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The Scientific Enterprise

• Systematic collection and analysis of observations

• Formal statement of theories, laws, and models

• Use of the latter to explain and predict the former

• Use of observations to evaluate theorized structures

Science is a unique collection of activities distinguished by some
distinctive characteristics:

Moreover, science can apply these ideas to any area of enquiry,
in principle even to science itself.



Philosophy of Science

• character of scientific observations and experiments

• structure of scientific theories, laws, and models

• nature of scientific explanations and predictions

• evaluation of scientific theories, models, and laws

One discipline – philosophy of science – has studied science
itself since the 19th Century, including the:

However, philosophers of science have typically avoided one
important topic: scientific discovery.



Philosophers largely ignored scientific discovery, believing it to
be immune to logical analysis. Popper (1934) wrote:

The initial stage, the act of conceiving or inventing a theory,
seems to me neither to call for logical analysis nor to be
susceptible of it … My view may be expressed by saying that
every discovery contains an ‘irrational element’, or ‘a creative
intuition’…

He was not alone in this view. Hempel and many others believed
discovery was inherently irrational and beyond understanding.

However, advances made by two fields – cognitive psychology
and artificial intelligence – in the 1950s suggested otherwise.

Mystical Views of Scientific Discovery



Scientific Discovery as Problem Solving

• Search through a space of connected problem states

• Generated from earlier states by mental operators

• Guided by heuristics that keep the search tractable

Simon (1966) offered another view – that scientific discovery
is a variety of problem solving that involves:

Heuristic search had been implicated in many cases of human
problem solving, such as proving theorems and playing chess.

This idea offered a powerful new approach to understanding the
rational character of scientific discovery.

But it also suggested ways to automate this mysterious process.



Heuristic Search in a Problem Space

Heuristic search is analogous to the traversal of a physical maze.

The initial state and the operators
implicitly define a problem space.

Heuristics aid search by favoring
likely choices and rejecting others
to make solution finding tractable.

States in the problem space map onto
locations in the maze.
Operators for producing new states
map onto steps through the maze.
Solutions correspond to paths from
the maze entrance to its exit (goal).

Initial state Goal state



An Early Response

• Carried out search in a problem space of theoretical terms;

• Using operators that combined old terms into new ones;

• Guided by heuristics that noted regularities in data; and

• Applied these recursively to formulate higher-level relations.

For my CMU dissertation research, I adapted Simon’s ideas on
scientific discovery, developing a computer program that:

The result was Bacon, an early AI system that rediscovered laws
from the history of physics and chemistry.

I named the system after Sir Francis Bacon because it adopted a
data-driven approach to discovery.



Bacon on Kepler’s Third Law
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The Bacon system carried out heuristic search, through a space
of numeric terms, looking for constants and linear relations.

This table shows its progression from the distance and period of
Jupiter’s moons to a term with nearly constant value.



Bacon on the Ideal Gas Law

Bacon rediscovered the ideal gas law, PV =  aNT + bN, in three
stages, each at a different level of description.

PV =  c1 PV =  c2 PV =  c3 PV =  c4 PV =  c5 PV =  c6 PV =  c7 PV =  c8 PV =  c9

c/N = d1 c/N = d2 c/N = d3

d = aT + b

Parameters for laws at one level became dependent variables in
laws at the next level, enabling discovery of complex relations.



Some Laws Discovered by Bacon

Basic algebraic relations:
• Ideal gas law PV =  aNT + bN
• Kepler’s third law D3 = [(A – k) / t]2 = j
• Coulomb’s law FD2 / Q1Q2 = c
• Ohm’s law TD2 /  (LI – rI) = r

Relations with intrinsic properties:
• Snell’s law of refraction sin I / sin R  = n1 / n2

• Archimedes’ law C  = V  +  i
• Momentum conservation m1V1 =  m2V2

• Black’s specific heat law c1m1T1 + c2m2T2 = (c1m1+ c2m2 ) Tf



Initial Responses to Bacon

• Deciding which variables to measure and relate
• Determining which problem space to search
• Selecting which scientific problem to address

Responses to the Bacon work were mixed, with some agreeing
it clarified important aspects of scientific discovery.

