
Thanks to W. Bridewell, S. Dzeroski, R. Morin, L. Todorovski, and others for their
contributions to this research, which was funded by ONR Grant N00014-11-1-0107.

Adam Arvay
Pat Langley

Department of Computer Science
University of Auckland

Auckland, NZ

Selective Induction of
Rate-Based Process Models

Inductive Process Modeling

!!!

Time-series data

Generic processes

Process
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process
Modeling

exponential_growth(Organism1)
 rate R = Organism1
 derivatives d[Organism1,t] = a * R
 parameters a = 0.75

holling(Organism2, Organism1)
 rate R = Organism2 * Organism1
 derivatives d[Organism2,t] = b * R,
 d[Organism1,t] = c * R
 parameters b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
 rate R = X
 derivatives d[X,t] = a * R
 parameters a > 0

holling(X [predator], Y [prey]) [predation]
 rate R = X * Y
 derivatives d[X,t] = b * R, d[Y, t] = c * R
 parameters b > 0, c < 0

Inductive process modeling construction of explanations for time
series from background knowledge.

Models are stated as sets of differential equations organized into
higher-level processes. 2

Relevance to Cognitive Systems
Research on process model induction is relevant to cognitive
systems because it:

• Addresses a high-level task that only humans can handle;

• Uses structured knowledge to finds explanatory models;

• Combines abilities into an integrated system; and

• Utilizes heuristic search to make problems tractable.

These are key characteristics of cognitive systems research
(Langley, 2012).

3

A Formalism for Process Models
A quantitative process model comprises a set of processes P,
each of which includes:

• A rate that denotes P’s speed / activation on a given time step;

• An algebraic equation that describes P’s rate as a function of
known variables;

• One or more derivatives that are proportional to P’s rate.

This formalism has important mathematical properties that aid
in model induction.

The notation borrows directly from Forbus’ (1984) notion of
qualitative processes.

4

A Sample Process Model
Consider a process model for a simple predator-prey ecosystem:
 exponential_growth[aurelia]!
 rate r = aurelia!
 parameters A = 0.75!
 equations d[aurelia] = A * r!
!

 exponential_loss[nasutum]!
 rate r = nasutum!
 parameters B = -0.57!
 equations d[nasutum] = B * r!
!

 holling_predation[nasutum, aurelia]!
 rate r = nasutum * aurelia!
 parameters C = 0.0024!
 D = -0.011!
 equations d[nasutum] = C * r!
 d[aurelia] = D * r!

Each derivative is proportional to the algebraic rate expression.
5

A Sample Process Model
Consider a process model for a simple predator-prey ecosystem:
 exponential_growth[aurelia]!
 rate r = aurelia!
 parameters A = 0.75!
 equations d[aurelia] = A * r!
!

 exponential_loss[nasutum]!
 rate r = nasutum!
 parameters B = -0.57!
 equations d[nasutum] = B * r!
!

 holling_predation[nasutum, aurelia]!
 rate r = nasutum * aurelia!
 parameters C = 0.0024!
 D = -0.011!
 equations d[nasutum] = C * r!
 d[aurelia] = D * r!

d[aurelia] = 0.75 * aurelia – 0.011 * nasutum * aurelia!
d[nasutum] = 0.0024 * nasutum * aurelia – 0.57 * nasutum!

This model compiles into a
set of differential equations

6

Some Generic Processes
Generic processes have a very similar but more abstract format:
 exponential_growth(X [prey]) [growth]!
 rate r = X!
 parameters A = (> A 0.0)!
 equations d[prey] = A * r!
!

 exponential_loss(X [predator]) [loss]!
 rate r = predator!
 parameters B = (< B 0.0)!
 equations d[prey] = B * r!
!

 holling_predation(X [predator], Y [prey]) [predation]!
 rate r = X * Y!
 parameters C = (> C 0.0)!
 D = (< D 0.0)!
 equations d[predator] = C * r!
 d[prey] = D * r!

These units serve as building blocks for constructing models.
7

RPM: Regression-Guided Process Modeling
RPM (Langley & Arvay, 2015) is a system for process model
induction that:

•  Generates all process instances consistent with type constraints
•  For each process P, calculates the rate for P on each time step
•  For each dependent variable X,

• Estimates dX/dt on each time step with center differencing,
• For each subset of processes with up to k elements,

•  Finds a regression equation for dX/dt in terms of process rates
•  If the equation’s r2 is high enough, retain for consideration

•  Adds the equation with the highest r2 to the process model

This approach factors the model construction task into a number
of tractable components.

