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We can use a cognitive architecture to create intelligent agents 
that are able to:  

• Generate plans in the presence of conflicting objectives 

• Execute these plans and monitor them for anomalies 

• Explain and justify their behavior in terms of social norms 

In this talk, I report a new architecture that demonstrates the 
first two abilities and should support the third.  

Key Ideas of the Talk 
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Autonomy and Cognitive Architectures



Autonomous artifacts are becoming ever more widely deployed 
in the form of:  

•  Self-driving cars 

• Delivery drones 

• Military robots  

These require more than object recognition / control; they need:   

• Knowledge about high-level relations and activities 

• Reasoning over this content to update beliefs 

• Planning with this knowledge to achieve goals 

Truly autonomous agency depends on cognitive processing. 

The Nature of Autonomy 
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A cognitive architecture (Newell, 1990) is an infrastructure for 
intelligent systems that:  

• Makes strong assumptions about representations and mechanisms 

•  Incorporates ideas from psychology about the nature of cognition 

• Contains modules that share memories and representations 

• Comes with a programming language to build intelligent agents 

A cognitive architecture is all about mutual constraints, in that   
it aims for a unified theory of the mind. 
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Cognitive Architectures 



Consider another agent – a planetary rover sent on missions in 
which it must:  

• Deposit sensors at various target sites 

• Collect interesting samples it encounters 

• Avoid the proximity of danger areas 

• Retain enough fuel to carry out these tasks 

A mission will involve many competing goals, some mutually 
exclusive, that have different values at different times.  

We want computational agents that support all these capacities. 

Example: A Planetary Rover 
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Consider a scenario that includes three sensors, five target sites, 
one fuel depot, one sample, and one danger area.  

 

 

 

 

 

 

A Rover Scenario 

7 



Consider a scenario that includes three sensors, five target sites, 
one fuel depot, one sample, and one danger area.  

 

 

 

 

 

 

Here an effective plan might deliver a sensor to T2, collect S1, 
refuel at F1, deliver a sensor to T3, collect S2, and deliver a 
sensor to T4. The agent would bypass T1, as it is near D1.  

A Rover Scenario 
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To operate in such complex, continuous domains, intelligent 
agents must:  

• Reason about qualitative structures and quantitative attributes  

• Decide which goals to adopt and determine their priorities 

• Handle conflicting and even inconsistent objectives 

• Balance tradeoffs among goals in a situation-aware manner 

These are crucial in any domain that requires autonomy, from 
driving to planetary exploration to disaster relief.  

What type of cognitive architecture can support these abilities?  

Target Abilities 
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Inference and Planning in  
the PUG Architecture



We have developed a new architecture – PUG – that supports 
planning in continuous domains with conflicting goals.  

The framework incorporates four core theoretical postulates:  

•  States are relational structures with quantitative attributes 

•  Symbolic goals are annotated with numeric utilities 

• Goals and their utilities are conditioned on states 

•  Planning uses numeric simulation to guide heuristic search  

This is a hybrid architecture that combines symbolic with 
numeric processing.  

The PUG Architecture 
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PUG incorporates four distinct types of generic knowledge:  
•  Compositional rules – define relational concepts and associated 

numeric attributes 
•  Specialization rules – discriminate among subclasses of more 

general concepts 
• Goal-generating rules – specify when goal instances should be 

active and their utilities 
• Operators – encode actions’ immediate effects and final results 

under given conditions 

Together, these provide the content PUG uses for conceptual 
inference, goal creation, and plan generation.  

