at ^id (?r ?o))))

((turn-to ?r ?o)
:elements ((robot ^id ?r)

(object ^id ?o ^angle ?a ^distance ?d))
:control ((robot ^id ?r ^turn-rate (∗ 5.0 (sign ?a) $MISMATCH)))
:target ((robot-facing ^id (?r ?o))))

Here the symbol $MISMATCH stands for one minus the veracity of the
matched target concept.

Intentions are ground instances of skills that involve specific entities.

Examples of PUG Skills

6

0 mismatch

0.3

m
ov

e-
ra

te

1

0 mismatch

5.0

tu
rn

-ra
te

1

Like other cognitive architectures, PUG/C operates in cycles
that use knowledge to produce new short-term structures.

The framework differs in that it relies on five processing levels:

• Belief processing – Inference from perceptions / predictions

• State processing – Applies skills, processes, motives

• Execution / Mental simulation – Generates trajectories

•Motion planning – Heuristic search for an intention set

• Task planning – Search for a sequence of motion plans

These levels are organized in a cascaded manner, with each one
using results produced by those below it.

PUG’s Layered Processes

7

Like other cognitive architectures, PUG/C operates in cycles
that use knowledge to produce new short-term structures.

These levels are organized in a cascaded manner, with each one
using results produced by those below it.

PUG’s Layered Processes

8

Belief Processing / Conceptual Inference

Skill / Process / Motive Processing

Execution / Mental Simulation

Motion Planning

Task Planning Focus of talk

At lowest level, conceptual inference derives beliefs consistent
with perceptions / predictions:

• Matches conceptual rules to infer beliefs like (robot-at R1 O1)

• Computes values of numeric attributes associated with beliefs

• Calculates veracity (degree of match) for each inferred belief

• Applies this recursively to generate the full deductive closure

The next level – state processing – uses motives to assign utilities
to beliefs and states.

Conceptual Inference in PUG

9

Examples of PUG Beliefs

Perceptions: Veracity Utility
(robot ^id R1 ^radius 0.15 ^move-rate 0.0 ^turn-rate 0.0) 1.00 0.0
(object ^id O1 ^distance 2.0 ^angle 0.0 ^radius 0.4) 1.00 0.0
(object ^id O2 ^distance 4.123 ^angle 14.03 ^radius 0.4) 1.00 0.0
(object ^id O3 ^distance 6.0 ^angle 0.0 ^radius 0.4) 1.00 0.0

Inferred Beliefs:
(robot-at ^id (R1 O1) ^distance 2.0) 0.85 0.0
(robot-at ^id (R1 O2) ^distance 4.12) 0.62 0.0
(robot-facing ^id (R1 O1) ^angle 0.0) 1.00 0.0
(robot-facing ^id (R1 O2) ^angle 14.03) 0.69 0.0
(robot-facing ^id (R1 O3) ^angle 0.0) 1.00 0.0
(approaching ^id (R1 O1)) 0.91 −20.0

10

R1

O2

4.12

14.0

0.4

0.1

When PUG carries an out an active intention associated with
skill S, whether mentally or externally, it:
• Checks that S’s conditions match the current beliefs

• Finds degree of mismatch M to S’s target belief

• Ensures the mismatch does not fall below threshold

• Else inserts M into S’s equations to find control values

If multiple intentions apply, then PUG takes the vector sum
of control values (as with potential fields).

Continuous Control in PUG

11

R1

O2
0.2

5.0

Move-rate = 0.3 " 0.67 = 0.2
Turn-rate = 5.0 " 1.00 = 5.0

PUG/C invokes skills, processes, and motives repeatedly, in the
world or in mental simulation, to generate motion trajectories.

Each trajectory follows deterministically from an intention set
(i.e., skill instances) that constitute a motion plan.

Example of PUG/C Motion Plans

12

(move-to R1 O1)
(turn-to R1 O1)

(move-to R1 O3)
(turn-to R1 O3)
(avoid-on-left R1 O1)
(avoid-on-right R1 O2)

Concurrent
Intentions

PUG/C pursues greedy search through a space of motion plans.

The architecture uses mental simulation to produce trajectories
and motive-generated utilities to evaluate them.

Heuristic Search for Motion Plans

13

Empty Plan

Final Plan

PUG supports basic spatial abilities, such as
avoiding obstacles, but it cannot:

• Reason about knowledge of places
• Use topological networks of places

Robotics often uses discretized, world grids,
but we maintain that humans:

• Describe situations in terms of nearby objects
• Specify these objects with continuous attributes
• Rely on egocentric, object-centered coordinates

We can use the existing architecture to encode
and use such spatial content.

Adding Place Knowledge to PUG

14

R1

O2

4.12

14.0

0.4

0.1

R1

O2

R1

R1 R1

O2

O2 O2

60.0º

85.0º

7.17º

10.0

9.17

11.0

6.0

5.22

10.57

O (orientation)

P

X

Y

R

We can represent spatial content as existing PUG structures:
• A place is a virtual object defined by:
• Agent distances to two reference objects

• An instance of place P is a belief that includes:
• The agent’s derived distance and angle to P

To generate an instance of place P on a time step, PUG/C:
• Calculates distance / angle to P using reference objects
• Infers degree of match for beliefs like (robot-at R P)

PUG uses these belief structures for higher-level processing.