A
ss

um
es

 a
ll

va
ria

bl
es

 o
bs

er
ve

d
 R

at
e

ex
pr

es
si

on
s a

re
 p

ar
am

et
er

 fr
ee

8

Two-Level Heuristic Search in RPM

9

We compared RPM to SC-IPM, its predecessor, on synthetic data
for a three-variable predator-prey ecosystem.

RPM found accurate models far more reliably than SC-IPM and,
at worst, ran 800,000 faster than the earlier system.

�

�
�
�
�
��
�
�
�
	�

��
		
�
	

���

���

���

���

�
�������
�

���� ��� ��� ���

�	

���
	
��������������

���
	
��������������

���
	
��������������

���
	
���������������

RPM and SC-IPM

RPM

SC-IPM

10

Three Drawbacks of RPM
Despites these advantages, RPM suffers from three problems:
• Generates all process instances at initialization time

• Combinatorial number of instantiations
• Some process instances have the same rates

• Carries out exhaustive search for differential equations
• Practical for sparsely connected process models
•  Intractable for equations with more than five terms

• Relies on greedy search through the space of models
• Later equations constrained by earlier ones
• But system can still find poor sets of equations

These led us to develop SPM, an extended system for process
model induction.

11

Selective Induction of Process Models
SPM incorporates three extensions that respond directly to the
limitations of RPM:

• Delaying binding of some variables in generic processes until it
finds evidence of a relationship;

• Combining sampling of processes with backward elimination to
induce more complex equations;

• Finding multiple equations for each dependent variable and then
searching for ways to combine them into consistent models.

These extensions give SPM greater coverage, scalability, and
reliability than its predecessor.

12

Delayed Variable Binding
RPM cannot induce certain chemical process models because
processes have the same rate; SPM avoids this problem by:

• Instantiating initially only variables in a generic process that
determine its rate expression;

• E.g., given a process with variables A, B, C, and D with the rate
expression A * B, SPM instantiates only A and B.

• Binding other variables that a process influences only when
finding equations for their derivatives.

These extensions should let SPM discover chemical reaction
networks that RPM could not handle.

13

Increased Model Coverage
Claim: SPM induces a superset of the models found by RPM that
adequately explain the observations.

We ran RPM and SPM on five different ecological time series,
both natural and synthetic.

•  In all cases, both systems found models with high accuracy;

•  Also, for synthetic data, they reconstructed the target model.

Thus, SPM’s more selective approach does not keep it doing
well on problems that RPM can handle.

14

Behavior on Natural Data
RPM matches the main trends for a simple predator-prey system.

 d[aurelia] = 0.75 * aurelia − 0.11 * nasutum * aurelia [r2 = 0.84]
 d[naustum] = 0.0024 * nasutum * aurelia − 0.57 * nasutum [r2 = 0.71]

�

�
�
�
��
�
�
��
�
��
�
	

�

����

����

�

���

���

�������������������

�� �� �� �� �� �� ��

�	
��
�������
������ ���	�	�������
����

�	
��
����
��
������� ���	�	����
��
�����

Behavior on Complex Synthetic Data
RPM also finds an accurate model for a 20-organism food chain.

Both systems scale well to modeling tasks with many variables.

�

�
�
�
�
��
�	
�

���

���

���

�

���

���

���

���

�	�

� � �� �� �� ��

	�

	�

	

	�

	�

	�

	�

	�

	�

	��

	��

	��

	�

	��

	��

	��

	��

	��

	��

	��

Increased Model Coverage
Claim: SPM induces a superset of the models found by RPM that
adequately explain the observations.

We also ran RPM and SPM on a number of synthetic data sets
for chemical reaction pathways.

RPM could not induce any of the models, while SPM found them
without difficulty.

17

Table 2: Differential equations for a chemical system with six
variables that interact through eight distinct reactions. SPM
can reconstruct this model, with minor parameter differences,
from time series that it generates whereas RPM cannot.

dX1/dt = 1.1 ·X2 ·X3� 1.6 ·X1
dX2/dt = 1.8 ·X1� 1.5 ·X2� 1.0 ·X2 ·X3 + 0.9 ·X5 ·X6
dX3/dt = 1.9 ·X1 + 1.1 ·X2� 1.3 ·X3� 1.3 ·X2 ·X3
dX4/dt = 0.9 ·X2 + 0.8 ·X3� 2.5 ·X4 ·X5 + 0.5 ·X5 ·X6
dX5/dt = 0.9 ·X3� 1.8 ·X4 ·X5 + 0.9 · Z
dX6/dt = 2.3 ·X4 ·X5� 0.8 ·X5 ·X6� 0.5 ·X6

Z that keeps other variables from reaching a steady state. An-
other chemical data set involved seven chemicals participat-
ing in 12 reactions, including a time-varying influx.

