
Pat Langley
Institute for the Study of Learning and Expertise

Palo Alto, California, USA

An Architectural Account of Variation in
Problem Solving and Execution

This research was supported by ONR Grant N00014-15-1-2517. Thanks to Chris
Pearce, Yu Bai, Charlotte Worsfold, Ben Meadows, Mike Barley, and Ed Katz for
their contributions to the project.

Cognitive architectures specify invariant features of the mind,
but people can solve the same task in many different ways.

This creates a tension between the desire to identify universals
and to explain observed variations.

We would like a theory of the human problem solving that:

• Remains generally consistent with the standard accounts of
problem solving, which explain many phenomena;

• Explains the great variety of strategies observed not only in
humans and but also in machines.

In this talk, we describe a cognitive architecture that embodies
such a theory, including an account of solution execution.

Background and Motivation

2

The standard theory of problem solving (Newell & Simon, 1961)
makes a number of claims:
•  Problem solving involves the mental representation, interpretation,

and manipulation of symbol structures.
•  This process involves search through a space of candidates that it

encodes as such symbol structures.
•  Search is not exhaustive but rather guided by heuristics that make

it selective and tractable.
•  Problem solvers use means-ends analysis to decompose complex

problems into simpler ones.

Repeated studies have been consistent with most aspects of this
theory, but not the final one; people are far more variable.

The Standard Theory

3

As embodied in Newell and Simon’s General Problem Solver,
means-ends analysis relies on four basic ideas:
•  Problem solving interleaves transforming the current state into a

desired one with applying an operator to do the transformation.
• Operators are considered only if they reduce differences between

the current and desired state.
•  Problem solving involves search through a space of alternative

problem decompositions.
•  The selected operator determines the structure of the resulting

problem decomposition.

Only the second assumption is limiting and problematic. The
other three tenets may well be worth retaining.

Means-Ends Analysis

4

We propose a revised theory of problem solving that replaces
means-ends analysis with three postulates:
•  Problem solving involves recursively dividing problems into

subproblems, with solutions stated as decomposition trees.
•  Search details - operator generation / evaluation, node selection,

success / failure criteria - are controlled by strategic parameters.
• Domain expertise is often encoded as generalized decompositions

for breaking a problem into subproblems (as in HTNs).

This revision retains the key ideas of means-ends analysis
without committing to chaining off goals.

We have embedded these assumptions in HPS, an architecture
for hierarchical problem solving.

A Revised Theory of Problem Solving

5

The HPS architecture encodes problem solutions - both partial
and complete - as decomposition trees.

Each element in such an AND tree has two components:
• A problem, which includes a state and a goal description;
• A decomposition, which specifies an operator instance that

breaks the problem into:
•  A down subproblem, which must be solved before applying

the operator instance;
•  A right subproblem, which must be solved afterward to achieve

the parent’s goals.

Each operator instance has application conditions, expected
results, and constraints on shared variables.

Encoding Problem Decompositions

6

Encoding Problem Decompositions

7

State descriptions

S1: (on B C) (ontable A D) (ontable C D)
S2: (holding B) (ontable A D) (ontable C D)
S3: (ontable B D) (ontable A D) (ontable C D)
S4: (holding C) (ontable B D) (ontable A D)
S5: (on C A) (ontable B D) (ontable A D)

Goal descriptions

G1: (on C A)
G2: (not (on ?any A)) (holding C)
G3: (ontable C ?y) (not (on ?any C))
 (not (holding ?other))
G4: (on B C) (not (holding ?any))
G5: (holding B)

Organizing Nodes into a Search Tree

8

Here is a search tree HPS generates during its problem solving,
with nodes along a successful path shaded.

Each node (partial plan) elaborates its parent by adding a new
subproblem decomposition. Numbers reflect generation order.

solution

The HPS Problem-Solving Cycle

Halt and return the
acceptable plans.

Is the plan P for the current
search node N acceptable?

Are the enough acceptable plans
or no remaining options?

 Is plan P for the current
search node N unacceptable?

Does current node N lack
operators for focus problem F?

