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Consider a planetary mission in which an autonomous robotic 
agent must:  

• Deposit sensors at prioritized target sites; 

• Collect interesting samples that it encounters; 

• Avoid the proximity of known danger areas; and 

• Retain enough onboard fuel to carry out these tasks. 
A mission will involve many competing goals, some mutually 
exclusive, that may have different value at different times.  

A Motivating Example 
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Consider a scenario that includes two sensors, three target sites, 
one fuel depot, one sample, and one danger area.  

 

 

 

 

 

 

Here an effective plan might collect the sample, take a detour to 
refuel, deliver a sensor to T3, refuel again, and deliver a sensor 
to T1 rather than T2, thus avoiding the danger area D1.  

A Motivating Example 
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The AI community has taken two main responses to pursuing 
objectives over time:  

• Generating plans that achieve or maintain explicit goals stated  
as relational literals; 

•  Finding action sequences that produce high values on numeric 
evaluation functions encoded as simple features. 

In this talk, we present a theory that unifies these paradigms  
and apply it to planning in continuous domains. 

Our approach combines ideas from cognitive architectures, 
logical inference, teleoreactive control, and goal reasoning.  

Background / Research Aims 
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We desire intelligent agents that reason about and plan their 
activities in continuous domains by:  
• Operating over space and time in contexts with competing and 

even inconsistent objectives; 
• Assigning different importance or value to objectives based on 

the agent's situation; 
•  Reasoning about activities that involve change in qualitative 

structure and quantitative attributes; and 
•  Producing reasonable behavior that balances tradeoffs among 

different objectives in a situation-aware manner.  

These abilities are crucial in domains that require autonomy, 
from planetary exploration to disaster relief.  

Target Abilities 

5 



Our account of these abilities relies on five central theoretical 
assumptions:  
•  Goals are the locus of utility. Each goal has a score that denotes 

desirability, with state utility distributed among them.  
•  Both goals and utilities are conditional. Goals activate when 

conditions are met and utilities are functions of the situation. 
•  Mental structures include symbolic and numeric content. They 

specify both relations and numeric attributes that affect utilities. 
•  Goal-oriented utilities play a key role in planning. Utilities that 

accrue over a trajectory guide choices during heuristic search.  
•  Operator utility is estimated by mental simulation. This applies 

operators until termination, matching goals to compute scores.  

We have implemented these tenets in PUG, a new architecture 
for planning in continuous domains.  

Theoretical Assumptions 
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PUG incorporates four distinct types of generic knowledge:  
•  Compositional rules that define relational concepts and their 

associated numeric attributes; 
•  Specialization rules that discriminate among subclasses of more 

general concepts; 
• Goal-generating rules that specify when goal instances should  

be active and what utility to assign them; and 
• Operators that encode models of actions’ immediate effects and 

final results under given conditions. 

Together, these provide the content PUG uses for conceptual 
inference, goal creation, and plan generation.  

Knowledge in the PUG Architecture 
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Examples of PUG Conceptual Rules 

Compositional rule: 
    ((vector ^id (?r ?o) ^from ?r ^to ?o ^distance ?d ^angle ?a) 
       :elements  ( (robot ^id ?r ^xloc ?x1 ^yloc ?y1 ^orient ?f) 
                     (object ^id ?o ^xloc ?x2 ^yloc ?y2)) 
       :binds        (?d  (*distance ?x1 ?y1 ?x2 ?y2)  

  ?a  (*angle ?x1 ?y1 ?x2 ?y2 ?f) ) 
       :tests  ((< ?d 100))) 

Specialization rules: 
    ((at ^id (?r ?o)) 
       :specializes  (vector ^id (?r ?o) ^distance ?d) 
       :tests  ((< ?d 0.2))) 

    ((at-ahead ^id (?r ?o)) 
       :specializes  (at ^id (?r ?o) ^angle ?a) 
       :test  ( (> ?a −0.01) (< ?a 0.01))) 
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Examples of PUG Goal-Utility Rules 

Achievement rule: 
    ((sensor-at ^id (?sensor ?target)) 
       :type  achievement 
       :conditions  ( (object ^id ?target ^type target ^priority ?p)) 
       :function  (* 100.0 ?p)) 

Maintenance rule: 
    ((not (vector ^id (?r ?o) ^from ?r ^to ?o)) 
       :type  maintenance 
       :conditions  ( (object ^id ?o ^type danger) (robot ^id ?r) 

