
Thanks to W. Bridewell, S. Dzeroski, R. Morin, L. Todorovski, and others for their
contributions to this research, which was funded by ONR Grant N00014-11-1-0107.

Flexible Model Induction through
Heuristic Process Discovery

Pat Langley
 Institute for the Study of
Learning and Expertise

Adam Arvay
Department of Computer Science

University of Auckland

Inductive Process Modeling

!!!

Time-series data

Generic processes

Process
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process
Modeling

exponential_growth(Organism1)
 rate R = Organism1
 derivatives d[Organism1,t] = a * R
 parameters a = 0.75

holling(Organism2, Organism1)
 rate R = Organism2 * Organism1
 derivatives d[Organism2,t] = b * R,
 d[Organism1,t] = c * R
 parameters b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
 rate R = X
 derivatives d[X,t] = a * R
 parameters a > 0

holling(X [predator], Y [prey]) [predation]
 rate R = X * Y
 derivatives d[X,t] = b * R, d[Y, t] = c * R
 parameters b > 0, c < 0

Inductive process modeling construction of explanations for time
series from background knowledge.

Models are stated as sets of differential equations organized into
higher-level processes.

A Formalism for Process Models
A quantitative process model comprises a set of processes P,
each of which includes:

• A rate that denotes P’s speed / activation on a given time step;

• An algebraic equation that describes P’s rate as a function of
known variables;

• One or more derivatives that are proportional to P’s rate.

This formalism has important mathematical properties that aid
in model induction.

The notation borrows directly from Forbus’ (1984) notion of
qualitative processes.

A Sample Process Model
Consider a process model for a simple predator-prey ecosystem:
 exponential_growth[aurelia]!
 rate r = aurelia!
 parameters A = 0.75!
 equations d[aurelia] = A ! r!
!

 exponential_loss[nasutum]!
 rate r = nasutum!
 parameters B = -0.57!
 equations d[nasutum] = B ! r!
!

 holling_predation[nasutum, aurelia]!
 rate r = nasutum ! aurelia!
 parameters C = 0.0024!
 D = -0.011!
 equations d[nasutum] = C ! r!
 d[aurelia] = D ! r!

d[aurelia] = 0.75 ! aurelia – 0.011 ! nasutum ! aurelia!
d[nasutum] = 0.0024 ! nasutum ! aurelia – 0.57 ! nasutum!

This model compiles into a
set of differential equations

Some Generic Processes
Generic processes have a very similar but more abstract format:
 exponential_growth(X [prey]) [growth]!
 rate r = X!
 parameters A = (> A 0.0)!
 equations d[X] = A ! r!
!

 exponential_loss(X [predator]) [loss]!
 rate r = predator!
 parameters B = (< B 0.0)!
 equations d[X] = B ! r!
!

 holling_predation(X [predator], Y [prey]) [predation]!
 rate r = X ! Y!
 parameters C = (> C 0.0)!
 D = (< D 0.0)!
 equations d[X] = C ! r!
 d[Y] = D ! r!

These units serve as building blocks for constructing models.

RPM: Regression-Guided Process Modeling
RPM (Langley & Arvay, 2015) is a system for process model
induction that:

•  Generates all process instances consistent with type constraints
•  For each process P, calculates the rate for P on each time step
•  For each dependent variable X,

• Estimates dX/dt on each time step with center differencing,
• For each subset of processes with up to k elements,

•  Finds a regression equation for dX/dt in terms of process rates
•  If the equation’s r2 is high enough, retain for consideration

•  Adds the equation with the highest r2 to the process model

This approach factors the model construction task into a number
of tractable components.

A
ss

um
es

 a
ll

va
ria

bl
es

 o
bs

er
ve

d
 R

at
e

ex
pr

es
si

on
s a

re
 p

ar
am

et
er

 fr
ee

Two-Level Heuristic Search in RPM

We compared RPM to SC-IPM, its predecessor, on synthetic data
for a three-variable predator-prey ecosystem.

RPM found accurate models far more reliably than SC-IPM and,
at worst, ran 800,000 faster than the earlier system.

�

�
�
�
�
��
�
�
�
	�

��
		
�
	

���

���

���

���

��������
�

���� ��� ��� ���

�	

���	
��������������

���	
��������������

���	
��������������

���	
���������������

RPM and SC-IPM

RPM

SC-IPM

Behavior on Complex Synthetic Data
RPM also finds an accurate model for a 20-organism food chain.

The system scales well to modeling tasks with many variables.