But others claimed that the real key to discovery, which Bacon
did not address, instead lay in:

Others held that Bacon only did what it was programmed to do,
and thus did not really ‘discover’ anything.

We only claimed the system offered insights into the operation
of scientific discovery, with much remaining to be done.



Indeed, Bacon inspired other AI systems for law discovery like:

• ABACUS (Falkenhainer, 1985) and ARC (Moulet, 1992)
• Fahrenheit (Zytkow, Zhu, & Hussam, 1990)
• COPER (Kokar, 1986) and E* (Schaffer, 1990)
• IDS (Nordhausen & Langley, 1990)
• Hume (Gordon & Sleeman, 1992)
• DST (Murata, Mizutani, & Shimura, 1994)
• SSF (Washio et al., 1997) and LaGramge (Todorovski et al., 2006)
• GP (Koza et al., 2001) and Eureqa (Schmidt & Lipson, 2009)

These relied on different methods but also searched for explicit
mathematical laws that matched data.

Ensuing Systems for Law Discovery
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Interest in computational discovery spread to other aspects of
science, including qualitative laws and explanatory models.

Other Research on Discovery (from 1979 to 2000)

Research in this tradition has continued to the present, in some
cases producing new scientific results.



Successes of Computational Scientific Discovery

AI systems of this type have helped to discover new knowledge
in many scientific fields:

• reaction pathways in catalytic chemistry (Valdes-Perez, 1994, 1997)
• qualitative chemical factors in mutagenesis (King et al., 1996)
• quantitative laws of metallic behavior (Sleeman et al., 1997)
• quantitative conjectures in graph theory (Fajtlowicz et al., 1988)
• qualitative conjectures in number theory (Colton et al., 2000)
• temporal laws of ecological behavior (Todorovski et al., 2000)
• models of gene-influenced metabolism in yeast (King et al., 2009)

Each of these has led to publications in the refereed literature of
the relevant scientific field.



• Emphasized the availability of large amounts of data;

• Used computational methods to find regularities in the data;

• Adopted heuristic search through a space of hypotheses;

• Initially focused on commercial applications and data sets.

During the 1990s, a new paradigm known as data mining and
knowledge discovery emerged that:

Most work used notations invented by computer scientists, unlike
work on scientific discovery, which used scientific formalisms.

Data mining has been applied to scientific data, but the results
seldom bear a resemblance to scientific knowledge.

The Data Mining Movement



Discovering Explanatory Models

The early stages of any science focus on descriptive laws that
summarize empirical regularities.

Mature sciences instead emphasize the creation of models that
explain phenomena in terms of:

• Inferred components and structures of entities

• Hypothesized processes about entities’ interactions

Explanatory models move beyond description to provide deeper
accounts linked to theoretical constructs.

Can we develop computational systems that address this more
sophisticated side of scientific discovery?



An Example: The Ross Sea Ecosystem

d[phyto,t,1] = − 0.307 × phyto − 0.495 × zoo + 0.411 × phyto

d[zoo,t,1] = − 0.251 × zoo + 0.615 × 0.495 × zoo

d[detritus,t,1] = 0.307 × phyto + 0.251 × zoo + 0.385 × 0.495 × zoo − 0.005 × detritus

d[nitro,t,1] = − 0.098 × 0.411 × phyto + 0.005 × detritus

Formal accounts of ecosystem
dynamics are often cast as sets of
differential equations.

Here four equations describe the
concentrations of phytoplankton,
zooplankton, nitrogen, and detritus
in the Ross Sea over time.

Such models can match observed
variables with some accuracy.



A Deeper Account of Ross Sea Dynamics

d[phyto,t,1] = − 0.307 × phyto − 0.495 × zoo + 0.411 × phyto

d[zoo,t,1] = − 0.251 × zoo + 0.615 × 0.495 × zoo

d[detritus,t,1] = 0.307 × phyto + 0.251 × zoo + 0.385 × 0.495 × zoo − 0.005 × detritus

d[nitro,t,1] = − 0.098 × 0.411 × phyto + 0.005 × detritus

As phytoplankton uptakes nitrogen,
its concentration increases and the
nitrogen decreases. This continues
until the nitrogen is exhausted,
which leads to a phytoplankton die
off. This produces detritus, which
gradually remineralizes to replenish
nitrogen. Zooplankton grazes on
phytoplankton, which slows the
latter’s increase and also produces
detritus.



