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Cognitive Architectures

A cognitive architecture is a unified theory of the mind that: 
• Specifies what remains constant across different domains 
• Incorporates many assumptions from cognitive psychology
• Offers a programming language for building intelligent systems 

The PUG architecture (Langley et al., 2016) assumes that: 
• Symbolic relations are grounded in quantitative descriptions
• Relations have associated utilities that reflect tradeoffs
• Discrete skills have associated control equations
• Mental simulation creates trajectories to guide planning

This talk reports a recent extension – PUG/C – that unifies 
symbolic and numeric processing more deeply. 
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PUG’s Navigation Behavior
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Desired Navigation Behavior

4

Robot Target



PUG/C incorporates four distinct types of generic, long-term 
knowledge structures: 

• Concepts – Define relational categories, attributes, and veracity

• Skills – Specify control values based on match to target concepts

• Processes – Predict changes in attributes given current values 

• Motives – Indicate utility of relations conditioned on situation

The architecture uses these elements for conceptual inference, 
reactive control, heuristic evaluation, and plan generation. 

PUG’s Knowledge Structures
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Like other cognitive architectures, PUG/C operates in cycles
that use knowledge to produce new short-term structures. 

These levels are organized in a cascaded manner, with each 
one using results produced by those below it. 

PUG’s Layered Processes
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((robot-at ^id (?r ?o) ^distance ?d) 
:elements ( (robot ^id ?r ^radius ?q) 

(object ^id ?o ^distance ?d ^radius ?p)) 
:veracity ( (linear ?d (+ ?p ?q) 10.0)) ) 

((robot-facing ^id (?r ?o) ^angle ?a) 
:elements ( (robot ^id ?r) 

(object ^id ?o ^angle ?a)) 
:veracity ( (linear ?a 0.0 45.0)) ) 

Here the function (linear obs max min) returns 1 if the observed value 
obs ≤ max, 0 if obs ≥ min, and obs/(max − min) when max < obs < min. 

Beliefs are ground instances of concepts that relate specific entities. 

PUG Concepts
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At the lowest level, conceptual inference derives beliefs that 
are consistent with perceptions / predictions: 

• Matches conceptual rules to infer beliefs like (robot-at R1 O1)

• Computes values of numeric attributes associated with beliefs

• Calculates veracity (degree of match) for each inferred belief

• Applies this recursively to generate the full deductive closure

Together, the resulting beliefs describe the current state as a point in 
N-dimensional space. 

Conceptual Inference in PUG
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PUG Beliefs

Perceptions:                                                                     Veracity  Utility
(robot ^id R1 ^radius 0.15 ^move-rate 0.0 ^turn-rate 0.0) 1.00 0.0
(object ^id O1 ^distance 2.0 ^angle 0.0 ^radius 0.4) 1.00 0.0
(object ^id O2 ^distance 4.123 ^angle 14.03 ^radius 0.4) 1.00 0.0
(object ^id O3 ^distance 6.0 ^angle 0.0 ^radius 0.4) 1.00 0.0

Inferred Beliefs:
(robot-at ^id (R1 O1) ^distance 2.0) 0.85 0.0
(robot-at ^id (R1 O2) ^distance 4.12) 0.62 0.0
(robot-facing ^id (R1 O1) ^angle 0.0) 1.00 0.0
(robot-facing ^id (R1 O2) ^angle 14.03) 0.69 0.0
(robot-facing ^id (R1 O3) ^angle 0.0) 1.00 0.0
(approaching ^id (R1 O1)) 0.91 −20.0
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((move-to ?r ?o) 
:elements ( (robot ^id ?r ^turn-rate ?t)

(object ^id ?o ^angle ?a)) 
:tests ( (> ?a -90) (< ?a 90)) 
:control ( (robot ^id ?r ^move-rate (∗ 0.3 $MISMATCH))) 
:target ( (robot-at ^id (?r ?o))) ) 

((turn-to ?r ?o) 
:elements ( (robot ^id ?r) 

(object ^id ?o ^angle ?a ^distance ?d))
:control ( (robot ^id ?r ^turn-rate (∗ 5.0 (sign ?a) $MISMATCH)))
:target ( (robot-facing ^id (?r ?o))) ) 

Here the symbol $MISMATCH stands for one minus the veracity of the 
matched target concept. 

Intentions are ground instances of skills that involve specific entities. 

PUG Skills
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When PUG carries an out an active intention associated with 
skill S, whether mentally or externally, it:
• Checks that S’s conditions match the current beliefs
• Finds degree of mismatch M to S’s target belief
• Ensures the mismatch does not fall below threshold
• Else inserts M into S’s equations to find control values

If multiple intentions apply, then PUG takes the vector sum  
of control values (as with potential fields). 