�

�
�
�
�
��
�	
�

���

���

���

�

���

���

���

���

�	�

� � �� �� �� ��

	�

	�

	

	�

	�

	�

	�

	�

	�

	��

	��

	��

	�

	��

	��

	��

	��

	��

	��

	��

Selective Induction of Process Models
SPM (Arvay & Langley, 2016) incorporates three extensions that
remedy three drawbacks of RPM:

• Delaying binding of some variables in generic processes until it
finds evidence of a relationship;

• Combining sampling of processes with backward elimination to
induce more complex equations;

• Finding multiple equations for each dependent variable and then
searching for ways to combine them into consistent models.

Experiments showed these extensions give SPM much greater
coverage, scalability, and reliability than its predecessor.

However, like RPM, it assumes that all generic processes are
given in advance. We want to overcome this limitation.

A Revised Model Induction Task
Consider a new version of inductive process modeling that we
will state as:
• Given: A set of typed variables and observed trajectories of their

values over time;
• Given: A set of generic processes with type constraints and rate

terms that might appear in explanations;
• Given: A set of rate expressions and conceptual relations that can

serve as building blocks for new processes;
• Find: A model that uses these structures to explain the variables’

observed trajectories;
• Find: New generic processes that are useful for the current and

future modeling task.

 We want computational methods that solve this revised problem.

Conceptual Processes and Rate Templates Table 2: Four generic processes that are relevant to modeling
predator-prey ecosystems.

gain

:variables ((x organism))

:rate x

:constraints ((> par 0)

predation1

:variables ((x organism)(y organism))

:rate x · y

:constraints ((< par 0)(> par 0))

predation2

:variables ((x organism)(y organism))

:rate x / y

:constraints ((< par 0)(> par 0))

loss

:variables ((x organism))

:rate x

:constraints ((< par 0)

3.1 Task Specification
Like previous authors, we view process modeling as moving
beyond replication and prediction of time series to construct-
ing explanations of observed values in terms of background
knowledge. We can specify the modified task of flexible pro-
cess modeling in terms of its inputs and outputs:

• Given: A set of typed variables and observed trajectories
of their values over time;

• Given: A set of generic processes with type constraints
and rate terms that might appear in the explanations;

• Given: A set of rate expressions and conceptual relations
that can serve as process constituents;

• Find: A model that uses these processes to explain vari-
ables’ trajectories.

• Find: New generic processes that are useful for the cur-
rent and future data.

This statement assumes the induction system is provided
with only some generic processes that will prove useful for
the observations. Instead, it must discover other, novel pro-
cesses that aid its explanation on both the current modeling
task and ones it may encounter later.

However, one cannot conjure candidate processes from
thin air; they can only be constructed from more basic el-
ements. Our notation for processes suggests two types of
components: algebraic rate expressions and conceptual re-
lations among variables. For instance, consider the four
generic processes shown in Table 2, for gain, predation, and
loss, that can be used to induce the model we already exam-
ined in Table 1. Each generic process specifies a set of typed
variables that should appear as derivatives in equations, an
algebraic expression that determines the rate, and constraints
on coefficients that relate the rate to each derivative.

The predation1 and predation2 processes each involve
two organisms, while gain and loss refer to only one variable
of this type. The rate for predation1 is the product of two or-
ganisms’ populations, while that for predation2 is the ratio

Table 3: (a) Conceptual relations and (b) algebraic rate tem-
plates that serve as components of generic processes.

(a) prey

:variables ((a organism)(b organism))

:inputs (b)

:outputs (a)

inflow

:variables ((a organism))

:inputs ()

:outputs (a)

(b) identity

:expression p

product

:expression p · q

ratio

:expression p / q

of the predator’s population to that of the prey. In contrast,
the rates for gain and loss are determined by the population
of a single organism. The parameter constraints, which in-
dicate whether the process consumes or produces each vari-
able, also differ across the four structures. For instance, the
first parameter of predation1 must be negative and the sec-
ond must be positive. These relate to coefficients in the equa-

tions field for instances of this process, as in Table 1.
We will assume here that the flexible process modeler is

provided with conceptual relations that might occur in the
domain, like those in Table 3 (a), and algebraic templates
for possible rate expressions, like those in Table 3 (b). One
can unify such structures to produce the generic processes in
Table 2, as well as others. For instance, the prey relation and
product rate in the former can combine to form the preda-

tion1 entry in the latter, while combining prey with ratio can
produce predation2. Any generic process in our framework
can be broken down into these two elements, which suggests
a natural approach to generating the former from the latter.