Processes in Ross Sea Dynamics

d[phyto,t,1] = − 0.307 × phyto − 0.495 × zoo + 0.411 × phyto

d[zoo,t,1] = − 0.251 × zoo + 0.615 × 0.495 × zoo

d[detritus,t,1] = 0.307 × phyto + 0.251 × zoo + 0.385 × 0.495 × zoo − 0.005 × detritus

d[nitro,t,1] = – 0.098 × 0.411 × phyto + 0.005 × detritus

As phytoplankton uptakes nitrogen,
its concentration increases and the
nitrogen decreases. This continues
until the nitrogen is exhausted,
which leads to a phytoplankton die
off. This produces detritus, which
gradually remineralizes to replenish
nitrogen. Zooplankton grazes on
phytoplankton, which slows the
latter’s increase and also produces
detritus.



Processes in Ross Sea Dynamics

d[phyto,t,1] = − 0.307 × phyto − 0.495 × zoo + 0.411 × phyto

d[zoo,t,1] = − 0.251 × zoo + 0.615 × 0.495 × zoo

d[detritus,t,1] = 0.307 × phyto + 0.251 × zoo + 0.385 × 0.495 × zoo − 0.005 × detritus

d[nitro,t,1] = − 0.098 × 0.411 × phyto + 0.005 × detritus

As phytoplankton uptakes nitrogen,
its concentration increases and the
nitrogen decreases. This continues
until the nitrogen is exhausted,
which leads to a phytoplankton die
off. This produces detritus, which
gradually remineralizes to replenish
nitrogen. Zooplankton grazes on
phytoplankton, which slows the
latter’s increase and also produces
detritus.



A Process Model for the Ross Sea
model Ross_Sea_Ecosystem

entities: phyto, zoo, nitro, detritus
observables: phyto, nitro

process phyto_loss(phyto, detritus)
  equations: d[phyto.conc,t,1] = −0.307 × phyto.conc

d[detritus.conc,t,1] = 0.307 × phyto.conc

process zoo_loss(zoo, detritus)
  equations: d[zoo.conc,t,1] = −0.251 × zoo.conc

d[detritus.conc,t,1] = 0.251 × zoo.conc

process zoo_phyto_grazing(zoo, phyto, detritus)
  equations: d[zoo.conc,t,1] = 0.615 × 0.495 × zoo.conc

d[detritus.conc,t,1] = 0.385 × 0.495 × zoo.conc
d[phyto.conc,t,1] = −0.495 × zoo.conc

process nitro_uptake(phyto, nitro)
  equations: d[phyto.conc,t,1] = 0.411 × phyto.conc

d[nitro.conc,t,1] = −0.098 × 0.411 × phyto.conc

process nitro_remineralization(nitro, detritus)
  equations: d[nitro.conc,t,1] = 0.005 × detritus.conc

d[detritus.conc,t,1 ] = −0.005 × detritus.conc

We can reformulate such an
account by restating it as a
quantitative process model.

Such a model is equivalent to
a standard differential
equation model, but it makes
explicit assumptions about
processes that are involved.

Each process indicates that
certain terms in equations
must stand or fall together.



A New Discovery Task

• Given: A set of entities with associated variables

• Given: Times series for some of these variables

• Given: Knowledge about processes that might occur

• Find: Quantitative process models that explain the observed
time series and predict new observations

We can define the task of discovering such explanatory process
models as:

We have referred to this class of computational discovery tasks
as inductive process modeling (Bridewell et al., 2008).