PUG’s Knowledge Structures 
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Examples: PUG Conceptual Rules 

Compositional rule: 
    ((vector ^id (?r ?o) ^from ?r ^to ?o ^distance ?d ^angle ?a) 
       :elements  ( (robot ^id ?r ^xloc ?x1 ^yloc ?y1 ^orient ?f) 
                     (object ^id ?o ^xloc ?x2 ^yloc ?y2)) 
       :binds        (?d  (*distance ?x1 ?y1 ?x2 ?y2)  

  ?a  (*angle ?x1 ?y1 ?x2 ?y2 ?f) ) 
       :tests  ((< ?d 100))) 

Specialization rules: 
    ((at ^id (?r ?o)) 
       :specializes  (vector ^id (?r ?o) ^distance ?d) 
       :tests  ((< ?d 0.2))) 

    ((at-ahead ^id (?r ?o)) 
       :specializes  (at ^id (?r ?o) ^angle ?a) 
       :test  ( (> ?a −0.01) (< ?a 0.01))) 
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Examples: PUG Goal-Utility Rules 

Achievement rule: 
    ((sensor-at ^id (?sensor ?target)) 
       :type  achievement 
       :conditions  ( (object ^id ?target ^type target ^priority ?p)) 
       :function  (* 100.0 ?p)) 

Maintenance rule: 
    ((not (vector ^id (?r ?o) ^from ?r ^to ?o)) 
       :type  maintenance 
       :conditions  ( (object ^id ?o ^type danger) (robot ^id ?r) 

  (vector ^id (?r ?o) ^from ?r ^to ?o ^distance ?d)) 
       :tests  ( (< ?d 20)) 
       :function  (/ 0.1 (+ (sqrt ?d) 0.01))) 
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Examples: PUG Operators 

((move-to ?r ?o) 
  :elements  ((robot ^id ?r ^xloc ?x1 ^yloc ?y1 ^orient ?a ^fuel ?f) 

   (object ^id ?o ^type ?t ^xloc ?x2 ^yloc ?y2)) 
  :conditions  ((facing ^id (?r ?o) ^distance ?d) (not (at ^id (?r ?o)))) 
  :tests  ((> ?d 0.2)) 
  :changes  ((robot ^id ?r ^fuel (− ?f 0.01) ^xloc (+ ?x1 (dx ?a)) 
                                  ^yloc (+ ?y1 (dy ?a)))) 
  :results  ((at ^id (?r ?o)))) 
 
((turn-left-to ?r ?o) 
  :elements  ((robot ^id ?r ^orient ?f) (object ^id ?o ^type ?t)) 
  :conditions  ((to-left ^id (?r ?o) ^angle ?a) (not (at ^id (?r ?o))) 
                 (not (at-with-no-sensor ^id (?r ?other)))) 
  :changes  ((robot ^id ?r ^orient (+ ?f 1))) 
  :results  ((ahead ^id (?r ?o)) (not (to-left ^id (?r ?o)))))) 
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When PUG encounters a state during the planning process, it:  
• Matches compositional rules to generate composite objects (e.g., 

vector) with derived numeric attributes 
• Matches specialization rules against objects to infer specialized 

relations (e.g., at, facing) 
• Matches goal rules against these derived beliefs to generate active 

goal instances 
•  Calculates utilities of satisfied active goals and combines them to 

compute a state’s utility 

Maintenance goals contribute on each cycle they are satisfied; 
achievement goals only contribute when first satisfied.  

Inferring Beliefs, Goals, and Utilities 

16 



Examples: PUG Beliefs 

 Primitive objects:     
    (robot ^id r1 ^xloc 0.0 ^yloc 0.0 ^orient 180.0 ^fuel 1.0) 
    (object ^id t1 ^type target ^priority 1.0 ^xloc 2.0 ^yloc 0.0) 
    (object ^id t2 ^type target ^priority 2.0  ^xloc −2.0 ^yloc 0.0)) 
    (object ^id d1 ^type danger ^xloc −1.0 ^yloc 1.0) 

Composite relations: 
    (vector ^id (r1 t1) ^from r1 ^to t1 ^distance 2.0 ^angle −180.0) 
    (vector ^id (r1 t2) ^from r1 ^to t2 ^distance 2.0 ^angle 0.0) 
    (vector ^id (r1 d1) ^from r1 ^to d1 ^distance 1.41 ^angle −45.0) 

Specialized relations: 
    (to-right ^id (r1 t1) ^from r1 ^to t1 ^distance 2.0 ^angle −180.0) 
    (ahead ^id (r1 t2) ^from r1 ^to t2 ^distance 2.0 ^angle 0.0) 
    (to-right ^id (r1 d1) ^from r1 ^to d1 ^distance 1.41 ^angle −45.0) 
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PUG carries out forward search through a space of partial plans. 
On each step it:  

•  Finds each operator that is applicable in the state 
• Uses numeric simulation to predict its trajectory  
• Calculates the utility of each operator over time 
•  Selects the best alternative to extend the partial plan  

Goal-based utility guides a heuristic depth-first search; plans 
need not satisfy all goals.  

