Flexible Model Induction through
Heuristic Process Discovery

Pat Langley

Institute for the Study of
Learning and Expertise

Adam Arvay

Department of Computer Science
University of Auckland

Thanks to W. Bridewell, S. Dzeroski, R. Morin, L. Todorovski, and others for their
contributions to this research, which was funded by ONR Grant N00014-11-1-0107.



Inductive Process Modeling

Inductive process modeling construction of explanations for time
series from background knowledge.

Time-series data Target variables
& b » Organism1 [predator, prey]
:' : A 1% R Organism2 [predator, prey]
c |/ LRER Rl
LERIAD S SATEERES
K A e ¥ b
% ; LN
v "‘.
exponential_growth(Organism1) ]
rate R = Organism1l
derivatives d[Organisml,t]=a*R

parameters a = 0.75

holling(Organism2, Organism1)
rate R = Organism2 * Organism1
derivatives d[Organism2,t] =b * R,
d[Organisml,t]=c*R
parameters b =0.0024, c =-0.011

Inductive Process
Modeling

exponential_growth(X [prey]) [growth]
rate R=X
derivatives d[X,t]=a*R
parameters a > 0

holling(X [predator], Y [prey]) [predation]

rate R=X*Y
derivatives d[X,t]=b *R,d[Y,t]=c*R
parameters b >0, c <0 Process

models

Generic processes

Models are stated as sets of differential equations organized into
higher-level processes.



A Formalism for Process Models

A quantitative process model comprises a set of processes P,
each of which includes:

* A rate that denotes P’s speed / activation on a given time step;

* An algebraic equation that describes P’s rate as a function of
known variables;

* One or more derivatives that are proportional to P’s rate.

This formalism has important mathematical properties that aid
in model induction.

The notation borrows directly from Forbus’ (1984) notion of
qualitative processes.



A Sample Process Model

Consider a process model for a simple predator-prey ecosystem:

exponential growth[aurelia]
rate r = aurelia
parameters A = 0.75
equations d[aurelia] = A * r
This model compiles into a

set of differential equations

exponential loss[nasutum]

rate r = nasutum
parameters B = -0.57
equations d[nasutum] = B * r N
holling predation[nasutum, aurelia]
rate r = nasutum °* aurelia
parameters C = 0.0024
D = -0.011
equations d[nasutum] = C * r
dfaurelia] = D * r <\/7
d[aurelia] = 0.75 * aurelia — 0.011 * nasutum °* aurelia

d[nasutum] = 0.0024 * nasutum * aurelia — 0.57 °* nasutum



Some Generic Processes

Generic processes have a very similar but more abstract format:

exponential growth(X [prey]) [growth]
rate r = X
parameters A = (> A 0.0)
equations d[X] = A * r

exponential loss(X [predator]) [loss]
rate r = predator
parameters B = (< B 0.0)
equations d[X] = B * r

holling predation(X [predator], Y [prey]) [predation]
rate r =X-¢Y
parameters C = (> C 0.0)
D = (<D 0.0)
equations d[X] = C * r
d[Y] =D * r

These units serve as building blocks for constructing models.



RPM: Regression-Guided Process Modeling

RPM (Langley & Arvay, 2015) 1s a system for process model
induction that:

* Generates all process instances consistent with type constraints
* For each process P, calculates the rate for P on each time step } '
* For each dependent variable X,

* Estimates dX/dt on each time step with center differencing,

Assumes all variables observed
Rate expressions are parameter free

* For each subset of processes with up to k& elements,
* Finds a regression equation for dX/dt in terms of process rates
* If the equation’s 72 1s high enough, retain for consideration

* Adds the equation with the highest 72 to the process model

This approach factors the model construction task into a number
of tractable components.



Two-Level Heuristic Search in RPM

Time-series data

exponential_growth{X [prey]) [growth)
rateR =X
derivatives d[Xt]=a*R
parameters a > 0

holling(X [precator], Y [prey]) [predation]
rateR=X*Y
derivatives d[Xt]=b*R,d[Y,t}=c*R
parameters b>0,c <0

exponantial_growth(Organisml)

Target variables rate R = Organism1
derivatives d[Organismit]=a*R
Organism1 [predator, prey) parameters a = 0.75
Organism2 [predator, prey] holling(Organism2, Organism1)
bk rate R = Organism2 * Organism1

Generic processes

-¢— Search for models }——

derivatives d[Organism2,t] = b * R,
d[Organismit]=c*R
parameters b = 0.0024, ¢ = -0.011

" Process
Inductive Process
|
Modeling models
n
n
n
™ n
[
[ ]
u
™ ]
u
n

— Search for equations j—p»




RPM and SC-IPM

We compared RPM to SC-IPM, its predecessor, on synthetic data
for a three-variable predator-prey ecosystem.

3.0-
_ A RPM
g @ SC-IPM (10 restarts)
LTy B SC-IPM (30 restarts)
S ¢ SC-IPM (75 restarts)
§ V SC-IPM (150 restarts)
(o
7))
c 1.0-
©
(]
=
RPM
0.0- QS SE D) | | | |

102 100 102
CPU seconds

RPM found accurate models far more reliably than SC-IPM and,
at worst, ran 800,000 faster than the earlier system.



Behavior on Complex Synthetic Data

RPM also finds an accurate model for a 20-organism food chain.

