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Inductive Process Modeling

Inductive process modeling construction of explanations for time
series from background knowledge.
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exponential_growth(Organism1)
rate R = Organisml
derivatives d[Organisml,t]=a*R
parameters a = 0.75

holling(Organism2, Organism1)
rate R = Organism2 * Organisml
derivatives d[Organism2,t] = b * R,
d[Organisml,t]=c*R
parameters b =0.0024, c =-0.011

exponential_growth(X [prey]) [growth]
rate R=X

derivatives d[X,t]=a* R
parameters a > 0

holling(X [predator], Y [prey]) [predation]
rate R=X*Y

Inductive Process
Modeling
derivatives d[X,t]=b *R, d[Y,t]=c*R

parameters b>0,c<0 Process
models

Generic processes

Models are stated as sets of differential equations organized into
higher-level processes.



Relevance to Cognitive Systems

Research on process model induction 1s relevant to cognitive
systems because it:

* Addresses a high-level task that only humans can handle;
* Uses structured knowledge to finds explanatory models;
* Combines abilities into an integrated system; and

» Utilizes heuristic search to make problems tractable.

These are key characteristics of cognitive systems research
(Langley, 2012).



A Formalism for Process Models

A quantitative process model comprises a set of processes P,
each of which includes:

* A rate that denotes P’s speed / activation on a given time step;

* An algebraic equation that describes P’s rate as a function of
known variables;

* One or more derivatives that are proportional to P’s rate.

This formalism has important mathematical properties that aid
in model induction.

The notation borrows directly from Forbus’ (1984) notion of
qualitative processes.



A Sample Process Model

Consider a process model for a simple predator-prey ecosystem:

exponential growth[aurelia]
rate r = aurelia
parameters A = 0.75
equations d[aurelia] = A * r

exponential loss[nasutum]
rate r = nasutum

parameters B = -0.57
equations d[nasutum] = B * r

holling predation[nasutum, aurelia]

rate r = nasutum * aurelia
parameters C = 0.0024

D = -0.011
equations d[nasutum] = C * r

d[aurelia] = D * r

Each derivative 1s proportional to the algebraic rate expression.



A Sample Process Model

Consider a process model for a simple predator-prey ecosystem:

exponential growth[aurelia]
rate r = aurelia
parameters A = 0.75
equations d[aurelia] = A * r
This model compiles into a

tial 1 t : j /
exponential loss[nasutum] set of differential equations

rate r = nasutum
parameters B = -0.57
equations d[nasutum] = B * r ™
holling predation[nasutum, aurelia]
rate r = nasutum * aurelia
parameters C = 0.0024
D = -0.011
equations d[nasutum] = C * r
d[aurelia] = D * r ~§\/7
d[aurelia] = 0.75 * aurelia — 0.011 * nasutum * aurelia

d[nasutum] = 0.0024 * nasutum * aurelia — 0.57 * nasutum



Some Generic Processes

Generic processes have a very similar but more abstract format:

exponential growth(X [prey]) [growth]
rate r = X
parameters A = (> A 0.0)
equations d[prey] = A * r

exponential loss(X [predator]) [loss]
rate r = predator
parameters B = (< B 0.0)
equations d[prey] = B * r

holling predation(X [predator], Y [prey]) [predation]
rate r =X *Y
parameters C = (> C 0.0)
D = (<D 0.0)
equations d[predator] = C * r
d[prey] = D * r

These units serve as building blocks for constructing models.



RPM: Regression-Guided Process Modeling

RPM (Langley & Arvay, 2015) 1s a system for process model
induction that:

* Generates all process instances consistent with type constraints
* For each process P, calculates the rate for P on each time step } |
* For each dependent variable X,

* Estimates dX/dt on each time step with center differencing,

Assumes all variables observed
Rate expressions are parameter free

* For each subset of processes with up to k elements,
* Finds a regression equation for dX/dt in terms of process rates
* If the equation’s 72 1s high enough, retain for consideration

* Adds the equation with the highest 72 to the process model

This approach factors the model construction task into a number
of tractable components.



Two-Level Heuristic Search in RPM

Time-series data

exponential_growth{X [prey]) [growth)
rateR=X
cerivatives d[Xt]=a*R
parameters a > 0

holling(X [precator], Y [prey]) [predation)
rateR=X*Y
derivatives d[Xt]=b*R,d[Y,tj=c*R
parameters b>0,c <0

Target variables

Organism1 [predator, prey]
Organism2 [predator, prey]

Generic processes
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exponential_growth(Organism!)
rate R = Organisml
derivatives d[Organismit]=a*R
parameters a = 0.75

holling(Organism2, Organism1)
rate R = Organism2 * Organism1
derivatives d[Organism2,t] = b * R,
d[Organismit]=c*R
parameters b = 0.0024, ¢ = -0.011
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RPM and SC-IPM

We compared RPM to SC-IPM, its predecessor, on synthetic data
for a three-variable predator-prey ecosystem.
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RPM found accurate models far more reliably than SC-IPM and,

at worst, ran 800,000 faster than the earlier system. "



Three Drawbacks of RPM

Despites these advantages, RPM suffers from three problems:

* Generates all process instances at 1nitialization time
* Combinatorial number of instantiations
* Some process instances have the same rates
* Carries out exhaustive search for differential equations
* Practical for sparsely connected process models
* Intractable for equations with more than five terms
* Relies on greedy search through the space of models
* Later equations constrained by earlier ones
* But system can still find poor sets of equations

These led us to develop SPM, an extended system for process
model induction.