3.2 Generating Candidate Processes
Given a set of conceptual relations among typed variables
and a set of algebraic rate templates like those in Table 3,
there is a simple method for combining them to construct
generic processes like those in Table 2. This involves ex-
amining all possible pairs of conceptual relations and rate
templates. For each relation C and template R, one must
find all ways in which the variables in R can unify with the
typed variables in C. For instance, there are two ways to
compose the prey relation and the ratio template in Table 3,
giving the rate expressions a/b and b/a. In the first, the rate
is the predator (output) population divided by the prey (in-
put) population; in the second it is the inverse, giving the
process predation2 after replacing variable names.

The number of processes generated in this manner can be
substantially greater than c ·r, where c is the number of con-
ceptual relations and r is the number of rate templates. De-
spite its combinatorial character, automating this mechanism
is both straightforward and tractable for reasonable numbers

A Naïve Approach to Process Discovery
Our first implemented system, FPM/N, takes a naive approach to
flexible process modeling by:

• Calling on SPM to find acceptable process models using an initial
set of generic processes;

• If this fails, using conceptual relations and rate templates to
generate an expanded set of processes;

• Calling on SPM again to find acceptable models using this
expanded set.

Given enough resources, this scheme should find reasonable
models even when it must invent new processes.

However, the exhaustive approach of considering all possible
processes seems unlikely to scale well.

A Heuristic Approach to Process Discovery
Our second system, FPM, instead takes a heuristic approach to
flexible process modeling by:

• Calling on SPM to find acceptable process models using an initial
set of generic processes;

• If this fails, identifying the variable V for which SPM could find
no consistent equations;

•  Using conceptual relations and rate templates to generate only
those processes that incorporate V;

• Calling on SPM again to find acceptable models using this
expanded set, repeating the procedure if necessary.

This heuristic approach focuses attention on relevant processes,
which should let it scale much better.

Empirical Studies of Process Discovery
We have evaluated FPM/N and FPM using multiple methods on:
• Natural predator-prey data from Veilleux (1979)

• Synthetic data for a five-organism predator-prey system

• Synthetic data for an aquatic ecosystem with grazers and nutrients

In each case, they discovered the processes we had omitted and
induce accurate models.

We also carried out additional experiments that demonstrated:

• Transfer and reuse of processes across modeling tasks

• Scaling to increased numbers of variables and rate templates

Together, these suggest that our approach is more flexible and
robust than earlier systems.

Behavior on Natural Data
FPM invents a process for predation to fit Veilleux’s (1979) data.

 d[aurelia] = 0.75 ! aurelia − 0.11 ! nasutum ! aurelia [r2 = 0.84]
 d[naustum] = 0.0024 ! nasutum ! aurelia − 0.57 ! nasutum [r2 = 0.71]

�

�
�
�
��
�
�
��
�
��
�
	

�

����

����

�

���

���

�������������������

�� �� �� �� �� �� ��

�	
���������
������ ���	�	�������
����

�	
������
��������� ���	�	����
�������

Surprisingly, with increasing number of terms in a target equation,
induction time for FPM grows more rapidly than for FPM/N.

Here SPM was provided with all generic processes it needed.

Scaling to Number of Variables

0 2 4 6 8 10
Number of variables

0
10

20
30

40
50

60
C

PU
 s

ec
on

ds

SPM
FPM/N
FPM

FPM’s induction time is not influenced strongly by the number of
rate templates, but FPM/N fails when we omit more than six.

Again, SPM was provided with all generic processes it needed.

Scaling to Number of Rate Templates

0 2 4 6 8 10
Number of rate templates

0
5

10
15

20
C

PU
 s

ec
on

ds

SPM
FPM/N
FPM

Related and Future Research
Our approach builds on ideas from earlier research, including:
• Qualitative representations of scientific models (Forbus, 1984)

• Inducing differential equations (Todorovski, 1995; Mai et al., 2016)

• Heuristic search and multiple linear regression

• Learning rules to fill in gaps (Sleeman, 1984; VanLehn et al., 1992)

Our plans for extending the SPM system include:
• Handling parametric rate expressions (gradient descent)

• Dealing with unobserved variables (iterative optimization)

Together, these should extend FPM’s coverage and usefulness
even further.

Summary Comments!

• Generating candidate processes from more basic elements

• Using impasses to focus generation on problematic variables

• Retaining useful processes for later use in model induction

We have reported an extension to inductive process modeling
that extends earlier work by:

We also described a new system, FPM, that incorporates these
ideas and studied its behavior experimentally.

For more information, see http://www.isle.org/process/ .

End of Presentation!