Parameters include maximum length, nodes to be considered, 
and number of solutions desired.  

PUG’s Planning Mechanisms 
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PUG determines the utility for each operator O instance by:  
• Applying O repeatedly, starting from the current state 
• Calculating the utility on each time step T by: 
•  Deriving beliefs that hold on that time step 
•  Generating goal instances with satisfied conditions 
•  Adding the utility of each matched positive goal  
•  Subtracting the utility of each matched negated goal 

• Terminating on reaching a state that matches an operators’ 
results or fails to match its conditions 

The planner uses the average utility as its evaluation metric 
during operator selection and backtracking.  

Mental Simulation and Utility 
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One sensor, two targets, with T2 
having twice the priority of T1.  

Here PUG assigns higher utility 
to a plan that delivers the sensor 
to T2, despite its greater distance.  

Demonstration Scenarios 1 and 2 
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One sensor, two targets, with T2 
more distant from R1 than T1.  

Here PUG assigns higher utility 
to a plan that delivers the sensor 
to T1 because it is closer.  



One sensor, two targets, higher 
priority for T2, and one sample.  

Here PUG favors a plan in which 
it collects the sample S1 before  
delivering the sensor to T1.  

Demonstration Scenarios 4 and 5 
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One sensor, two targets, with R1 
lacking enough fuel to reach T2.  

Here PUG prefers a plan to visit 
F1 to refuel, then delivers the 
sensor to the higher priority T2.  



Two sensor, three targets, a fuel 
depot, sample, and danger area.  

Here PUG collects sample S1, 
refuels at F1, delivers a sensor   
to T3, refuels again, and delivers 
a sensor to T1, avoiding D1.  

Demonstration Scenarios 8 and 10 
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Two sensors, two targets, with a 
danger area D1 to avoid.  

Here PUG bypasses D1 by first 
delivering one sensor to T1 and 
then delivering the other to T2.  



These runs support our aims for PUG’s planning behavior, as 
they show it:  
•  Reasons over space and time in pursuit of multiple and even 

conflicting goals;  

•  Reasons about both qualitative and quantitative aspects of the 
agent’s state;  

•  Calculates operator and plan utilities that vary according to 
situation details; and 

•  Produces reasonable behavior that balances tradeoffs among 
different objectives.  

Effort on tasks varies, with PUG considering from 12 to 110 
plans, but our focus is on ranking, not search.  

Key Results 
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Extending PUG to  
Execution and Monitoring  



We have also extended PUG to execute and monitor the plans  
it generates by:  
• Using mental simulation, inference, and goal creation to form 

expectations for each time step  
• Comparing the expected states to predicted ones on each step 
• On detecting anomalies – disagreements between expectations   

and observations– replanning from the current state 
Alternation between plan generation and execution continues 
until a plan succeeds or no revised plan emerges.  

Mental simulation is deterministic and so adds only a constant 
factor to computation costs.  

An Extended Architecture: PUG/X 
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The PUG/X architecture posits four types of anomalies that 
can arise while monitoring:  

• An operator’s conditions are not matched when expected 

• An operator’s results are not produced when expected 

• An operator’s utility differs ‘enough’ from expected values 

• Goals generated for observed states differ from expected ones 

Any of these discrepancies leads the agent to search for a new 
plan from the current state.  

Four Types of Anomalies 
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Consider our motivating scenario with three sensors, five target 
sites, one fuel depot, one sample, and one danger area.  

 

 

 

 

 

 

Here PUG/X builds an initial plan to deliver a sensor to T1, then 
shifts to T2 on detecting D1, extends it to include S1, decides to 
refuel on sensing T3, and finally adds S2 and T4.  