Place Knowledge in PUG

15

Here is a conceptual rule that defines a place V1 in terms of
reference objects O1 and O2:

This states that V1’s distance to object O1 is 11.0, while its
distance to object O2 is 9.17.
The two functions ∗distance-to-virtual and ∗angle-to-virtual
compute V1’s distance and angle to the agent.

A Sample Place Definition

16

((object ^id V1 ^distance ?d3 ^angle ?a3 ^type virtual)
:elements ((object ^id O1 ^distance ?d1 ^angle ?a1)

(object ^id O2 ^distance ?d2 ^angle ?a2))
:binds (?d3 (∗distance-to-virtual ?d1 ?d2 ?a1 ?a2 11.0 9.17)

?a3 (∗angle-to-virtual ?d1 ?d2 ?a1 ?a2 11.0 9.17)))

60.0º

85.0º

7.17º

10.0

9.17

11.0

6.0

5.22

10.57

O (orientation)

P

X

Y

R

∠ORY

∠ORX

∠ORP

RY

YP

XP

RX

XY

RP

O (orientation)

P

X

Y

R

Distance and Angle to a Virtual Object

17

𝑅𝑃 = 𝑆𝐴𝑆(𝑅𝑌, 𝑆𝑆𝑆 𝑋𝑌, 𝑋𝑃, 𝑌𝑃 − 𝑆𝑆𝑆 𝑋𝑌, 𝑅𝑋, 𝑅𝑌 , 𝑌𝑃)
where 𝑋𝑌 = SAS(𝑅𝑋, |∠ORX – ∠ORY|, 𝑅𝑌)
and where ∠ORP = ∠ORY – SSS(𝑅𝑌, 𝑌𝑃, 𝑅𝑃)
and where 𝑆𝑆𝑆 𝑎, 𝑏, 𝑐 = acos(𝑎2 + 𝑐2 − 𝑏2 /(2 " 𝑎 " 𝑐))
and where 𝑆𝐴𝑆 𝑏, 𝐴, 𝑐 = 𝑏2 + 𝑐2 − 2 " 𝑏 " 𝑐 " cos(𝐴)

Here R’s 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 to virtual object P is 𝑅𝑃 = 10.57
and R’s angle to the same object P is ∠ORP = 7.17∘

Only two reference objects are necessary
because R itself serves as a third point.

(move-to R1 V2) (move-to R1 V1)

PUG/C can use the definition of a virtual object to guide its skill
applications and to simulate a trajectory there.

On the left, robot R1 moves to V1, midway between O1 and O2.

On the right, R1 moves to V2, which is closer to O2 than to O1.

Trajectories to Virtual Objects

18

O1 O2

O1

O2

Maps as Collections of Places

19

A map is a collection of place definitions that include distances
to other places.

• E.g., P’s definition might include distance to another virtual
object, Q, and vice versa.

• Such a set of connections specify a topological network of
distinct places.

PUG/C can use this knowledge to create motion plans between
places, as well as larger-scale task plans.

Our research incorporates ideas from multiple prior efforts:

• Cognitive architectures (Soar, ICARUS, teleoreactive systems)

• Error-driven feedback control and potential fields

• Egocentric encodings and topological networks

However, PUG/C embeds them in a unified architecture with
a high-level programming language.

Future work will test PUG in dynamic settings (e.g., CARLA)
and support complex shapes (e.g., using RCC8).

Related and Future Research

20

Summary Remarks

PUG/C is a cognitive architecture for embodied, human-like
agents that incorporates:
• Concepts, motives, skills, and processes that have symbolic

and numeric elements
• Cascaded processing with layers for beliefs, states, mental

simulations, motion plans, and task plans
• Reasoning about virtual objects – places – in terms of their

distances to other objects
• Topological maps encoded as places that refer to each other

and allow long-distance navigation

Future work will extend PUG to dynamic environments and
richer spatial representations.

21

References
Bennett, S. (1996). A brief history of automatic control. IEEE Control Systems Mag-

azine, 16, 17–25.
Choi, D., & Langley, P. (2018). Evolution of the ICARUS cognitive architecture.

Cognitive Systems Research, 48, 25–38.
Katz, E. P. (1997). Extending the teleo-reactive paradigm for robotic agent task control

using Zadehan (fuzzy) logic. Proceedings of the 1997 IEEE International Symposium
on Computational Intelligence in Robotics and Automation (pp. 282–286). Monterey.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.
In I. J. Cox & G. T. Wilfong (Eds.), Autonomous robot vehicles. New York: Springer.

Kuipers, B. J., & Byun, Y.-T. (1991). A robot exploration and mapping strategy based on
a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous
Systems, 8, 47–63.

Laird, J. E. (2012). The Soar cognitive architecture. Cambridge, MA: MIT Press.
Langley, P., Barley, M., Meadows, B., Choi, D., & Katz, E. P. (2016). Goals, utilities,

and mental simulation in continuous planning. Proceedings of the Fourth Annual
Conference on Cognitive Systems. Evanston, IL.

Nilsson, N. (1994). Teleo-reactive programs for agent control. Journal of Artificial
Intelligence Research, 1, 139–158.

Yeap, W. K. (2011). How Albot0 finds its way home: A novel approach to cognitive
mapping using robots. Topics in Cognitive Science, 3, 707–721.

22

