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Cognitive architectures specify invariant features of the mind, 
but people can solve the same task in many different ways.  

This creates a tension between the desire to identify universals 
and to explain observed variations.   

We would like a theory of the human problem solving that:  

• Remains generally consistent with the standard accounts of 
problem solving, which explain many phenomena;  

• Explains the great variety of strategies observed not only in 
humans and but also in machines.  

In this talk, we describe a cognitive architecture that embodies 
such a theory, including an account of solution execution.  

Background and Motivation 
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The standard theory of problem solving (Newell & Simon, 1961) 
makes a number of claims:  
•  Problem solving involves the mental representation, interpretation,  

and manipulation of symbol structures. 
•  This process involves search through a space of candidates that it 

encodes as such symbol structures. 
•  Search is not exhaustive but rather guided by heuristics that make 

it selective and tractable.  
•  Problem solvers use means-ends analysis to decompose complex 

problems into simpler ones.  

Repeated studies have been consistent with most aspects of this 
theory, but not the final one; people are far more variable.   

The Standard Theory 
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As embodied in Newell and Simon’s General Problem Solver, 
means-ends analysis relies on four basic ideas:  
•  Problem solving interleaves transforming the current state into a  

desired one with applying an operator to do the transformation.  
• Operators are considered only if they reduce differences between 

the current and desired state.  
•  Problem solving involves search through a space of alternative 

problem decompositions. 
•  The selected operator determines the structure of the resulting 

problem decomposition.  

Only the second assumption is limiting and problematic. The 
other three tenets may well be worth retaining.  

Means-Ends Analysis 
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We propose a revised theory of problem solving that replaces 
means-ends analysis with three postulates:  
•  Problem solving involves recursively dividing problems into 

subproblems, with solutions stated as decomposition trees. 
•  Search details -  operator generation / evaluation, node selection, 

success / failure criteria - are controlled by strategic parameters.  
• Domain expertise is often encoded as generalized decompositions 

for breaking a problem into subproblems (as in HTNs).  

This revision retains the key ideas of means-ends analysis 
without committing to chaining off goals. 

We have embedded these assumptions in HPS, an architecture 
for hierarchical problem solving.  

A Revised Theory of Problem Solving 
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The HPS architecture encodes problem solutions - both partial 
and complete - as decomposition trees.  

Each element in such an AND tree has two components:  
• A problem, which includes a state and a goal description;  
• A decomposition, which specifies an operator instance that  

breaks the problem into:  
•  A down subproblem, which must be solved before applying  

the operator instance; 
•  A right subproblem, which must be solved afterward to achieve 

the parent’s goals. 

Each operator instance has application conditions, expected 
results, and constraints on shared variables.  

Encoding Problem Decompositions 
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Encoding Problem Decompositions 
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State descriptions 

S1: (on B C) (ontable A D) (ontable C D) 
S2: (holding B) (ontable A D) (ontable C D) 
S3: (ontable B D) (ontable A D) (ontable C D) 
S4: (holding C) (ontable B D) (ontable A D) 
S5: (on C A) (ontable B D) (ontable A D) 

Goal descriptions 

G1: (on C A) 
G2: (not (on ?any A)) (holding C) 
G3: (ontable C ?y) (not (on ?any C))  
       (not (holding ?other)) 
G4: (on B C) (not (holding ?any)) 
G5: (holding B) 



Organizing Nodes into a Search Tree 
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Here is a search tree HPS generates during its problem solving, 
with nodes along a successful path shaded.  
 
 
 
 
 
 
 
 
 
 
Each node (partial plan) elaborates its parent by adding a new 
subproblem decomposition. Numbers reflect generation order.  

solution 



The HPS Problem-Solving Cycle 

Halt and return the 
acceptable plans. 

Is the plan P for the current  
search node N acceptable?   

Are the enough acceptable plans 
or no remaining options? 

     Is plan P for the current        
search node N unacceptable? 

Does current node N lack 
operators for focus problem F? 

Does current node N have untried 
operators and focus F lack one? 

Store P and select new 
node in search tree. 

Mark N as failed and 
select new search node. 

Generate operators for F 
and compute scores. 

Select untried operator 
and use to decompose F. 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 
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The HPS Problem-Solving Cycle 

Halt and return the 
acceptable plans. 

Is the plan P for the current  
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Operator generation / 
Operator scoring 

 Operator selection / Node 
scoring / Node selection 

Acceptability criteria / 
Node selection scheme 

Unacceptability criteria / 
Node selection scheme 

Strategic 
Parameters 

Criterion for enough 
acceptable plans 

Parameter settings are intrinsically composable, so different 
combinations can reproduce many distinct strategies.  
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We have demonstrated HPS’s ability to solve novel problems 
on two familiar domains:  
•  Blocks World - finding plans that produce desired configurations:  

•  Solutions to problems ranged from four to 12 steps. 
•  Depth-first forward chaining solved 30 out of 30 tasks.  
•  Depth-first means ends solved only 23 of these problems.  

•  Kinship inference - deducing complex relations from simple ones:  
•  Problems required from one to eight inference steps.  
•  Forward chaining could not solve more complex tasks.  
•  Goal-driven means-ends analysis had little difficulty.   

These basic results show that strategy effectiveness interacts 
with domain characteristics. 

Initial Tests of HPS Architecture 
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Forward Chaining vs. Means-Ends Analysis 
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HPS parameters support 
empirical comparison of 
different strategies.  
 