  (vector ^id (?r ?o) ^from ?r ^to ?o ^distance ?d)) 
       :tests  ( (< ?d 20)) 
       :function  (/ 0.1 (+ (sqrt ?d) 0.01))) 
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Examples of PUG Operators 

((move-to ?r ?o) 
  :elements  ((robot ^id ?r ^xloc ?x1 ^yloc ?y1 ^orient ?a ^fuel ?f) 

   (object ^id ?o ^type ?t ^xloc ?x2 ^yloc ?y2)) 
  :conditions  ((facing ^id (?r ?o) ^distance ?d) (not (at ^id (?r ?o)))) 
  :tests  ((> ?d 0.2)) 
  :changes  ((robot ^id ?r ^fuel (− ?f 0.01) ^xloc (+ ?x1 (dx ?a)) 
                                  ^yloc (+ ?y1 (dy ?a)))) 
  :results  ((at ^id (?r ?o)))) 
 
((turn-left-to ?r ?o) 
  :elements  ((robot ^id ?r ^orient ?f) (object ^id ?o ^type ?t)) 
  :conditions  ((to-left ^id (?r ?o) ^angle ?a) (not (at ^id (?r ?o))) 
                 (not (at-with-no-sensor ^id (?r ?other)))) 
  :changes  ((robot ^id ?r ^orient (+ ?f 1))) 
  :results  ((ahead ^id (?r ?o)) (not (to-left ^id (?r ?o)))))) 
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When PUG encounters a state during the planning process, it:  
• Matches composition rules against primitive objects and generates 

composite objects (e.g., vector) with derived numeric attributes;  
• Matches specialization rules against primitive and composite 

objects that denote specialized relations (e.g., at, facing); 
• Matches goal rules against these derived beliefs to generate goal 

instances that are active in the state; and 
•  Calculates the utilities of all satisfied active goals and combines 

them to compute the state’s utility.  

Maintenance goals contribute on each cycle they are satisfied; 
achievement goals only contribute when first satisfied.  

Inferring Beliefs, Goals, and Utilities 
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Examples of PUG Beliefs 

 Primitive objects:     
    (robot ^id r1 ^xloc 0.0 ^yloc 0.0 ^orient 180.0 ^fuel 1.0) 
    (object ^id t1 ^type target ^priority 1.0 ^xloc 2.0 ^yloc 0.0) 
    (object ^id t2 ^type target ^priority 2.0  ^xloc −2.0 ^yloc 0.0)) 
    (object ^id d1 ^type danger ^xloc −1.0 ^yloc 1.0) 

Composite relations: 
    (vector ^id (r1 t1) ^from r1 ^to t1 ^distance 2.0 ^angle −180.0) 
    (vector ^id (r1 t2) ^from r1 ^to t2 ^distance 2.0 ^angle 0.0) 
    (vector ^id (r1 d1) ^from r1 ^to d1 ^distance 1.41 ^angle −45.0) 

Specialized relations: 
    (to-right ^id (r1 t1) ^from r1 ^to t1 ^distance 2.0 ^angle −180.0) 
    (ahead ^id (r1 t2) ^from r1 ^to t2 ^distance 2.0 ^angle 0.0) 
    (to-right ^id (r1 d1) ^from r1 ^to d1 ^distance 1.41 ^angle −45.0) 
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The PUG planning module operates in discrete cycles that take 
one of five meta-level actions:  
•  If there are enough acceptable plans or no further choices, then halt 

and return the candidates ranked by their utilities. 
•  If the plan for the current node is acceptable, then store it and select 

another node in the search tree for elaboration.  
•  If the current plan is unacceptable (e.g., involves a loop), then mark 

it as failed and select another node in the search tree.  
•  If the current plan has no operator instances, then find operators 

applicable in the current state and generate scores for each one.  
•  If the current plan has untried operator instances, then select one  

with the best utility and apply it to generate a new state.  

Module parameters control the details of planning, but here we 
report on heuristic depth-first search.  

Planning in the PUG Architecture 
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However, some of these parameters relate directly to the 
theoretical postulates presented earlier:  
•  When selecting among operator instances, PUG uses utility as 

determined by goals matched over their simulated applications.  
•  To this end, it simulates each operator's trajectory, calculates the 

utilities of matched goals on each state, and averages them.  
•  If a given simulation halts before producing its expected results,  

then the operator instance fails. 
•  To rank alternative plans, PUG sorts acceptable candidates by the 

average utilities over their entire simulated trajectories. 
•  For a plan to be acceptable, its trajectory’s average utility must 

exceed those for ancestors in the search tree.  

