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Consider a planetary mission in which an autonomous robotic 
agent must:  

• Deposit sensors at prioritized target sites; 

• Collect interesting samples that it encounters; 

• Avoid the proximity of known danger areas; and 

• Retain enough onboard fuel to carry out these tasks. 
A mission will involve many competing goals, some mutually 
exclusive, that may have different value at different times.  

The agent not only generate plans, but also monitor execution, 
detect problems, and replan in response.  

A Motivating Example 
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Consider a scenario that includes three sensors, five target sites, 
one fuel depot, one sample, and one danger area.  

 

 

 

 

 

 

Here an effective plan might deliver a sensor to T2, collect S1, 
refuel at F1, deliver a sensor to T3, collect S2, and deliver a 
sensor to T5. The agent would bypass T1, as it is near D1.  

A Motivating Example 
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We desire intelligent agents that reason about and plan their 
activities in continuous domains by:  
• Operating over space and time in contexts with competing and 

even inconsistent objectives; 
• Assigning different importance or value to objectives based on 

the agent's situation; 
•  Reasoning about activities that involve change in qualitative 

structure and quantitative attributes; and 
•  Producing reasonable behavior that balances tradeoffs among 

different objectives in a situation-aware manner.  

These abilities are crucial in domains that require autonomy, 
from planetary exploration to disaster relief.  

Target Abilities 
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Last year, we reported on a theory of planning in continuous 
domains with conflicting goals that adopted four postulates:  
•  Numeric utilities are associated with symbolic goals; 

•  Both goals and their utilities are conditioned on belief states; 

• A combination of relational structures and numeric attributes 
describe these states; and 

•  Planning uses quantitative simulation to evaluate and select 
operators during heuristic search.  

We also described PUG, a new architecture that incorporates 
these theoretical ideas.  

Review of the PUG Architecture 
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PUG incorporates four distinct types of generic knowledge:  
•  Compositional rules that define relational concepts and their 

associated numeric attributes; 
•  Specialization rules that discriminate among subclasses of more 

general concepts; 
• Goal-generating rules that specify when goal instances should  

be active and what utility to assign them; and 
• Operators that encode models of actions’ immediate effects and 

final results under given conditions. 

Together, these provide the content PUG uses for conceptual 
inference, goal creation, and plan generation.  

Knowledge in the PUG Architecture 
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Examples of PUG Conceptual Rules 

Compositional rule: 
    ((vector ^id (?r ?o) ^from ?r ^to ?o ^distance ?d ^angle ?a) 
       :elements  ( (robot ^id ?r ^xloc ?x1 ^yloc ?y1 ^orient ?f) 
                     (object ^id ?o ^xloc ?x2 ^yloc ?y2)) 
       :binds        (?d  (*distance ?x1 ?y1 ?x2 ?y2)  

  ?a  (*angle ?x1 ?y1 ?x2 ?y2 ?f) ) 
       :tests  ((< ?d 100))) 

Specialization rules: 
    ((at ^id (?r ?o)) 
       :specializes  (vector ^id (?r ?o) ^distance ?d) 
       :tests  ((< ?d 0.2))) 

    ((at-ahead ^id (?r ?o)) 
       :specializes  (at ^id (?r ?o) ^angle ?a) 
       :test  ( (> ?a −0.01) (< ?a 0.01))) 
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Examples of PUG Goal-Utility Rules 

Achievement rule: 
    ((sensor-at ^id (?sensor ?target)) 
       :type  achievement 
       :conditions  ( (object ^id ?target ^type target ^priority ?p)) 
       :function  (* 100.0 ?p)) 

Maintenance rule: 
    ((not (vector ^id (?r ?o) ^from ?r ^to ?o)) 
       :type  maintenance 
       :conditions  ( (object ^id ?o ^type danger) (robot ^id ?r) 

  (vector ^id (?r ?o) ^from ?r ^to ?o ^distance ?d)) 
       :tests  ( (< ?d 20)) 
       :function  (/ 0.1 (+ (sqrt ?d) 0.01))) 
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Examples of PUG Operators 

((move-to ?r ?o) 
  :elements  ((robot ^id ?r ^xloc ?x1 ^yloc ?y1 ^orient ?a ^fuel ?f) 

   (object ^id ?o ^type ?t ^xloc ?x2 ^yloc ?y2)) 
  :conditions  ((facing ^id (?r ?o) ^distance ?d) (not (at ^id (?r ?o)))) 
  :tests  ((> ?d 0.2)) 
  :changes  ((robot ^id ?r ^fuel (− ?f 0.01) ^xloc (+ ?x1 (dx ?a)) 
                                  ^yloc (+ ?y1 (dy ?a)))) 
  :results  ((at ^id (?r ?o)))) 
 
((turn-left-to ?r ?o) 
  :elements  ((robot ^id ?r ^orient ?f) (object ^id ?o ^type ?t)) 
  :conditions  ((to-left ^id (?r ?o) ^angle ?a) (not (at ^id (?r ?o))) 
                 (not (at-with-no-sensor ^id (?r ?other)))) 
  :changes  ((robot ^id ?r ^orient (+ ?f 1))) 
  :results  ((ahead ^id (?r ?o)) (not (to-left ^id (?r ?o)))))) 
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Examples of PUG Beliefs 