=
o
|

X1
X2
X3
X4
X5
X6
X7
X8
X9
X10
X11
X12
X13
X14
X16
X15
X17

=
o
|

Population
o — N '.r

©
a

X18
X19
X20

o
N

The system scales well to modeling tasks with many variables.



Selective Induction of Process Models

SPM (Arvay & Langley, 2016) incorporates three extensions that
remedy three drawbacks of RPM:

* Delaying binding of some variables in generic processes until it
finds evidence of a relationship;

* Combining sampling of processes with backward elimination to
induce more complex equations;

* Finding multiple equations for each dependent variable and then
searching for ways to combine them into consistent models.

Experiments showed these extensions give SPM much greater
coverage, scalability, and reliability than its predecessor.

However, like RPM, it assumes that all generic processes are
given 1n advance. We want to overcome this limitation.



A Revised Model Induction Task

Consider a new version of inductive process modeling that we
will state as:

* Given: A set of typed variables and observed trajectories of their
values over time;

* Given: A set of generic processes with type constraints and rate
terms that might appear in explanations;

* Given: A set of rate expressions and conceptual relations that can
serve as building blocks for new processes;

* Find: A model that uses these structures to explain the variables’
observed trajectories;

* Find: New generic processes that are useful for the current and
future modeling task.

We want computational methods that solve this revised problem.



Conceptual Processes and Rate Templates

(a) prey
:variables ((a organism) (b organism))
:1nputs (b)
:outputs (a)
inflow
:varliables ((a organism))
:1nputs ()
:outputs (a)
(b) identity
expression p
product
:expression p - g
ratio
:expression p / g




A Naive Approach to Process Discovery

Our first implemented system, FPM/N, takes a naive approach to
flexible process modeling by:

* Calling on SPM to find acceptable process models using an initial
set of generic processes;

* If this fails, using conceptual relations and rate templates to
generate an expanded set of processes;

* Calling on SPM again to find acceptable models using this
expanded set.

Given enough resources, this scheme should find reasonable
models even when 1t must invent new processes.

However, the exhaustive approach of considering all possible
processes seems unlikely to scale well.



A Heuristic Approach to Process Discovery

Our second system, FPM, 1nstead takes a heuristic approach to
flexible process modeling by:

* Calling on SPM to find acceptable process models using an initial
set of generic processes;

e If this fails, 1dentifying the variable V for which SPM could find
no consistent equations;

* Using conceptual relations and rate templates to generate only
those processes that incorporate V;

* Calling on SPM again to find acceptable models using this
expanded set, repeating the procedure if necessary.

This heuristic approach focuses attention on relevant processes,
which should let it scale much better.



Empirical Studies of Process Discovery

We have evaluated FPM/N and FPM using multiple methods on:
* Natural predator-prey data from Veilleux (1979)
* Synthetic data for a five-organism predator-prey system
* Synthetic data for an aquatic ecosystem with grazers and nutrients

In each case, they discovered the processes we had omitted and
induce accurate models.

We also carried out additional experiments that demonstrated:
* Transfer and reuse of processes across modeling tasks

* Scaling to increased numbers of variables and rate templates

Together, these suggest that our approach 1s more flexible and
robust than earlier systems.



Behavior on Natural Data

FPM 1nvents a process for predation to fit Veilleux’s (1979) data.

200 —A— Aurelia (observed) —@— Nasutum (observed)
--/A-- Aurelia (predicted) --€©-- Nasutum (predicted)

100+

Derivative value
o
]

-100+

-200 - : :

12 14 16

dfaurelia] = 0.75 « aurelia —

18 20
Time

0.11  nasutum « aurelia

d/naustum] =|0.0024 « nasutum « aurelia

[12 = 0.84]

—0.57 s nasutum [r? = 0.71]



Scaling to Number of Variables

Surprisingly, with increasing number of terms 1n a target equation,
induction time for FPM grows more rapidly than for FPM/N.

60
I

FPM  w— =
FPMIN o— g

SPM — o

50
1

CPU seconds

30 40
1 1

20
1

10
1

© T T 1

0 2 4 6 8 10
Number of variables

Here SPM was provided with all generic processes 1t needed.



Scaling to Number of Rate Templates

FPM’s induction time is not influenced strongly by the number of
rate templates, but FPM/N fails when we omit more than six.

20
I

FPM  w— =
FPMIN o0—g
SPM o

CPU seconds

15
1

0 2 4 6 8 10
Number of rate templates

Again, SPM was provided with all generic processes it needed.



Related and Future Research

Our approach builds on ideas from earlier research, including:

* Qualitative representations of scientific models (Forbus, 1984)

* Inducing differential equations (Todorovski, 1995; Mai et al., 2016)

* Heuristic search and multiple linear regression

* Learning rules to fill in gaps (Sleeman, 1984; VanLehn et al., 1992)
Our plans for extending the SPM system include:

* Handling parametric rate expressions (gradient descent)

* Dealing with unobserved variables (iterative optimization)

Together, these should extend FPM’s coverage and usefulness
even further.



Summary Comments

We have reported an extension to inductive process modeling
that extends earlier work by:

* Generating candidate processes from more basic elements
* Using impasses to focus generation on problematic variables

* Retaining useful processes for later use in model induction

We also described a new system, FPM, that incorporates these
1deas and studied 1its behavior experimentally.

For more information, see http://www.isle.org/process/ .



End of Presentation