Does current node N have untried
operators and focus F lack one?

Store P and select new
node in search tree.

Mark N as failed and
select new search node.

Generate operators for F
and compute scores.

Select untried operator
and use to decompose F.

yes

yes

yes

yes

yes

no

no

no

no

9

The HPS Problem-Solving Cycle

Halt and return the
acceptable plans.

Is the plan P for the current
search node N acceptable?

Are the enough acceptable plans
or no remaining options?

 Is plan P for the current
search node N unacceptable?

Does current node N lack
operators for focus problem F?

Does current node N have untried
operators and focus F lacks one?

Store P and select new
node in search tree.

Mark N as failed and
select new search node.

Generate operators for F
and compute scores.

Select untried operator
and use to decompose F.

yes

yes

yes

yes

yes

no

no

no

no

Operator generation /
Operator scoring

 Operator selection / Node
scoring / Node selection

Acceptability criteria /
Node selection scheme

Unacceptability criteria /
Node selection scheme

Strategic
Parameters

Criterion for enough
acceptable plans

Parameter settings are intrinsically composable, so different
combinations can reproduce many distinct strategies.

10

We have demonstrated HPS’s ability to solve novel problems
on two familiar domains:
•  Blocks World - finding plans that produce desired configurations:

•  Solutions to problems ranged from four to 12 steps.
•  Depth-first forward chaining solved 30 out of 30 tasks.
•  Depth-first means ends solved only 23 of these problems.

•  Kinship inference - deducing complex relations from simple ones:
•  Problems required from one to eight inference steps.
•  Forward chaining could not solve more complex tasks.
•  Goal-driven means-ends analysis had little difficulty.

These basic results show that strategy effectiveness interacts
with domain characteristics.

Initial Tests of HPS Architecture

11

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Forward chaining / log(nodes)

0.
0

0.
5

1
1.

5
2

2.
5

3
3.

5
4

4.
5

M
ea

ns
-e

nd
s

an
al

ys
is

 /
lo

g(
no

de
s)

Forward Chaining vs. Means-Ends Analysis

12

HPS parameters support
empirical comparison of
different strategies.

This study compares the
nodes visited by forward
chaining and means-ends
analysis when combined
with depth-first search.

Each point denotes a pair of
runs on a distinct problem

from the Blocks World

Means-ends
 does not solve

0 0.9 1.8 2.7 3.6 4.5
Depth-first search

0.
0

0.
9

1.
8

2.
7

3.
6

4.
5

Ite
ra

tiv
e

sa
m

pl
in

g

HPS parameters support
empirical comparison of
different strategies.

This study compares the
nodes visited by depth-
first search and iterative
sampling when combined
with forward chaining.

Depth-First Search vs. Iterative Sampling

13

Each point denotes a pair of
runs on a distinct problem

from the Blocks World

Humans also execute their plans to achieve goals. Our account
of plan execution makes four claims:
•  Plans (and skills) are stored as hierarchical decompositions like

those produced by problem solving.

•  Plan execution traverses these decomposition trees, top to bottom
and left to right, with physical actions at terminal nodes.

•  This process relies on a cognitive cycle with steps for sensing to
check operator conditions and effects.

•  Strategic parameters govern decisions on each cycle to produce
different behaviors (e.g., closed vs. open loop control).

We have embedded these assumptions in an HPS module for
hierarchical plan execution.

An Account of Plan Execution

14

Executing a Hierarchical Plan

15

State descriptions

S1: (on B C) (ontable A D) (ontable C D)
S2: (holding B) (ontable A D) (ontable C D)
S3: (ontable B D) (ontable A D) (ontable C D)
S4: (holding C) (ontable B D) (ontable A D)
S5: (on C A) (ontable B D) (ontable A D)

Goal descriptions

G1: (on C A)
G2: (not (on ?any A)) (holding C)
G3: (ontable C ?y) (not (on ?any C))
 (not (holding ?other))
G4: (on B C) (not (holding ?any))
G5: (holding B)

The HPS Execution Cycle
Focus on P’s leftmost

unexecuted child.