SPM encountered no difficulty inducing either reaction
network from multivariate trjectories with at least 80 time
steps. In the first case, the system generated 22 process in-
stances from three generic processes, then took 1,000 samples
of six rate terms to identify each component equation. In the
second case, SPM generated 46 processes from four generic
processes, then took 15,000 samples of ten rate terms. Runs
on the first data set required 14.7 ± 0.21 CPU seconds on
average, whereas those for the second took a mean of 111.8
± 0.6 seconds. In contrast, RPM generated 63 process in-
stances from analogous generic structures, and it could not
induce either target model. The reason, as explained earlier,
was that its greedy algorithm combines with eager binding of
variables in processes, leading it to include incorrect process
instances it could not retract during the later stages of model
construction. These runs demonstrate that SPM can induce
chemical process models that its predecessor cannot handle.

4.2 Scalable Induction of Differential Equations
As noted earlier, SPM’s approach to finding individual differ-
ential equations differs substantially from that of its predeces-
sor. RPM carries out exhaustive search for the simplest equa-
tion with an acceptable r

2 score, starting with one-term can-
didates and adding terms until reaching a maximum number.
The new system combines sampling of rate terms (processes)
with backward elimination to identify subsets that are good
predictors of derivatives. This suggests a second hypothesis:

• As the number of terms in a target equation increases, their
induction time for SPM grows more slowly than for RPM.

To test this prediction, we examined the behavior of their
modules for equation induction in isolation. We generated
synthetic data in which derivatives were a linear function of
different numbers – from one to ten – of processes with ran-
dom valued rates. The random data ensured that the terms in
each equation were not highly correlated, thus containing re-
dundant information. We ran each system ten times on each
equation and measured the CPU time needed to find it. We
fixed the number of samples at 10,000 and the number of sam-
pled rate terms at 13 for all SPM runs.

Figure 3 presents the results of this experiment. RPM actu-
ally finds simpler equations more rapidly than SPM, as they

�

�
�
�
��
�
�
�
	

�

���

�����

�����

�����

�����

�����

�����

	����

����

���
����������������������������

� ��

��

��

Figure 3: Average time for RPM and SPM to find target equa-
tions, in CPU seconds, with different numbers of rate terms
(processes).

are consistent with its simplicity bias. However, this changes
for equations with five processes, at which point SPM be-
comes faster. In fact, there were so many combinations of
nine-term equations that RPM could not finish generating
them, making it unable to complete its runs. Growth in CPU
time for SPM was linear, as it depended on the number of
samples and equations specified by the user.

SPM’s sampling approach does not guarantee that it will
find the appropriate equation. The correct set of rates must
appear in the sampled set and feature selection must correctly
identify them as relevant. We can calculate the probability
that the correct combination of rates will appear in a sample
as

�T
S

��T�S
S�R

�
/

�T
R

�
, where T is the total number of processes,

R is the number of rates in the target equation, and S is the
size of the sample. Additional sampling increases the odds of
finding an equation but increases CPU time further, which is a
natural tradeoff. Nevertheless, it seems clear the new system
scales better to equation complexity than its precursor.

4.3 Improved Induction of Consistent Models
Another difference between our approach to process model
induction and its precursor lies in their search for consistent
models. Rather than relying on a greedy method aided by pro-
cess constraints, SPM first finds a set of alternative equations
for each dependent variable and then uses depth-first search
to find all ways to combine them into models. This suggests
a final hypothesis about the two systems:

• SPM induces a more complete set of consistent process
models than RPM and has greater chances of recovering
the target model.

This claim seems straightforward to test, but we have already
seen that RPM’s greedy search is sufficient to find complex
ecological models, and its inability to induce chemical reac-
tion networks is due mainly to eager binding of variables in
processes. However, we can modify SPM’s parameters to ap-
proximate greedy search through the space of process models.

Thus, we ran a parametric study in which we compared the
behavior of the multi-equation SPM with a variant that finds
only one differential equation for each dependent variable.
We ran both versions on the same synthetic data sets used
earlier, some generated from predator-prey models and others

Heuristic Search for Equations
RPM’s exhaustive search for individual equations does not scale
well; SPM avoids this problem by:

• Selecting a subset of processes (with rates) as input to multiple
linear regression;

• Carrying out backward elimination to identify which processes
to retain in the equation;

• Repeating these steps many times to increase chances of finding
an equation with appropriate terms.