To clarify these ideas, we must explain how mental simulation 
aids calculation of expected utilities.  

Selecting Operators During Search 
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PUG determines the average utility for an operator instance by:  
• Applies the operator repeatedly, starting from the current state; 
•  Calculates the utility of each successive state by: 
•  Deriving beliefs that hold in that situation; 
•  Generating goal instances with satisfied conditions; 

•  Adding the utility of each positive goal that is matched; 
•  Subtracting the utility of each negated goal that is matched. 

•  Terminates on reaching a state that matches the operators’ results 
or that fails to match its conditions.  

• Divides the accumulated utility by the number of time steps.  

The planner uses the resulting average as its evaluation metric 
during operator selection.  

Mental Simulation / Utility Projection 

15 



One sensor, two targets, with T2 
having twice the priority of T1.  

Here PUG assigns higher utility 
to a plan that delivers the sensor 
to T2, despite its greater distance.  

Demonstration Scenarios 1 and 2 
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One sensor, two targets, with T2 
more distant from R1 than T1.  

Here PUG assigns higher utility 
to a plan that delivers the sensor 
to T1 because it is closer.  



One sensor, two targets, higher 
priority for T2, and one sample.  

Here PUG favors a plan in which 
it collects the sample S1 before  
delivering the sensor to T1.  

Demonstration Scenarios 4 and 5 
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One sensor, two targets, with R1 
lacking enough fuel to reach T2.  

Here PUG prefers a plan to visits 
F1 to refuel, then delivers the 
sensor to the higher priority T2.  



Two sensor, three targets, a fuel 
depot, sample, and danger area.  

Here PUG collects sample S1, 
refuels at F1, delivers a sensor   
to T3, refuels again, and delivers 
a sensor to T1, avoiding D1.  

Demonstration Scenarios 8 and 10 
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Two sensors, two targets, with a 
danger area D1 to avoid.  

Here PUG bypasses D1 by first 
delivering one sensor to T1 and 
then delivering the other to T2.  



These runs support our aims for PUG's behavior, showing that 
the architecture:  
• Operates over space and time in pursuit of multiple and even 

conflicting goals;  
•  Calculates operator and plan utilities that vary according to 

situation details; 
•  Reasons about changes both in qualitative relations and in 

quantitative attributes; and 
•  Produces reasonable behavior that balances tradeoffs among 

different objectives.  

Effort on these tasks varies, with PUG considering from 12 to 
110 plans, but our focus here is on ranking rather than search.  

Summary of Demonstrations 
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Our approach incorporates ideas from cognitive architectures, 
teleoreactive operators, logical inference, and heuristic search. 

But how do our theoretical tenets relate to previous research?  
• Goals are the locus of utility, which guides plan generation. 
•  This combines insights about problem solving with behaviorism. 
•  Partial satisfaction planning (Benton, 2009) adopts similar ideas.  

•  Both goals and utilities are conditional / situation dependent.  
•  Choi (2011) and Talamadupula et al. (2010) on goal creation.  
•  Roberts et al. (2015) on goal activation, deactivation, refinement. 

• Utility calculation via symbolic and numeric mental simulation.  

Our main contribution is the combination of these ideas into a 
unified and viable framework.  

Related Research 
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Our initial results are encouraging, but in our future research 
we should:  
•  Extend framework to support hierarchical methods that PUG can 

use alone or combine with primitive operators (To et al., 2015). 
•  Support satisficing behavior (Simon, 1956) by halting upon 

finding a plan with acceptable utility. 
•  Explore other forms of utility, including ones that handle both 

stochastic operators and discounting over time. 
• Augment PUG to execute and monitor its continuous plans, and   

to adapt them when utilities diverge from expected values.  

These extensions should produce a more complete theory of 
planning with goals, utilities, and mental simulation.  

Directions for Future Work 
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Concluding Remarks 

We have presented a new theory of planning in physical settings 
that posits:  

•  Symbolic goals are the distributed loci of numeric utility;  

• Goals and utilities vary with the agent's situation;  

• Mental structures comprise symbolic relations and numeric 
attributes; and  

•  Planning relies on mental simulation to calculate utilities and 
evaluate alternative plans.  

We also reported PUG, an architecture that uses these tenets to 
handle scenarios with competing goals and limited resources.  
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End of Presentation!
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