An Altered Rover Scenario 
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We have demonstrated PUG/X’s operation on scenarios with:  
• Nominal plan execution in which no surprises arise  
• Anomalous operator conditions  
•  Robot veered slightly to right, samples moved on their own 

• Anomalous operator termination  
•  Robot advances more slowly than expected 

• Anomalous utilities 
•  Increased radiation from danger area 

• Unanticipated goals 
•  Newly observed target sites, samples, danger areas 

One scenario required extended operation: the agent continued 
to detect new (20) target sites and replan in response.  

Empirical Demonstrations 
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The current implementation of PUG/X makes six simplifying 
assumptions: 

• The agent can execute only one operator at a time 

• Operators have deterministic effects on the environment 

• Operator descriptions are usually (but not always) accurate  

• Environmental changes are typically due to agent actions 

• Once it perceives object O, it has complete information on O 

• Execution halts while the agent is generating a new plan 

The assumptions are not central to the theoretical framework 
and we will address them in future work.   

Some Caveats 
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Our research incorporates ideas a number of earlier efforts on 
plan generation, execution, and monitoring:  

• Cognitive architectures (Soar, Prodigy, ICARUS,  MIDCA) 

• Three-tiered architectures and teleoreactive systems 

•  Integrated planning and execution (PRS, SIPE, CASPER) 

• Goal reasoning (Talamadupula et al., 2010; Roberts et al. (2015) 

The PUG/X architecture is distinctive in its combination of 
quantitative simulation with goal-oriented utility.  

Intellectual Precursors 
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Review of Key Ideas 

I have presented a theory for plan generation, execution, and 
monitoring in physical settings that posits:  

•  Symbolic goals are the loci of numeric utility, with goals and 
utilities varying by situation 

• Mental structures – long and short term – comprise symbolic 
relations and numeric attributes 

•  Planning and monitoring rely on quantitative mental simulation 
•  Replanning occurs when monitoring detects anomalies involving 

operator conditions, results, utilities – or goals 

We have incorporated these ideas into the PUG/X architecture 
and demonstrated it on scenarios with unexpected events.  
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Explainable, Normative, and  
Justified Agency



Suppose that Dan drives a friend, Eve, with a ruptured appendix 
to the hospital. On the way, he:  

• Exceeds the speed limit 

• Weaves in and out of traffic 

•  Slows at red lights but runs them 

• Detours briefly onto a sidewalk 

• Yet retains control and avoids collisions 

Dan later defends his actions because Eve’s life was in danger, 
so reaching the hospital was more important than traffic laws.  

We will say that, in this scenario, Dan exhibits justified agency.  

A Motivating Example 
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Autonomous artifacts are becoming ever more widely deployed 
in the form of:  

•  Self-driving cars 

• Delivery drones 

• Military robots  

But before such systems can gain widespread acceptance, they 
must first be able to:  

• Explain their behavior in understandable terms;  

•  Follow the laws, customs, and morals of society. 

We claim that both abilities are required for justified agency. 

More on Autonomy 
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When we make a decision, we can often explain the choices we 
considered and why we selected one over others.  

Definition: 

• An intelligent system exhibits explainable agency if it can 
provide, on request, the reasons for its activities.  

Examples of explainable agency:  
• Why did you prefer driving route A to work over route B? 

•  Route A had fewer traffic signals and it was still pretty short. 

• Why did you swerve suddenly into the next lane? 

•  It was the only way to avoid hitting a fallen tree limb. 

Explainable Agency 
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An explainable agent should be able to answer questions about:  
• Alternatives considered / selected (e.g., routes, lanes) 

• Reasons selected / criteria used (e.g., shorter, less crowded) 

• Responses in other situations (e.g., near ambulance) 

The agent should answer questions about both its generation 
and execution of plans. 

Previous research: 
•  Explainable expert systems (Swartout, 1991) 

•  Explainable reactive execution (Johnson, 1994; van Lent, 2004) 

•  Explainable planning (Smith, 2012; Fox et al., 2017) 

Facets of Explainable Agency 
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PUG/X already stores most content needed for self explanation:  
• Each node in the search tree is a partial plan 
•  Including options for extending it and associated utilities 

• Execution always follows one of these stored plans 
• Monitoring compares traces to the plan’s expectations 

If we store anomalies when they interrupt execution, we have 
the key elements of an episodic memory.  