Inductive Process Modeling

process exponential_growth 
  variables:  P {population} 
  equations: d[P,t] = [0, 1,∞] × P 

process logistic_growth
  variables:  P {population}
  equations: d[P,t] = [0, 1, ∞] × P × (1 − P / [0, 1, ∞])

process constant_inflow
  variables:  I {inorganic_nutrient}
  equations: d[I,t] = [0, 1, ∞]

process consumption
  variables:  P1 {population}, P2 {population},
nutrient_P2
  equations: d[P1,t] = [0, 1, ∞] × P1 × nutrient_P2,
                   d[P2,t] = − [0, 1, ∞] × P1 × nutrient_P2

process no_saturation
  variables:  P {number}, nutrient_P {number}
  equations: nutrient_P = P

process saturation
  variables:  P {number}, nutrient_P {number}
  equations: nutrient_P = P / (P + [0, 1, ∞])

model AquaticEcosystem

variables: nitro, phyto, zoo, nutrient_nitro, nutrient_phyto
observables: nitro, phyto, zoo

process phyto_exponential_growth
  equations: d[phyto,t] = 0.1 × phyto

process zoo_logistic_growth
  equations: d[zoo,t] = 0.1 × zoo / (1 − zoo / 1.5)

process phyto_nitro_consumption
  equations: d[nitro,t] = −1 × phyto × nutrient_nitro,
                   d[phyto,t] = 1 × phyto × nutrient_nitro

process phyto_nitro_no_saturation
  equations: nutrient_nitro = nitro

process zoo_phyto_consumption
  equations: d[phyto,t] = −1 × zoo × nutrient_phyto,
                   d[zoo,t] = 1 × zoo × nutrient_phyto

process zoo_phyto_saturation
  equations: nutrient_phyto = phyto / (phyto + 0.5)

Heuristic
Search

observations

generic processes

process model

phyto, nitro, zoo, 
nutrient_nitro, nutrient_phyto 

entities



Generic Processes for Aquatic Ecosystems

process exponential_loss(S, D) process remineralization(N, D)
  entities: S{species}, D{detritus}   entities: N{nutrient}, D{detritus}
  parameters: α [0, 1]   parameters: π [0, 1]
  equations: d[S.conc,t,1] = −1 × α × S.conc  equations:

d[D.conc,t,1] = α × S.conc d[N.conc, t,1] = π × D.conc
d[D.conc, t,1] = −1 × π × D.conc

generic process grazing(S1, S2, D) process constant_inflow(N)
  entities: S1{species}, S2{species}, D{detritus}   entities: N{nutrient}
  parameters: ρ [0, 1], γ [0, 1]   parameters: ν [0, 1]
  equations: d[S1.conc,t,1] = γ × ρ × S1.conc  equations: d[N.conc,t,1] = ν

d[D.conc,t,1] = (1 − γ) × ρ × S1.conc
d[S2.conc,t,1] = −1 × ρ × S1.conc

generic process nutrient_uptake(S, N)
  entities: S{species}, N{nutrient}
  parameters: τ [0, ∞], β [0, 1], µ [0, 1]
  conditions: N.conc > τ
  equations: d[S.conc,t,1] = µ × S.conc

d[N.conc,t,1] = −1 × β × µ × S.conc

Our aquatic ecosystem library
contains about 25 generic
processes, including ones with
alternative functional forms for
loss and grazing processes.

These form the building blocks
from which to compose models.



Searching the Space of Model Structures

1. Instantiate known generic processes with specific entities,
subject to type specifications;

2. Combine these instantiated processes into candidate model
structures, rejecting disconnected structures;

3. For each model structure, carry out search through parameter
space to find good coefficients;

4. Return the parameterized model with the best overall score
(e.g., lowest squared error).

We have developed multiple ‘IPM’ systems that induce process
models from generic components in four stages:

We have reported variants on this approach in numerous papers
(Bridewell et al., MLj, 2008; Bridewell & Langley, TopiCS, 2010).



Searching the Space of Model Parameters

1. Select random initial values that fall within ranges specified in
the generic processes;

2. Improve these parameters using a conjugate gradient method
(717) until it reaches a local optimum;

3. Repeat the process ten times and select the best-scoring set of
parameter values.

To estimate the parameters for each generic model structure, our
induction algorithms:

This multi-level method gives reasonable fits to time-series data
from a number of domains, but it is computationally intensive.

Each step in the gradient descent requires simulating the model’s
trajectory to calculate its error.



Results on Training Data from Ross Sea

We provided IPM with 188
samples of phytoplankton,
nitrate, and ice measures
taken from the Ross Sea.

From 2035 distinct model
structures, it found accurate
models that limited phyto
growth by the nitrate and
the light available.

