
Pat Langley
Institute for the Study of Learning and Expertise

Palo Alto, California, USA

An Architectural Perspective on
Planning, Execution, and Justified Agency

This research was supported by ONR Grant N00014-15-1-2517. This talk reports work
done jointly with Dongkyu Choi, Mike Barley, Ben Meadows, and Edward Katz.

We can use a cognitive architecture to create intelligent agents
that are able to:

• Generate plans in the presence of conflicting objectives

• Execute these plans and monitor them for anomalies

• Explain and justify their behavior in terms of social norms

In this talk, I report a new architecture that demonstrates the
first two abilities and should support the third.

Key Ideas of the Talk

2

Autonomy and Cognitive Architectures

Autonomous artifacts are becoming ever more widely deployed
in the form of:

•  Self-driving cars

• Delivery drones

• Military robots

These require more than object recognition / control; they need:

• Knowledge about high-level relations and activities

• Reasoning over this content to update beliefs

• Planning with this knowledge to achieve goals

Truly autonomous agency depends on cognitive processing.

The Nature of Autonomy

4

A cognitive architecture (Newell, 1990) is an infrastructure for
intelligent systems that:

• Makes strong assumptions about representations and mechanisms

•  Incorporates ideas from psychology about the nature of cognition

• Contains modules that share memories and representations

• Comes with a programming language to build intelligent agents

A cognitive architecture is all about mutual constraints, in that
it aims for a unified theory of the mind.

5

Cognitive Architectures

Consider another agent – a planetary rover sent on missions in
which it must:

• Deposit sensors at various target sites

• Collect interesting samples it encounters

• Avoid the proximity of danger areas

• Retain enough fuel to carry out these tasks

A mission will involve many competing goals, some mutually
exclusive, that have different values at different times.

We want computational agents that support all these capacities.

Example: A Planetary Rover

6

Consider a scenario that includes three sensors, five target sites,
one fuel depot, one sample, and one danger area.

A Rover Scenario

7

Consider a scenario that includes three sensors, five target sites,
one fuel depot, one sample, and one danger area.

Here an effective plan might deliver a sensor to T2, collect S1,
refuel at F1, deliver a sensor to T3, collect S2, and deliver a
sensor to T4. The agent would bypass T1, as it is near D1.

A Rover Scenario

8

To operate in such complex, continuous domains, intelligent
agents must:

• Reason about qualitative structures and quantitative attributes

• Decide which goals to adopt and determine their priorities

• Handle conflicting and even inconsistent objectives

• Balance tradeoffs among goals in a situation-aware manner

These are crucial in any domain that requires autonomy, from
driving to planetary exploration to disaster relief.

What type of cognitive architecture can support these abilities?

Target Abilities

9

Inference and Planning in
the PUG Architecture

We have developed a new architecture – PUG – that supports
planning in continuous domains with conflicting goals.

The framework incorporates four core theoretical postulates:

•  States are relational structures with quantitative attributes

•  Symbolic goals are annotated with numeric utilities

• Goals and their utilities are conditioned on states

•  Planning uses numeric simulation to guide heuristic search

This is a hybrid architecture that combines symbolic with
numeric processing.

The PUG Architecture

11

PUG incorporates four distinct types of generic knowledge:
•  Compositional rules – define relational concepts and associated

numeric attributes
•  Specialization rules – discriminate among subclasses of more

general concepts
• Goal-generating rules – specify when goal instances should be

active and their utilities
• Operators – encode actions’ immediate effects and final results

under given conditions

Together, these provide the content PUG uses for conceptual
inference, goal creation, and plan generation.