11



Selective Induction of Process Models

SPM incorporates three extensions that respond directly to the
limitations of RPM:

* Delaying binding of some variables in generic processes until 1t
finds evidence of a relationship;

* Combining sampling of processes with backward elimination to
induce more complex equations;

* Finding multiple equations for each dependent variable and then
searching for ways to combine them into consistent models.

These extensions give SPM greater coverage, scalability, and
reliability than 1ts predecessor.
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Delayed Variable Binding

RPM cannot induce certain chemical process models because
processes have the same rate; SPM avoids this problem by:

* Instantiating initially only variables 1n a generic process that
determine its rate expression;

* E.g., given a process with variables A, B, C, and D with the rate
expression A = B, SPM instantiates only A and B.

* Binding other variables that a process influences only when
finding equations for their derivatives.

These extensions should let SPM discover chemical reaction
networks that RPM could not handle.
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Increased Model Coverage

Claim: SPM induces a superset of the models found by RPM that
adequately explain the observations.

We ran RPM and SPM on five different ecological time series,
both natural and synthetic.

* In all cases, both systems found models with high accuracy;
* Also, for synthetic data, they reconstructed the target model.

Thus, SPM’s more selective approach does not keep it doing
well on problems that RPM can handle.
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Behavior on Natural Data

RPM matches the main trends for a simple predator-prey system.
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dfaurelia] = 0.75 * aurelia — 0.11 * nasutum * aurelia [r? = 0.84]

d/naustum] = 0.0024 * nasutum * aurelia — 0.57 * nasutum [r? = 0.71]




RPM also finds an accurate model for a 20-organism food chain.
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Behavior on Complex Synthetic Data
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Both systems scale well to modeling tasks with many variables.



Increased Model Coverage
Claim: SPM induces a superset of the models found by RPM that
adequately explain the observations.

We also ran RPM and SPM on a number of synthetic data sets
for chemical reaction pathways.

dX1/dt =11 -X2-X3—1.6- X1

dX2/dt =18 -X1—15-X2—1.0- X2 - X3+0.9- X5- X6
dX3/dt=19-X1+11-X2—-13-X3—-13 X2 X3
dX4/dt =09 - X2+0.8- X3—25-X4-X5+0.5- X5- X6
dX5/dt =09-X3—18-X4-X5+0.9-Z

dX6/dt =2.3-X4-X5—0.8-X5-X6—0.5- X6

RPM could not induce any of the models, while SPM found them

without difficulty.
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Heuristic Search for Equations

RPM’s exhaustive search for individual equations does not scale
well; SPM avoids this problem by:

* Selecting a subset of processes (with rates) as input to multiple
linear regression;

 Carrying out backward elimination to 1dentify which processes
to retain in the equation;

* Repeating these steps many times to increase chances of finding
an equation with appropriate terms.

Sampling is necessary because the variables in our data sets are
highly collinear, which makes coefficients inaccurate.
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Better Scaling to Equation Complexity

As the number of terms 1n a target equation increases, induction
time for SPM will grow more slowly than for RPM.
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Task complexity

RPM’s exhaustive search rapidly becomes intractable; SPM’s
approach runs in time linear with equation complexity.
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Search for Consistent Process Models

RPM’s greedy search sometimes leads 1t down dead ends, so it
fails to find accurate models.

SPM avoids this problem by organizing its search differently:
* Finding multiple differential equations for each target variable;

* Considering all ways to combine them into consistent models
that satisfy process constraints.

This strategy should increase SPM’s probability of inducing one
or more accurate models.
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Increased Reliability

Claim: SPM induces a more complete set of process models than
RPM and has greater chances of recovering the target.

Greedy SPM Multi-Equation SPM
Percent CPU Percent CPU

Nas-Aur 100  0.004+£.002 100 0.004+.001
Aquatic Ecosyst 100 0.03£.012 100 0.12+£.007
Predator Prey 6a 100  0.01+£.003 100 0.03£.004
Predator Prey 6b 100 0.83+£.004 100 2.63+.008
Predator Prey 20 100  0.81+.028 100 4.10+.100

Chemistry A 0 1.174£2.03 100 14.7£.210
Chemistry B 0  1.65+1.27 100 111.8%+.610

SPM’s strategy increased its probability of inducing models of
chemical reaction pathways.

The system also found multiple models with similar accuracies.
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Related and Future Research

Our approach builds on ideas from earlier research, including:
* Qualitative representations of scientific models (Forbus, 1984)
* Inducing differential equations (Todorovski, 1995; Bradley, 2001)
* Heuristic search and multiple linear regression
* Delayed commitment and feature selection
Our plans for extending the SPM system include:
* Handling parametric rate expressions (gradient descent)
* Dealing with unobserved variables (iterative optimization)

Together, these should extend SPM’s coverage and usefulness
even further.
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Summary Comments

We have reported an approach to inductive process modeling
that extends earlier work by:

* Delaying binding of variables in generic processes
* Carrying out heuristic search for component equations

* Utilizing more extensive search for consistent models

We also described a new system, SPM, that incorporates these
1deas and demonstrated its benefits experimentally.

For more information, see http://www.isle.org/process/ .
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End of Presentation