 Are you focused on unexecuted
plan P with executed children?

Are you focused on an unexecuted
plan P with unexecuted children?

Are you focused on unexecuted
operator O with untested conditions?

Are you focused on unexecuted
operator O with failed conditions?

Are you focused on unexecuted
operator O with matched conditions?

Are you focused on executed
operator O with untested effects?

Are you focused on executed
operator O with failed effects?

Are you focused on executed
operator O with matched effects?

Mark P as executed and
focus on P’s parent.

Decide if O’s conditions
match the current state.

Mark O as failed and replan
from the current state.

Carry out O in environment
and mark O as executed.

Decide if O’s effects match
the current state.

Mark O as failed and replan
from the current state.

Focus on I’s parent plan.

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

The HPS Execution Cycle
Focus on P’s leftmost

unexecuted child.

 Are you focused on unexecuted
plan P with executed children?

Are you focused on an unexecuted
plan P with unexecuted children?

Are you focused on unexecuted
operator O with untested conditions?

Are you focused on unexecuted
operator O with failed conditions?

Are you focused on unexecuted
operator O with matched conditions?

Are you focused on executed
operator O with untested effects?

Are you focused on executed
operator O with failed effects?

Are you focused on executed
operator O with matched effects?

Mark P as executed and
focus on P’s parent.

Decide if O’s conditions
match the current state.

Mark O as failed and replan
from the current state.

Carry out O in environment
and mark O as executed.

Decide if O’s effects match
the current state.

Mark O as failed and replan
from the current state.

Focus on I’s parent plan.

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

Sense and check conditions
or execute without sensing.

Attempt to make operator
applicable or abandon it.

Sense and check effects or
continue without sensing.

Attempt to retain rest of
plan or start one anew.

Strategic
Parameters

Not yet implemented

We are extending the architecture to interleave problem solving
and execution with parameters that state:
• When to stop elaborating a plan and start executing it:

•  E.g., after plan complete, after solving subproblem, after one step.

• Which elements of plan to retain when it fails during execution:
•  E.g., attempt to make operator applicable or abandon it.

We hope to mimic strategies from the literature, including:
• Open-loop execution after finding a complete plan;
•  Closed-loop (reactive) control with one-step lookahead;
• N-step lookahead alternating with one action (game playing).

We expect each strategy’s effectiveness to interact with domain
characteristics in both HPS and in humans.

Interleaving Planning and Execution

18

HPS offers an architecture-level account of strategy variations,
but it does not specify when they occur.

We hypothesize that they arise in response to task demands,
and that one can model them by:
• Collecting meta-level data about local problem features:

•  E.g., relative branching factors, reliability of operators
• Making parameter settings conditional on these statistics:

•  E.g., selecting direction of search, frequency of sensing

The result with be an adaptive architecture that explains both
how strategy variations occur and when people use them.

Strategy Variation and Adaptation

19

Our framework draws ideas from many earlier research efforts,
including:
•  Problem solving as search for decompositions (Newell et al., 1961)
•  Planning as incremental refinement (Kambhampati et al., 1995)
•  Strategic rules support variation in problem solving (Laird, 1984)
•  Execution as test-operate-test processing (Miller et al., 1959)
•  Continuum of open-loop to closed-loop control (Iba & Langley, 1987)
•  Meta-level cognitive control by inspecting mental traces (Cox, 2007)

HPS incorporates these ideas but also combines them to offer
an extended theory of human problem solving.

Relation to Earlier Research

20

In this talk, we presented an architectural account of variation
in problem solving and execution that:
•  Retains key ideas from the standard theory of problem solving
• Drops means-ends analysis but retains hierarchical decomposition
• Adds execution as incremental traversal over hierarchical plans
•  Introduces strategic parameters that together determine behavior
•  Supports strategies for interleaving planning and execution
•  Suggests that strategy variation is an adaptation to task demands

This theory, and its implementation in HPS, go beyond other
cognitive architectures in breadth and coverage.

Summary Remarks

21

End of Presentation!