Sampling is necessary because the variables in our data sets are
highly collinear, which makes coefficients inaccurate.

18

As the number of terms in a target equation increases, induction
time for SPM will grow more slowly than for RPM.

RPM’s exhaustive search rapidly becomes intractable; SPM’s
approach runs in time linear with equation complexity.

Better Scaling to Equation Complexity

19

�

�
�
�
��
�
�
�
	

�

���

�����

�����

�����

�����

�����

�����

	����

����

���
����������������������������

� ��

��

��

Search for Consistent Process Models

20

RPM’s greedy search sometimes leads it down dead ends, so it
fails to find accurate models.

SPM avoids this problem by organizing its search differently:

• Finding multiple differential equations for each target variable;

• Considering all ways to combine them into consistent models
that satisfy process constraints.

This strategy should increase SPM’s probability of inducing one
or more accurate models.

Increased Reliability
Claim: SPM induces a more complete set of process models than
RPM and has greater chances of recovering the target.

SPM’s strategy increased its probability of inducing models of
chemical reaction pathways.
The system also found multiple models with similar accuracies.

21

A. ARVAY AND P. LANGLEY

Table 3. The probability of finding a target model by greedy and multi-equation variants of SPM on ecological
and chemical data sets, along with average CPU time.

Greedy SPM Multi-Equation SPM

Percent CPU Percent CPU

Nas-Aur 100 0.004±.002 100 0.004±.001
Aquatic Ecosyst 100 0.03±.012 100 0.12±.007
Predator Prey 6a 100 0.01±.003 100 0.03±.004
Predator Prey 6b 100 0.83±.004 100 2.63±.008
Predator Prey 20 100 0.81±.028 100 4.10±.100

Chemistry A 0 1.17±2.03 100 14.7±.210
Chemistry B 0 1.65±1.27 100 111.8±.610

Thus, we ran a parametric study in which we compared the behavior of the multi-equation SPM
with a variant that finds only one differential equation for each dependent variable. We ran both
versions on the same synthetic data sets used earlier, some generated from predator-prey models
and others from chemical reaction networks. For each condition, we ran the systems 20 times and
recorded both the total number of consistent models induced, as well as the percentage of times they
found the target model. Table 2 shows that, on the five ecosystem data sets, each variant reliably
found a single model that was equivalent to the target. In contrast, on the two chemical data sets,
the ‘greedy’ version was unable to find the correct model, whereas the full SPM generated several
consistent models, in each case finding the target. Naturally, the full variant took longer to run (14.7
and 111.8 CPU seconds, respectively) than the greedy version (1.17 and 1.65 CPU seconds), but
there is a natural tradeoff between time and coverage. The chemistry B data set was particularly
challenging and needed more time to find consistent models reliably. We should emphasize that all
additional models SPM found were internally consistent in terms of processes and had comparable
r

2 scores. One cannot distinguish them given the data and the system’s background knowledge.

5. Related Research

We have already explained how SPM builds on a long tradition of research on inductive process
modeling. Our system addresses the same basic discovery task as other work in this paradigm, al-
though it takes advantage of ideas introduced by Langley and Arvay (2015) to make the problem
more tractable. We have retained RPM’s assumptions that each process has an associated rate that
is determined by an algebraic expression and derivatives that are proportional to this rate. This idea
comes originally from Forbus’s (1984) Qualitative Process Theory, which used a similar notation for
qualitative models of physical systems. SPM introduces improved mechanisms for inducing quan-
titatve process models, but it benefits from many earlier ideas. The use of background knowledge in
inductive logic programming is similar in spirit but very different in practice, as it acquires models
from relational rather than numeric data and it typically relies on separate-and-conquer methods that
are inappropriate for linked sets of differential equations.

10

Related and Future Research
Our approach builds on ideas from earlier research, including:
• Qualitative representations of scientific models (Forbus, 1984)

• Inducing differential equations (Todorovski, 1995; Bradley, 2001)

• Heuristic search and multiple linear regression

• Delayed commitment and feature selection

Our plans for extending the SPM system include:
• Handling parametric rate expressions (gradient descent)

• Dealing with unobserved variables (iterative optimization)

Together, these should extend SPM’s coverage and usefulness
even further.

22

Summary Comments!

• Delaying binding of variables in generic processes

• Carrying out heuristic search for component equations

• Utilizing more extensive search for consistent models

We have reported an approach to inductive process modeling
that extends earlier work by:

We also described a new system, SPM, that incorporates these
ideas and demonstrated its benefits experimentally.

For more information, see http://www.isle.org/process/ .

23

End of Presentation!