PUG’s Knowledge Structures

12

Examples: PUG Conceptual Rules

Compositional rule:
 ((vector ^id (?r ?o) ^from ?r ^to ?o ^distance ?d ^angle ?a)
 :elements ((robot ^id ?r ^xloc ?x1 ^yloc ?y1 ^orient ?f)
 (object ^id ?o ^xloc ?x2 ^yloc ?y2))
 :binds (?d (*distance ?x1 ?y1 ?x2 ?y2)

 ?a (*angle ?x1 ?y1 ?x2 ?y2 ?f))
 :tests ((< ?d 100)))

Specialization rules:
 ((at ^id (?r ?o))
 :specializes (vector ^id (?r ?o) ^distance ?d)
 :tests ((< ?d 0.2)))

 ((at-ahead ^id (?r ?o))
 :specializes (at ^id (?r ?o) ^angle ?a)
 :test ((> ?a −0.01) (< ?a 0.01)))

13

Examples: PUG Goal-Utility Rules

Achievement rule:
 ((sensor-at ^id (?sensor ?target))
 :type achievement
 :conditions ((object ^id ?target ^type target ^priority ?p))
 :function (* 100.0 ?p))

Maintenance rule:
 ((not (vector ^id (?r ?o) ^from ?r ^to ?o))
 :type maintenance
 :conditions ((object ^id ?o ^type danger) (robot ^id ?r)

 (vector ^id (?r ?o) ^from ?r ^to ?o ^distance ?d))
 :tests ((< ?d 20))
 :function (/ 0.1 (+ (sqrt ?d) 0.01)))

14

Examples: PUG Operators

((move-to ?r ?o)
 :elements ((robot ^id ?r ^xloc ?x1 ^yloc ?y1 ^orient ?a ^fuel ?f)

 (object ^id ?o ^type ?t ^xloc ?x2 ^yloc ?y2))
 :conditions ((facing ^id (?r ?o) ^distance ?d) (not (at ^id (?r ?o))))
 :tests ((> ?d 0.2))
 :changes ((robot ^id ?r ^fuel (− ?f 0.01) ^xloc (+ ?x1 (dx ?a))
 ^yloc (+ ?y1 (dy ?a))))
 :results ((at ^id (?r ?o))))

((turn-left-to ?r ?o)
 :elements ((robot ^id ?r ^orient ?f) (object ^id ?o ^type ?t))
 :conditions ((to-left ^id (?r ?o) ^angle ?a) (not (at ^id (?r ?o)))
 (not (at-with-no-sensor ^id (?r ?other))))
 :changes ((robot ^id ?r ^orient (+ ?f 1)))
 :results ((ahead ^id (?r ?o)) (not (to-left ^id (?r ?o))))))

15

When PUG encounters a state during the planning process, it:
• Matches compositional rules to generate composite objects (e.g.,

vector) with derived numeric attributes
• Matches specialization rules against objects to infer specialized

relations (e.g., at, facing)
• Matches goal rules against these derived beliefs to generate active

goal instances
•  Calculates utilities of satisfied active goals and combines them to

compute a state’s utility

Maintenance goals contribute on each cycle they are satisfied;
achievement goals only contribute when first satisfied.

Inferring Beliefs, Goals, and Utilities

16

Examples: PUG Beliefs

 Primitive objects:
 (robot ^id r1 ^xloc 0.0 ^yloc 0.0 ^orient 180.0 ^fuel 1.0)
 (object ^id t1 ^type target ^priority 1.0 ^xloc 2.0 ^yloc 0.0)
 (object ^id t2 ^type target ^priority 2.0 ^xloc −2.0 ^yloc 0.0))
 (object ^id d1 ^type danger ^xloc −1.0 ^yloc 1.0)

Composite relations:
 (vector ^id (r1 t1) ^from r1 ^to t1 ^distance 2.0 ^angle −180.0)
 (vector ^id (r1 t2) ^from r1 ^to t2 ^distance 2.0 ^angle 0.0)
 (vector ^id (r1 d1) ^from r1 ^to d1 ^distance 1.41 ^angle −45.0)

Specialized relations:
 (to-right ^id (r1 t1) ^from r1 ^to t1 ^distance 2.0 ^angle −180.0)
 (ahead ^id (r1 t2) ^from r1 ^to t2 ^distance 2.0 ^angle 0.0)
 (to-right ^id (r1 d1) ^from r1 ^to d1 ^distance 1.41 ^angle −45.0)

17

PUG carries out forward search through a space of partial plans.
On each step it:

•  Finds each operator that is applicable in the state
• Uses numeric simulation to predict its trajectory
• Calculates the utility of each operator over time
•  Selects the best alternative to extend the partial plan

Goal-based utility guides a heuristic depth-first search; plans
need not satisfy all goals.

