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Autonomous agents are becoming more common and impressive 
in the form of: 

• Self-driving cars

• Delivery drones

• Military robots 

• Planetary rovers

However, these systems depend on two critical assumptions: 

• The environment will not change in substantial ways

• Their initial expertise will remain correct and accurate

These postulates will not hold in many real-world settings. 

Autonomous Systems: Progress and Limits
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Consider an unmanned underwater vehicle in a coastal area. 

The system’s expertise is accurate and its behavior good until: 

• Unfamiliar kelp fouls its propellers

• A large unknown predator attacks it

• A mysterious current drags it off course

• Sonar becomes distorted in a low-visibility area

• A nearby volcanic causes novel corrosive reactions

A radically autonomous system would realize these fall outside 
its expertise and learn rapidly enough to continue its mission.

A Radically Autonomous Agent
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Consider an unmanned underwater vehicle in a coastal area. 

The system’s expertise is accurate and its behavior good until: 

• Unfamiliar kelp fouls its propellers

• A large unknown predator attacks it

• A mysterious current drags it off course

• Sonar becomes distorted in a low-visibility area

• A nearby volcanic causes novel corrosive reactions

The agent would be as responsive and adaptable as the crew of 
the Seaview in Voyage to the Bottom of the Sea. 

A Radically Autonomous Agent
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We will refer to such autonomous agents as open-world learners. 
We can specify the task of open-world learning as:
• Given: An agent architecture that can operate in some class of 

environmental settings
• Given: Expertise that supports acceptable performance in these 

environments
• Given: Limited experience after sudden, unannounced changes    

to the environment degrade performance
• Find: When the environmental change occurs and what revised 

expertise gives acceptable performance

This formulation applies to many agents and situations, whether 
initial expertise is handcrafted or learned.

Open-World Learning
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This problem statement suggests four main component abilities: 

• A performance element that uses available expertise to pursue 
tasks and achieve goals

• A monitoring element that compares its observations with 
expectations to detect anomalies

• A diagnostic element that localizes expertise faults, generates 
hypotheses, and evaluates candidates

• A repair element that revises problematic expertise to correct 
agent behavior

These components must be embedded in an agent architecture 
that interfaces with the environment.

Components of Open-World Learning
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But why is this a challenge? Modern learning techniques can   
do almost anything, right?              Unfortunately, no. 

Remember environmental shifts are sudden and unannounced, 
and expertise repair must be rapid. 

• Statistical supervised induction?                                      X
• Nonincremental, requires too many labeled cases

• Reinforcement learning?                                                  X
• Requires far too many trials, no simulator available

Mainstream approaches are ill suited for open-world learning.

The Technical Challenge
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However, as Senator (2019) notes, some other paradigms are   
far more relevant: 

• Model-based diagnosis / repair

• Metacognitive processing

• Problem reformulation

• Theory / model revision

• Computational scientific discovery

• Structural transfer of learned expertise

How does these conceptual frameworks differ from modern 
statistical learning? What do they offer? 

Some Relevant Paradigms
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To make open-world learning tractable, we must constrain its 
operation without overly restricting it. 

In classic ML terms, we must provide a strong inductive bias 
that limits search through the model space. 
• Hypothesis: A theory of physical environments and transforms 

over them is necessary for effective open-world learning. 

Such a theory would reduce the time needed to detect changes 
and to repair the agent’s expertise in response. 

Note: A theory can be domain independent and very general    
yet still provide strong constraints. 

The Need for Theories
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What form should a theory of environment change take? 

It might be procedural and implicit, but this has disadvantages;    
in contrast, a declarative theory would explicitly specify: 

• Initial environments an agent may encounter

• Transformations that can alter these environments

• Distributions of such transformations over time

Each such specification will define a space of environments and 
possible trajectories through the space. 

In classic machine learning, this is known as a declarative bias. 

Theories of Environmental Change
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Any theory of environmental novelty requires that we make 
some limiting assumptions. 

Here we posit that an environment includes four constituents:

• A spatio-temporal matrix

• Structures that can occur in this matrix

• Processes that can operate on these structures 

• Constraints on these structures and processes

Other frameworks are possible, but this should let us describe 
environmental change in many single-agent settings.

Note: The extension to multiple agents is a more complex story.

A Framework for Environmental Change
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The spatio-temporal matrix provides the basic physical setting  
in which an agent operates. 