 Primitive objects:     
    (robot ^id r1 ^xloc 0.0 ^yloc 0.0 ^orient 180.0 ^fuel 1.0) 
    (object ^id t1 ^type target ^priority 1.0 ^xloc 2.0 ^yloc 0.0) 
    (object ^id t2 ^type target ^priority 2.0  ^xloc −2.0 ^yloc 0.0)) 
    (object ^id d1 ^type danger ^xloc −1.0 ^yloc 1.0) 

Composite relations: 
    (vector ^id (r1 t1) ^from r1 ^to t1 ^distance 2.0 ^angle −180.0) 
    (vector ^id (r1 t2) ^from r1 ^to t2 ^distance 2.0 ^angle 0.0) 
    (vector ^id (r1 d1) ^from r1 ^to d1 ^distance 1.41 ^angle −45.0) 

Specialized relations: 
    (to-right ^id (r1 t1) ^from r1 ^to t1 ^distance 2.0 ^angle −180.0) 
    (ahead ^id (r1 t2) ^from r1 ^to t2 ^distance 2.0 ^angle 0.0) 
    (to-right ^id (r1 d1) ^from r1 ^to d1 ^distance 1.41 ^angle −45.0) 
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PUG carries out forward heuristic search through a space of 
partial plans by:  
•  Finding each operator O that is applicable in the current state;  
•  Using quantitative simulation to predict O’s trajectory over time;  
•  Drawing inferences about qualitative relations on each time step; 
•  Determining active goals and associated values on each time step;  
•  Calculating utility of partial plans based on their matched goals.  

The architecture uses average utility to guide heuristic depth-
first search; the resulting plans may not satisfy all goals.  
Parameters include maximum length, nodes to be considered, 
and number of solutions desired.  
 

Planning in the PUG Architecture 
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We have extended the prior theory to include four additional 
assumptions:  
•  Execution begins when planning finds an acceptable operator 

sequence using resources available for heuristic search.  

•  Plan monitoring compares quantitative mental simulations of 
expected states with sensing of actual states to track progress.   

• Operator anomalies – when conditions, utilities, or results of 
operators differ from agent expectations – lead to replanning.  

• Goal anomalies – when goals generated from observed states 
differ from expected ones – also lead to replanning.  

We have incorporated these new postulates into PUG/X, an 
architecture that extends the previous one.  

An Extended Theory 
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When executing a durative operator, like (move-to R1 T1), the 
architecture:  
• Uses quantitative mental simulation, conceptual inference, and 

goal reasoning to generate expectations for each time step.  

•  Compares the expected and actual conditions, results, utilities, 
and goals on each step;  

• Upon detecting anomalies – disagreements between the expected 
and observed situations – replans from the current state.   

Alternation between plan generation and execution continues 
until a plan succeeds or no acceptable plan emerges.  

Mental simulation is deterministic and so adds only a constant 
factor to computation costs.  

Execution and Monitoring in PUG/X 

13 



The current implementation of PUG/X makes six convenient 
assumptions: 
•  The agent can execute only one operator at a time;  

• Operators have deterministic effects on the environment;  

• Operator descriptions are usually (but not always) accurate;  

•  Environmental changes are typically due to agent actions;  

• Once it perceives an object O, it has complete information on O; 

•  Execution halts while the agent is generating a new plan.   

The assumptions are not central to the theoretical framework.  

Simplifying Assumptions 
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We demonstrated PUG/X’s operation on scenarios that involve:  
• Nominal plan execution in which no surprises arise  
• Anomalous operator conditions  
•  Robot veered slightly to right, samples moved on their own 

• Anomalous operator termination  
•  Robot advanced more slowly than expected 

• Anomalous utilities 
•  Increased radiation from danger area 

• Unanticipated goals 
•  Newly observed target sites, samples, danger areas 

One scenario required extended operation: the agent continued 
to detect new (20) target sites and replan in response.  

Empirical Demonstrations 

15 



Consider our motivating scenario with three sensors, five target 
sites, one fuel depot, one sample, and one danger area.  

 

 

 

 

 

 

Here PUG/X builds an initial plan to deliver a sensor to T1, then 
shifts to T2 on detecting D1, extends it to include S1, decides to 
refuel on sensing T3, and finally adds S2 and T4.  

An Illustrative Scenario 
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Our research incorporates ideas a number of earlier efforts on 
plan generation, execution, and monitoring:  
•  Cognitive architectures (Soar, Prodigy/ROGUE, MIDCA) 

•  Three-tiered architectures and teleoreactive systems 

•  Integrated planning and execution (PRS, SIPE, CASPER) 

• Goal reasoning (Talamadupula et al., 2010; Roberts et al. (2015) 

The PUG planner is unique in its emphasis on quantitative 
simulation and goal-oriented utility.  

The main contribution of the current work is extending it to 
support plan execution and monitoring.  

Related Research / Contributions 
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Concluding Remarks 

We have presented a theory of plan generation, execution, and 
monitoring in physical settings that posits:  

•  Symbolic goals are the distributed loci of numeric utility;  

•  Planning and monitoring rely on quantitative mental simulation; 

• Replanning occurs when monitoring detects anomalies;  

• Anomalies may involve operator conditions, results, or utilities;  

• They may also involve unexpected introduction of goals.  

We have incorporated these ideas into the PUG/X architecture. 

We demonstrated its operation on scenarios with unexpected 
events, including one that required extended operation.  
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End of Presentation!
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