Some high-ranking models
incorporated zooplankton,
whereas others did not.



Results on Test Data from Ross Sea

Generalization to a second
year’s data benefited from
treating initial zooplankton
concentration as a free
model parameter.

Another good-fitting model
suggested that the nitrogen
to carbon ratio varies as a
function of available light.



Other Results with Process Modeling

power systems protist dynamics

hydrology biochemical kinetics



Extensions to Inductive Process Modeling

•  Inductive revision of quantitative process models
• Asgharbeygi et al. (Ecological Modeling, 2006)

•  Hierarchical generic processes that constrain search
• Todorovski, Bridewell, Shiran, and Langley (AAAI-2005)

•  An ensemble-like method that mitigates overfitting effects
• Bridewell, Bani Asadi, Langley, and Todorovski (ICML-2005)

•  An EM-like method that estimates missing observations
• Bridewell, Langley, Racunas, and Borrett (ECML-2006)

In addition, we have extended the basic framework to support:

These extensions make the modeling framework more robust
along a number of fronts.



• specify a quantitative process model of the target system;

• display and edit the model’s structure and details graphically;

• simulate the model’s behavior over time and situations;

• compare the model’s predicted behavior to observations;

• invoke a revision module in response to detected anomalies.

Because few scientists want to be replaced, we also developed
an interactive environment, PROMETHEUS, that lets users:

The environment offers computational assistance in forming and
evaluating models but lets the user retain control.

Interfacing with Scientists



The PROMETHEUS System

Details about PROMETHEUS are available in Bridewell et al. (IJHCS, 2007).



Knowledge and Search in Discovery

Traditional treatments of problem solving hold that knowledge
reduces the amount of search.

• But adding generic processes leads to a combinatorial increase
in the number of candidate structures.

Yet scientists are not overwhelmed by the size of model spaces
and they reject many structures as unacceptable.

This suggests two forms of scientific background knowledge:
• components used to generate candidate model structures
• constraints on allowable combinations of such components

This distinction seldom occurs in the literature, but it appears
key to understanding scientific explanation.



Constraints on Ecosystem Models

Our discussions with ecologists confirmed that constraints play
an important role in model acceptability.

Some plausible constraints for models of ecosystems include:

We have developed a formal notation that lets our systems use
such constraints during inductive process modeling.

• There must be at most one growth process for each species.

• A limited growth process cannot occur without a nutrient
limitation process and vice versa.

• There must be no more than one predation process between
any two species.



Inductive Process Modeling

process exponential_growth 
  variables:  P {population} 
  equations: d[P,t] = [0, 1,∞] × P 

process logistic_growth
  variables:  P {population}
  equations: d[P,t] = [0, 1, ∞] × P × (1 − P / [0, 1, ∞])

process constant_inflow
  variables:  I {inorganic_nutrient}
  equations: d[I,t] = [0, 1, ∞]

process consumption
  variables:  P1 {population}, P2 {population},
nutrient_P2
  equations: d[P1,t] = [0, 1, ∞] × P1 × nutrient_P2,
                   d[P2,t] = − [0, 1, ∞] × P1 × nutrient_P2

process no_saturation
  variables:  P {number}, nutrient_P {number}
  equations: nutrient_P = P

process saturation
  variables:  P {number}, nutrient_P {number}
  equations: nutrient_P = P / (P + [0, 1, ∞])

model AquaticEcosystem

variables: nitro, phyto, zoo, nutrient_nitro, nutrient_phyto
observables: nitro, phyto, zoo

process phyto_exponential_growth
  equations: d[phyto,t] = 0.1 × phyto

process zoo_logistic_growth
  equations: d[zoo,t] = 0.1 × zoo / (1 − zoo / 1.5)

process phyto_nitro_consumption
  equations: d[nitro,t] = −1 × phyto × nutrient_nitro,
                   d[phyto,t] = 1 × phyto × nutrient_nitro

process phyto_nitro_no_saturation
  equations: nutrient_nitro = nitro

process zoo_phyto_consumption
  equations: d[phyto,t] = −1 × zoo × nutrient_phyto,
                   d[zoo,t] = 1 × zoo × nutrient_phyto

process zoo_phyto_saturation
  equations: nutrient_phyto = phyto / (phyto + 0.5)