Some possible spatio-temporal transformations include:

• Increase in spatial extent (e.g., a larger undersea cavern) 

• New attributes added to spatial field (e.g., salinity, viscosity)

• Altered distribution of values for spatial field
• Shift from constant to location-dependent viscosity

• Direction of water or air currents suddenly reversed

Such changes can have a pervasive influence on the agent’s    
and other entities’ behaviors. 

Spatio-Temporal Changes
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Structures comprise the entities that populate the world, along 
with their associated characteristics. 

Some possible structural transformations include:

• Adding / removing object categories (e.g., rock forms, species)

• Introducing new attributes for objects (e.g., texture, odor)

• Altering distributions of attribute values (e.g., color, height)

• Shifting composite object categories (e.g., bond strength)

These changes affect entities that the agent observes and mani-
pulates to achieve its goals. 

Changes to Structures
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Processes describe behavior that causes the agent’s environment 
to evolve over time. 

Some possible process-related transformations include:

• Introducing new physical processes (e.g., hail, reactions)

• Adding new control processes (e.g., jumping, grasping)

• Removing perceptual processes (e.g., losing vision, hearing)

• Altering process parameters (e.g., reaction rate, turn speed)

These changes affect the dynamics of the natural word and how  
the agent interacts with it. 

Changes to Processes
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Constraints specify what situations and events occur, including 
conditions on them. 

Some possible constraint-related transformations include:

• Changing entities involved in processes (e.g., in digestion)

• Altering conditions on physical processes (e.g., temp limits)

• Revising conditions on control processes (max weight liftable)

In multi-agent settings, constraints also encode social norms that 
describe other agent’s goals and activities. 

Altering these norms can shift social behavior in drastic ways. 

Changes to Constraints
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Machine learning has been an empirical discipline for decades, 
but open-world learning raises special challenges.

We need new experimental methods to let us study agents that 
exhibit this ability. 
• Our goal should not be to show that one system is superior to 

others using mindless bakeoffs.

• We should aim instead to understand when and why open-world 
learning succeeds or fails.

For the latter, we need systematic experiments that test specific 
hypotheses of interest. 

Experiments in Open-World Learning
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Natural domains for research on open-world learning include:

• Underwater exploration

• Aerial reconnaissance

• Self-driving taxis

• Planetary rovers

• Robotic spelunkers

But real-world environments offer only limited ability to inject 
change; they provide relevance but little insight. 

This makes high-fidelity simulators more suitable for controlled 
experiments and scientific understanding. 

Domains and Testbeds
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Scientific experiments collect dependent measures that examine 
some aspect of behavior. 

• In AI, these focus on system performance (e.g., goals achieved)

• In ML, they may be higher-order measures (e.g., learning rate)

For open-world learning, we are especially interested in:

• The time needed for an agent to detect environmental change

• The time needed for the agent to recover from such a change

Experiments should also average across multiple runs to ensure 
trustworthy results.

Dependent Measures
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Classic experiments on learning alter two types of independent 
variables: 

• Features of the system (e.g., lesion / parametric studies)

• Features of the domain (e.g., irrelevant attributes, noise level)

The first is still relevant to studies of open-world learning, but 
the latter is replaced by:

• Features of environmental change (e.g., type, frequency)

These independent factors should be elements in one’s theory   
of environmental novelty.

Independent Variables
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Good AI experiments are designed to answer specific questions.

For open-world learning, we want to know what types of change 
are difficult and what agent features can handle them.

We can specify and test specific experimental hypotheses, like: 
• Agents will recover from changes to structures more easily than 

to changes in processes (Senator, 2019).

• Increasing perceptual noise will slow ability to detect change, 
bit it will not effect on diagnosis and repair.

Researchers should think about which questions they want to 
answer and design experiments in response.

Hypotheses About Open-World Learning
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Open-world learning to detect unannounced, sudden changes 
and revise their expertise rapidly in response. 

This talk defined and analyzed open-world learning, including: 

• Why it poses a challenge to mainstream methods

• What components it needs (perform, monitor, diagnose, repair)

• How a theory of environmental change makes it tractable

• Elements of a theory (structure, process, constraint changes)

• How to study this ability with controlled experiments

The ability to learn in open worlds is essential for radically 
autonomous agents that operate in remote settings. 

Key Ideas of the Talk
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Future intelligent agents will need to pursue extended missions 
in unfamiliar environments without assistance.

Thus, they must be radically autonomous in that they cannot: 

• Rely on the environment to remain unchanged

• Assume that their initial expertise will remain correct

To operate effectively in such settings, the agents must detect 
changes and respond rapidly. 

In other words, they must exhibit open-world learning.  

Radical Autonomy
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