An extended PUG would index this content, retrieve relevant 
decisions as needed, and communicate it to answer queries.  

These should let the architecture exhibit explainable agency.  

PUG/X and Explainable Agency 
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solution 

During plan generation, PUG generates nodes in a search tree. 
Each node is a partial plan that elaborates on its parent.   
 
   
 
 
 
 
 
 
 
 
 

The search tree includes alternative choices and their scores.  

PUG/X and Explainable Agency 
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Humans are driven by goals, but they must also operate within 
their society’s norms.  

Definition: 

• An intelligent system exhibits normative agency if, to the 
extent possible, it follows the norms of its society.  

Examples of normative agency:  
•  Paying for food rather than stealing it 
•  Saluting to a superior officer 
• Waiting in line rather than cutting ahead 
• Recycling to help the environment   
These all canalize people’s behavior in certain directions. 

Normative Agency 
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A normative agent’s behavior should take into account:  
•  Formal laws (e.g., obey traffic signals) 

• Military orders (e.g., get up at reveille) 

•  Informal customs (e.g., Pittsburgh left turn) 

• Moral tenets (e.g., favor life over property) 

Different norms may conflict, so that the agent must handle 
tradeoffs among them. 

Previous research: 
•  Legal reasoning (e.g., Branting, 2000) 

• Moral reasoning (e.g., McLaren, 2005; Deghani, 2008; Mikhail, 
2007; Iba & Langley, 2011; Malle et al., 2015) 

 

Facets of Normative Agency 
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The PUG/X architecture can already specify physical criteria:  
• Goals are conditioned on qualitative relations 

•  E.g., stop if the red is light, avoid collisions 

• Utilities incorporate quantitative attributes 

•  E.g., faster travel is better, closer calls are worse 

These can encode many social norms, including tradeoffs, but 
we must extend it to support:   

• Mitigating factors that modulate acceptability 

• Goals for others’ mental states (e.g., minimize pain) 

Together, these should let PUG/X exhibit normative agency.  

PUG/X and Normative Agency 
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When we make a decision, we can often state the choices we 
considered and how norms influenced our selection.  

Definition: 

• An intelligent system exhibits justified agency if it follows 
society’s norms and explains its activities in those terms.  

Examples of justified agency:  
•  Stealing food to help a starving child (and explaining why) 
• Disobeying an order that you consider illegal (and . . .) 
• Cutting in line to avoid missing a flight (and . . .) 
• Breaking traffic laws for a medical emergency 

Justified agency is most interesting when norms conflict.  

Justified Agency 
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Three major design issues arise in devising justified agency:  

• Generating, storing, and using explanations 

• Encoding, using, and combining norms 

• How to integrate explanations with social norms 
We have considered the first two issues, but what of the third?  

Consider a plausible hypothesis: 

• Any intelligent system that supports explainable agency and 
normative agency will also exhibit justified agency. 

If we include social norms in our agent’s goals and values, then 
we get justified agency with no extra effort. 

The Character of Justified Agency 
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The hypothesis does not follow logically from our definitions. 

•  Justified agency requires the ability to explain decisions and 
reason about norms, but they may not be sufficient. 

•  Agency may be more complex than assumed 

•  Norms may demand richer forms of explanation 

To test it, we must construct explainable and normative agents, 
combine them, and measure their ability to justify. 

Simulated domains for urban driving, robotic rescue, and other 
mission-oriented settings support such studies. 

Testing the Hypothesis 
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Designing and constructing justifiable agents is an important 
step toward replicating the full range of human intelligence. 

The ultimate demonstrations of such autonomous artifacts 
would be: 

•  Self-driving cars that sway judges in                                   
traffic court 

•  Police drones that defend themselves                                      
in civil suits 

• Military robots that win court martials                                 
about their actions in combat 

We encourage other AI researchers to pursue this audacious 
vision of explainable, normative, and justified agency. 

Intelligent Agents of the Future 
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