Parameters include maximum length, nodes to be considered,
and number of solutions desired.

PUG’s Planning Mechanisms

18

PUG determines the utility for each operator O instance by:
• Applying O repeatedly, starting from the current state
• Calculating the utility on each time step T by:
•  Deriving beliefs that hold on that time step
•  Generating goal instances with satisfied conditions
•  Adding the utility of each matched positive goal
•  Subtracting the utility of each matched negated goal

• Terminating on reaching a state that matches an operators’
results or fails to match its conditions

The planner uses the average utility as its evaluation metric
during operator selection and backtracking.

Mental Simulation and Utility

19

One sensor, two targets, with T2
having twice the priority of T1.

Here PUG assigns higher utility
to a plan that delivers the sensor
to T2, despite its greater distance.

Demonstration Scenarios 1 and 2

20

One sensor, two targets, with T2
more distant from R1 than T1.

Here PUG assigns higher utility
to a plan that delivers the sensor
to T1 because it is closer.

One sensor, two targets, higher
priority for T2, and one sample.

Here PUG favors a plan in which
it collects the sample S1 before
delivering the sensor to T1.

Demonstration Scenarios 4 and 5

21

One sensor, two targets, with R1
lacking enough fuel to reach T2.

Here PUG prefers a plan to visit
F1 to refuel, then delivers the
sensor to the higher priority T2.

Two sensor, three targets, a fuel
depot, sample, and danger area.

Here PUG collects sample S1,
refuels at F1, delivers a sensor
to T3, refuels again, and delivers
a sensor to T1, avoiding D1.

Demonstration Scenarios 8 and 10

22

Two sensors, two targets, with a
danger area D1 to avoid.

Here PUG bypasses D1 by first
delivering one sensor to T1 and
then delivering the other to T2.

These runs support our aims for PUG’s planning behavior, as
they show it:
•  Reasons over space and time in pursuit of multiple and even

conflicting goals;

•  Reasons about both qualitative and quantitative aspects of the
agent’s state;

•  Calculates operator and plan utilities that vary according to
situation details; and

•  Produces reasonable behavior that balances tradeoffs among
different objectives.

Effort on tasks varies, with PUG considering from 12 to 110
plans, but our focus is on ranking, not search.

Key Results

23

Extending PUG to
Execution and Monitoring

We have also extended PUG to execute and monitor the plans
it generates by:
• Using mental simulation, inference, and goal creation to form

expectations for each time step
• Comparing the expected states to predicted ones on each step
• On detecting anomalies – disagreements between expectations

and observations– replanning from the current state
Alternation between plan generation and execution continues
until a plan succeeds or no revised plan emerges.

Mental simulation is deterministic and so adds only a constant
factor to computation costs.

An Extended Architecture: PUG/X

25

The PUG/X architecture posits four types of anomalies that
can arise while monitoring:

• An operator’s conditions are not matched when expected

• An operator’s results are not produced when expected

• An operator’s utility differs ‘enough’ from expected values

• Goals generated for observed states differ from expected ones

Any of these discrepancies leads the agent to search for a new
plan from the current state.

Four Types of Anomalies

26

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

Consider our motivating scenario with three sensors, five target
sites, one fuel depot, one sample, and one danger area.

Here PUG/X builds an initial plan to deliver a sensor to T1, then
shifts to T2 on detecting D1, extends it to include S1, decides to
refuel on sensing T3, and finally adds S2 and T4.