This study compares the 
nodes visited by forward 
chaining and means-ends 
analysis when combined 
with depth-first search.  

Each point denotes a pair of 
runs on a distinct problem 

from the Blocks World 

Means-ends 
 does not solve 
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HPS parameters support 
empirical comparison of 
different strategies.  
 
This study compares the 
nodes visited by depth-   
first search and iterative 
sampling when combined 
with forward chaining.  

Depth-First Search vs. Iterative Sampling 
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Each point denotes a pair of 
runs on a distinct problem 

from the Blocks World 



Humans also execute their plans to achieve goals. Our account 
of plan execution makes four claims:   
•  Plans (and skills) are stored as hierarchical decompositions like 

those produced by problem solving.  

•  Plan execution traverses these decomposition trees, top to bottom 
and left to right, with physical actions at terminal nodes.  

•  This process relies on a cognitive cycle with steps for sensing to 
check operator conditions and effects.  

•  Strategic parameters govern decisions on each cycle to produce 
different behaviors (e.g., closed vs. open loop control).  

We have embedded these assumptions in an HPS module for 
hierarchical plan execution.  

An Account of Plan Execution 

14 



Executing a Hierarchical Plan 
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State descriptions 

S1: (on B C) (ontable A D) (ontable C D) 
S2: (holding B) (ontable A D) (ontable C D) 
S3: (ontable B D) (ontable A D) (ontable C D) 
S4: (holding C) (ontable B D) (ontable A D) 
S5: (on C A) (ontable B D) (ontable A D) 

Goal descriptions 

G1: (on C A) 
G2: (not (on ?any A)) (holding C) 
G3: (ontable C ?y) (not (on ?any C))  
       (not (holding ?other)) 
G4: (on B C) (not (holding ?any)) 
G5: (holding B) 



The HPS Execution Cycle 
Focus on P’s leftmost 

unexecuted child. 

     Are you focused on unexecuted     
plan P with executed children? 

Are you focused on an unexecuted 
plan P with unexecuted children? 

Are you focused on unexecuted 
operator O with untested conditions? 

Are you focused on unexecuted 
operator O with failed conditions? 

Are you focused on unexecuted 
operator O with matched conditions? 

Are you focused on executed  
operator O with untested effects? 

Are you focused on executed  
operator O with failed effects? 

Are you focused on executed  
operator O with matched effects? 

Mark P as executed and 
focus on P’s parent. 

Decide if O’s conditions 
match the current state. 

Mark O as failed and replan 
from the current state. 

Carry out O in environment 
and mark O as executed. 

Decide if O’s effects match 
the current state. 

Mark O as failed and replan 
from the current state. 

Focus on I’s parent plan. 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

yes 

no 

no 

no 

no 

no 

no 

no 
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Sense and check conditions 
or execute without sensing. 

Attempt to make operator 
applicable or abandon it. 

Sense and check effects or 
continue without sensing. 

Attempt to retain rest of 
plan or start one anew. 

Strategic 
Parameters 

Not yet implemented 



We are extending the architecture to interleave problem solving 
and execution with parameters that state:   
• When to stop elaborating a plan and start executing it:  

•  E.g., after plan complete, after solving subproblem, after one step.  

• Which elements of plan to retain when it fails during execution:  
•  E.g., attempt to make operator applicable or abandon it.  

We hope to mimic strategies from the literature, including:  
• Open-loop execution after finding a complete plan;  
•  Closed-loop (reactive) control with one-step lookahead;  
• N-step lookahead alternating with one action (game playing).  

We expect each strategy’s effectiveness to interact with domain 
characteristics in both HPS and in humans.  

Interleaving Planning and Execution 

18 



HPS offers an architecture-level account of strategy variations, 
but it does not specify when they occur.  

We hypothesize that they arise in response to task demands,  
and that one can model them by:  
• Collecting meta-level data about local problem features:  

•  E.g., relative branching factors, reliability of operators 
• Making parameter settings conditional on these statistics:  

•  E.g., selecting direction of search, frequency of sensing 

The result with be an adaptive architecture that explains both  
how strategy variations occur and when people use them.  

Strategy Variation and Adaptation 
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Our framework draws ideas from many earlier research efforts, 
including:   
•  Problem solving as search for decompositions (Newell et al., 1961) 
•  Planning as incremental refinement (Kambhampati et al., 1995) 
•  Strategic rules support variation in problem solving (Laird, 1984) 
•  Execution as test-operate-test processing (Miller et al., 1959) 
•  Continuum of open-loop to closed-loop control (Iba & Langley, 1987) 
•  Meta-level cognitive control by inspecting mental traces (Cox, 2007) 

HPS incorporates these ideas but also combines them to offer  
an extended theory of human problem solving.  

Relation to Earlier Research 
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In this talk, we presented an architectural account of variation  
in problem solving and execution that:  
•  Retains key ideas from the standard theory of problem solving 
• Drops means-ends analysis but retains hierarchical decomposition 
• Adds execution as incremental traversal over hierarchical plans 
•  Introduces strategic parameters that together determine behavior  
•  Supports strategies for interleaving planning and execution 
•  Suggests that strategy variation is an adaptation to task demands 

This theory, and its implementation in HPS, go beyond other 
cognitive architectures in breadth and coverage.  

Summary Remarks 
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End of Presentation!