Heuristic
Search

observations

generic processes

process model
phyto, nitro, zoo, 
nutrient_nitro, nutrient_phyto 

entities

constraints
Always-together[growth(P), loss(P)]
Exactly-one[lotka-volterra(P, G), ivlev(P, G), watts(P, G)]
At-most-one[photoinhibition(P, E)]
Necessary[nutrient-mixing(N), remineralization(N, D)]

Heuristic
Search

Reduction in 
search space



Inducing Process Models with Constraints

•  Encodes modular constraints on process combinations

•  Uses these constraints to eliminate unacceptable models

•  Reduces search through the model space, which

•  Leads to far more efficient model construction

•  Produces little or no increase in generalization error

•  Improves the comprehensibility of generated models

Our extended framework for the discovery of process models:

The resulting systems are more robust in their ability to induce
process models (Bridewell & Langley, TopiCS, 2010).



Discovering Constraints

• Uses inductive process modeling to generate a set of models;
• Separates these into accurate and inaccurate model structures;
• Describes each model structure in terms of relational literals;
• Learns relational rules that can distinguish the two classes;
• Transforms the rules into constraints on model structures; and
• Uses these constraints to guide search on future modeling tasks.

In other recent work (Todorovski et al., AAAI-2012), we have
developed a system that:

Experiments suggests this produces a tenfold speedup on novel
modeling tasks with little or no loss in accuracy.



Directions for Future Research

• apply approach to new data sets (oceanography, physiology)

• develop more efficient methods for fitting model parameters

• extend the framework to partial differential equation models

• design mechanisms for inducing new generic processes

• handle discovery of complex models with many variables

• embed these abilities in a PROMETHEUS-like environment

Despite the progress to date, we need further work in order to:

Together, these will make constraint-guided inductive process
modeling a more robust approach to scientific explanation.



Summary Remarks

• Incorporates a formalism that is familiar to many scientists

• Utilizes two kinds of background knowledge about the domain

• Produces meaningful results from moderate amounts of data

• Generates models that explain, not just describe, observations

• Closes the loop between using and learning process constraints

Inductive process modeling is a novel and promising approach
to discovering scientific models that:

Although work on this topic has focused on ecological modeling,
the key ideas extend to other domains.

For more information, see http://www.isle.org/process/ .



eScience and Discovery Informatics

• Creation and simulation of complex explanatory models
• E.g., differential equation models for meteorology and biology
• However, most such models are constructed manually

The escience movement champions the use of computers to aid
the scientific enterprise, emphasizing two themes:

Science is about the relation between theory and data, and work
on computational scientific discovery offers a way to join them.

This idea is central to the emerging field of discovery informatics.

• Collection, storage, and mining of scientific data sets
• E.g., learned classifiers in astronomy and planetology
• But such analyses make no contact with scientific theory



Big Data and Scientific Discovery

• Scaling to large and heterogeneous data sets

• Scaling to large and complex scientific models

• Scaling to large spaces of candidate models

Digital collection and storage have led to rapid growth of data
in many areas.

The big data movement seeks to capitalize on this content, but,
in science at least, must address three distinct issues:

Handling large data sets has been widely studied and poses the
fewest challenges.

We need more work on the last two issues, for which the methods
of computational scientific discovery are well suited.



Concluding Remarks

Scientific discovery does not involve any mystical or irrational
elements; we can study and even partially automate it.

Our explanation of this fascinating set of processes relies on:

• Carrying out search through a space of laws or models;

• Utilizing operators for generating structures and parameters;

• Guiding search by data and by knowledge about the domain.

Work in this framework discovers laws and models stated in the
formalisms and concepts familiar to scientists.

This paradigm has already started to aid the scientific enterprise,
and its importance will only grow with time.
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In Memoriam

Herbert A. Simon
(1916 – 2001)

In 2001, the field of computational scientific discovery lost two of
its founding fathers.

Both were interdisciplinary researchers who published in computer
science, psychology, philosophy, and statistics.

Herb Simon and Jan Zytkow were excellent role models for us all.

Jan M. Zytkow
(1945 – 2001)