An Altered Rover Scenario

27

We have demonstrated PUG/X’s operation on scenarios with:
• Nominal plan execution in which no surprises arise
• Anomalous operator conditions
•  Robot veered slightly to right, samples moved on their own

• Anomalous operator termination
•  Robot advances more slowly than expected

• Anomalous utilities
•  Increased radiation from danger area

• Unanticipated goals
•  Newly observed target sites, samples, danger areas

One scenario required extended operation: the agent continued
to detect new (20) target sites and replan in response.

Empirical Demonstrations

28

The current implementation of PUG/X makes six simplifying
assumptions:

• The agent can execute only one operator at a time

• Operators have deterministic effects on the environment

• Operator descriptions are usually (but not always) accurate

• Environmental changes are typically due to agent actions

• Once it perceives object O, it has complete information on O

• Execution halts while the agent is generating a new plan

The assumptions are not central to the theoretical framework
and we will address them in future work.

Some Caveats

29

Our research incorporates ideas a number of earlier efforts on
plan generation, execution, and monitoring:

• Cognitive architectures (Soar, Prodigy, ICARUS, MIDCA)

• Three-tiered architectures and teleoreactive systems

•  Integrated planning and execution (PRS, SIPE, CASPER)

• Goal reasoning (Talamadupula et al., 2010; Roberts et al. (2015)

The PUG/X architecture is distinctive in its combination of
quantitative simulation with goal-oriented utility.

Intellectual Precursors

30

Review of Key Ideas

I have presented a theory for plan generation, execution, and
monitoring in physical settings that posits:

•  Symbolic goals are the loci of numeric utility, with goals and
utilities varying by situation

• Mental structures – long and short term – comprise symbolic
relations and numeric attributes

•  Planning and monitoring rely on quantitative mental simulation
•  Replanning occurs when monitoring detects anomalies involving

operator conditions, results, utilities – or goals

We have incorporated these ideas into the PUG/X architecture
and demonstrated it on scenarios with unexpected events.

31

Explainable, Normative, and
Justified Agency

Suppose that Dan drives a friend, Eve, with a ruptured appendix
to the hospital. On the way, he:

• Exceeds the speed limit

• Weaves in and out of traffic

•  Slows at red lights but runs them

• Detours briefly onto a sidewalk

• Yet retains control and avoids collisions

Dan later defends his actions because Eve’s life was in danger,
so reaching the hospital was more important than traffic laws.

We will say that, in this scenario, Dan exhibits justified agency.

A Motivating Example

33

Autonomous artifacts are becoming ever more widely deployed
in the form of:

•  Self-driving cars

• Delivery drones

• Military robots

But before such systems can gain widespread acceptance, they
must first be able to:

• Explain their behavior in understandable terms;

•  Follow the laws, customs, and morals of society.

We claim that both abilities are required for justified agency.

More on Autonomy

34

When we make a decision, we can often explain the choices we
considered and why we selected one over others.

Definition:

• An intelligent system exhibits explainable agency if it can
provide, on request, the reasons for its activities.

Examples of explainable agency:
• Why did you prefer driving route A to work over route B?

•  Route A had fewer traffic signals and it was still pretty short.

• Why did you swerve suddenly into the next lane?

•  It was the only way to avoid hitting a fallen tree limb.

Explainable Agency

35

An explainable agent should be able to answer questions about:
• Alternatives considered / selected (e.g., routes, lanes)

• Reasons selected / criteria used (e.g., shorter, less crowded)

• Responses in other situations (e.g., near ambulance)

The agent should answer questions about both its generation
and execution of plans.