State Processing / Decision Making
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PUG Processes

((move-relative ?r ?o) 
:elements ( (robot ^id ?r ^move-rate ?m) 

(object ^id ?o ^distance ?d ^angle ?a))
:changes ( (object ^id ?o ^distance (∗dd ?d ?a ?m) 

^angle     (∗da ?d ?a ?m))) ) 

((turn-relative ?r ?o) 
:elements ( (robot ^id ?r ^turn-rate ?t) 

(object ^id ?o ^angle ?a)) 
:changes ((object ^id ?o ^angle (− ?t))) ) 

Here the functions ∗dd and ∗da calculate change in the robot’s 
distance and angle relative to an object as it moves forward. 
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PUG/C applies skills and invokes state processing repeatedly to 
generate motion trajectories. 

• When the architecture carries out actions in the environment, 
this corresponds to reactive control. 

• This operation does not require processes, as it has no need to 
predict future states. 

• When the system imagines carrying out actions in its mind, it 
corresponds to mental simulation. 

• This operation does rely on processes (applied in parallel) to 
predict the succeeding state. 

Each trajectory follows deterministically from an intention set 
(i.e., skill instances) that constitute a motion plan. 

Reactive Execution / Mental Simulation
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(move-to R1 O1) 
(turn-to R1 O1)

(move-to R1 O3) 
(turn-to R1 O3)
(avoid-on-left R1 O1)
(avoid-on-right R1 O2) 

Concurrent
Intentions

PUG/C applies skills and invokes state processing repeatedly to 
generate motion trajectories. 

Each trajectory follows deterministically from an intention set 
(i.e., skill instances) that constitute a motion plan. 

Reactive Execution / Mental Simulation



PUG Motives

((robot-at ^id (?r ?o)) 
:conditions ( (robot ^id ?r ^radius ?rr) 

(object ^id ?o ^type target ^distance ?d ^radius ?or)) 
:utility (cond ((< ?d (+ ?rr ?or 0.25))  10.0) 

(t  0.0)) 
:type achievement ) 

((approaching ^id (?r ?o)) 
:conditions ( (robot ^id ?r ^radius ?rr) 

(object ^id ?o ^type obstacle ^distance ?d ^radius ?or)) 
:utility (cond ((< ?d (+ ?rr ?or))  −20.0) 

(t  0.0)) 
:type maintenance ) 

An achievement motive assigns utility to a belief only on its first 
match, where a maintenance motive does so repeatedly. 
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PUG/C combines motives with mental simulation to carry out 
greedy search through a space of motion plans.

• Starting from an empty plan, it retrieves intentions that would 
achieve its target beliefs.

• Mental simulation produces a trajectory and uses motives to 
assign utilities to each belief and state.

• If some of these beliefs have negative utility, PUG retrieves 
intentions that would help avoid them.

• When multiple repairs are possible, it selects the candidate 
plan / trajectory with the highest utility.

This search continues until it finds an acceptable motion plan. 
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Heuristic Search for Motion Plans
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Here the agent 
wants to reach 
a target object. 

But the initial
trajectory collides 
with an obstacle. 

Search adds new
intentions that 
improve utility.



PUG/C incorporates insights from a number of paradigms: 

• Cognitive architectures (Soar, ICARUS, teleoreactive systems)

• Error-driven feedback control and potential fields

• Qualitative reasoning and quantitative simulation

But it combines ideas from these efforts in a unified framework. 

Future research will add support for places (virtual objects) and 
large-scale maps (topological networks). 

We will also integrate PUG/C with PUG/X, an earlier extension 
that combined task planning, execution, and monitoring. 

Related and Future Research
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Summary Remarks

PUG/C is a cognitive architecture for embodied, human-like 
agents that incorporates: 
• Concepts, motives, skills, and processes that have both symbolic

and numeric elements
• Cascaded processing with layers for inference, state processing, 

mental simulation, motion planning, and task planning
• Skills’ target concepts match to different degrees, which serve as 

error signals that enable continuous control
• Mental simulation and motivational processing support greedy 

search through a space of continuous motion plans

We demonstrated PUG/C’s behavior on scenarios that parallel 
skill application, obstacle avoidance, and motion planning. 
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Like other cognitive architectures, PUG/C operates in cycles
that use knowledge to produce new short-term structures. 

The framework differs in that it relies on five processing levels: 

• Belief processing – Inference from perceptions / predictions

• State processing – Applies skills, processes, motives

• Execution / Mental simulation – Generates trajectories

•Motion planning – Heuristic search for an intention set

• Task planning – Search for a sequence of motion plans

These levels are organized in a cascaded manner, with each one 
using results produced by those below it. 

PUG’s Layered Processes
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