Previous research:
•  Explainable expert systems (Swartout, 1991)

•  Explainable reactive execution (Johnson, 1994; van Lent, 2004)

•  Explainable planning (Smith, 2012; Fox et al., 2017)

Facets of Explainable Agency

36

PUG/X already stores most content needed for self explanation:
• Each node in the search tree is a partial plan
•  Including options for extending it and associated utilities

• Execution always follows one of these stored plans
• Monitoring compares traces to the plan’s expectations

If we store anomalies when they interrupt execution, we have
the key elements of an episodic memory.

An extended PUG would index this content, retrieve relevant
decisions as needed, and communicate it to answer queries.

These should let the architecture exhibit explainable agency.

PUG/X and Explainable Agency

37

solution

During plan generation, PUG generates nodes in a search tree.
Each node is a partial plan that elaborates on its parent.

The search tree includes alternative choices and their scores.

PUG/X and Explainable Agency

38

Humans are driven by goals, but they must also operate within
their society’s norms.

Definition:

• An intelligent system exhibits normative agency if, to the
extent possible, it follows the norms of its society.

Examples of normative agency:
•  Paying for food rather than stealing it
•  Saluting to a superior officer
• Waiting in line rather than cutting ahead
• Recycling to help the environment
These all canalize people’s behavior in certain directions.

Normative Agency

39

A normative agent’s behavior should take into account:
•  Formal laws (e.g., obey traffic signals)

• Military orders (e.g., get up at reveille)

•  Informal customs (e.g., Pittsburgh left turn)

• Moral tenets (e.g., favor life over property)

Different norms may conflict, so that the agent must handle
tradeoffs among them.

Previous research:
•  Legal reasoning (e.g., Branting, 2000)

• Moral reasoning (e.g., McLaren, 2005; Deghani, 2008; Mikhail,
2007; Iba & Langley, 2011; Malle et al., 2015)

Facets of Normative Agency

40

The PUG/X architecture can already specify physical criteria:
• Goals are conditioned on qualitative relations

•  E.g., stop if the red is light, avoid collisions

• Utilities incorporate quantitative attributes

•  E.g., faster travel is better, closer calls are worse

These can encode many social norms, including tradeoffs, but
we must extend it to support:

• Mitigating factors that modulate acceptability

• Goals for others’ mental states (e.g., minimize pain)

Together, these should let PUG/X exhibit normative agency.

PUG/X and Normative Agency

41

When we make a decision, we can often state the choices we
considered and how norms influenced our selection.

Definition:

• An intelligent system exhibits justified agency if it follows
society’s norms and explains its activities in those terms.

Examples of justified agency:
•  Stealing food to help a starving child (and explaining why)
• Disobeying an order that you consider illegal (and . . .)
• Cutting in line to avoid missing a flight (and . . .)
• Breaking traffic laws for a medical emergency

Justified agency is most interesting when norms conflict.

Justified Agency

42

Three major design issues arise in devising justified agency:

• Generating, storing, and using explanations

• Encoding, using, and combining norms

• How to integrate explanations with social norms
We have considered the first two issues, but what of the third?

Consider a plausible hypothesis:

• Any intelligent system that supports explainable agency and
normative agency will also exhibit justified agency.

If we include social norms in our agent’s goals and values, then
we get justified agency with no extra effort.

The Character of Justified Agency

43

The hypothesis does not follow logically from our definitions.

•  Justified agency requires the ability to explain decisions and
reason about norms, but they may not be sufficient.

•  Agency may be more complex than assumed

•  Norms may demand richer forms of explanation

To test it, we must construct explainable and normative agents,
combine them, and measure their ability to justify.

Simulated domains for urban driving, robotic rescue, and other
mission-oriented settings support such studies.

Testing the Hypothesis

44

Designing and constructing justifiable agents is an important
step toward replicating the full range of human intelligence.

The ultimate demonstrations of such autonomous artifacts
would be:

•  Self-driving cars that sway judges in
traffic court

•  Police drones that defend themselves
in civil suits

• Military robots that win court martials
about their actions in combat

We encourage other AI researchers to pursue this audacious
vision of explainable, normative, and justified agency.

Intelligent Agents of the Future

46

