
Pat Langley
Institute for the Study of Learning and Expertise

Palo Alto, California, USA
Chris Pearce, Yu Bai,

Charlotte Worsfold, Mike Barley
Department of Computer Science

University of Auckland, Auckland, NZ

Variations on a Theory of Problem Solving

This research was supported by Grant N00014-15-1-2517. We thank Miranda Emery,
John Laird, Rao Kambhampati, Chris MacLellan, and Manuela Veloso for useful input.

The ability to solve novel problems is a distinctive feature of
human cognition, but current accounts are incomplete.

We desire a computational theory of problem solving that:

• Retains as many of the core assumptions from the standard
framework as possible;

• Accounts for the great variety of strategies observed in humans
and machines;

• Explain how domain expertise can reduce search and make
problem solving more effective.

In this talk, we present such a revised theory and describe HPS,
an implemented architecture that incorporates its tenets.

Aims of the Research

2

The standard theory of problem solving (Newell & Simon, 1961)
makes a number of claims:
•  Problem solving involves the mental representation, interpretation,

and manipulation of symbol structures.
•  This process involves search through a space of candidates that it

encodes as such symbol structures.
•  Search is not exhaustive but rather is guided by heuristics that make

it selective and tractable.
•  Problem solvers use means-ends analysis to decompose complex

problems into simpler ones.
•  Expert behavior calls on knowledge about a domain to reduce and

sometimes even eliminate search.

Evidence from repeated empirical studies has been consistent
with most aspects of this theory.

The Standard Theory

3

As embodied in Newell and Simon’s General Problem Solver,
means-ends analysis relies on four basic ideas:
•  Problem solving interleaves transforming the current state into a

desired one with applying an operator to do the transformation.
• Operators are considered only if they reduce differences between

the current and desired state.
•  Problem solving involves search through a space of alternative

problem decompositions.
•  The selected operator determines the structure of the resulting

problem decomposition.

Only the second assumption is limiting and problematic. The
other three tenets may well be worth retaining.

Means-Ends Analysis

4

We propose a revised theory of problem solving that replaces
means-ends analysis with three postulates:
•  Problem solving involves recursively dividing problems into

subproblems, with solutions stated as decomposition trees.
•  Search details - operator generation / evaluation, node selection,

success / failure criteria - are controlled by strategic parameters.
• Domain expertise is often encoded as generalized decompositions

for breaking a problem into subproblems (as in HTNs).

This revision retains the key ideas of means-ends analysis
without committing to chaining off goals.

We have embedded these assumptions in HPS, an architecture
for hierarchical problem solving.

A Revised Theory of Problem Solving

5

The HPS architecture encodes problem solutions - both partial
and complete - as decomposition trees.

Each element in such an AND tree has two components:
• A problem, which includes a state and a goal description;
• A decomposition, which specifies an operator instance that

breaks the problem into:
•  A down subproblem, which must be solved before applying

the operator instance;
•  A right subproblem, which must be solved afterward to achieve

the parent’s goals.

Each operator instance has application conditions, expected
results, and constraints on shared variables.

Encoding Problem Decompositions

6

Encoding Problem Decompositions

7

State descriptions

S1: (on B C) (ontable A D) (ontable C D)
S2: (holding B) (ontable A D) (ontable C D)
S3: (ontable B D) (ontable A D) (ontable C D)
S4: (holding C) (ontable B D) (ontable A D)
S5: (on C A) (ontable B D) (ontable A D)

Goal descriptions

G1: (on C A)
G2: (not (on ?any A)) (holding C)
G3: (ontable C ?y) (not (on ?any C))
 (not (holding ?other))
G4: (on B C) (not (holding ?any))
G5: (holding B)

Organizing Nodes into Search Trees

8

Here is a search tree HPS generates during its problem solving,
with nodes along a successful path shaded.

Each node (partial plan) elaborates its parent by adding a new
subproblem decomposition. Numbers reflect generation order.

solution

HPS operates in cycles that take one of five meta-level actions:
•  Option 1. If there are enough acceptable plans or no further choices,

then halt and return these solutions.
•  Option 2. If the plan for the current node is acceptable, then store it

and select another node in the search tree.
•  Option 3. If the current plan is unacceptable (e.g., involves a loop),

then mark it as failed and select another node in the search tree.
•  Option 4. If the current plan has no operator for focus subproblem F,

then generate operators for F and calculate their evaluation scores.
•  Option 5. If the current plan has untried operators but subproblem F

has none, then select one and elaborate the plan by decomposing F.

The focus problem is an ‘open’ task in a hierarchical plan that
HPS does not yet consider solved.

The HPS Problem-Solving Cycle

9

HPS incorporates ten parameters that determine its choices
during problem solving:
•  Option 1. When checking whether to halt, HPS calls on a parameter

that sees if it has found enough acceptable plans.
•  Option 2. A parameter tests for plan acceptability (e.g., if all goals

satisfied); if so, another picks the next node to visit (e.g., the parent).
•  Option 3. A fifth parameter tests the plan for failure (e.g., if a loop

has occurred); if so, another one chooses the next node to visit.
•  Option 4. A parameter generates operator instances (e.g., forward or

backward chaining); another computes a score for each candidate.
•  Option 5. Final parameters select an operator to decompose the focus

problem, score the resulting elaboration, and select the next node.

These settings are intrinsically composable, so that different
combinations can reproduce many distinct strategies.

Modulating the Search Process

10

Strategic parameters support different varieties of problem
solving, but not expert behavior; to this end, HPS can:
•  Store domain-specific knowledge on how to decompose classes

of problems into subproblems, with each ‘method’ stating:
•  An associated task name, conditions, and optional effects;
•  A down, main, and right subtask that must be carried out.

• Use this knowledge during ‘operator’ generation and evaluation;
•  On entering a hierarchical method, considers only candidates

with relevant task names and matched conditions;
•  On completing a method, returns to knowledge-lean search.

HPS can solve problems stated only as tasks, only as state-goal
pairs, or as their combination, much like UPS (To et al., 2015).

Encoding and Using Domain Expertise

11

We have demonstrated HPS's ability to solve novel problems
on two familiar domains:
•  Blocks World - finding plans that produce desired configurations:

•  Solutions to problems ranged from four to 12 steps.
•  Depth-first forward chaining solved 30 out of 30 tasks.
•  Depth-first means ends solved only 23 of these problems.

•  Kinship inference - deducing complex relations from simple ones:
•  Problems required from one to eight inference steps.
•  Forward chaining could not solve more complex tasks.
•  Goal-driven means-ends analysis had little difficulty.

These basic results show that strategy effectiveness interacts
with domain characteristics.

Basic Problem-Solving Ability

12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Forward chaining / log(nodes)

0.
0

0.
5

1
1.

5
2

2.
5

3
3.

5
4

4.
5

M
ea

ns
-e

nd
s

an
al

ys
is

 /
lo

g(
no

de
s)

Forward Chaining vs. Means-Ends

13

HPS parameters support
empirical comparison of
different strategies.

This study compares the
nodes visited by forward
chaining and means-ends
analysis when combined
with depth-first search.

Each point denotes a pair of
runs on a distinct problem

from the Blocks World

Means-ends
 does not solve

0 0.9 1.8 2.7 3.6 4.5
Depth-first search

0.
0

0.
9

1.
8

2.
7

3.
6

4.
5

Ite
ra

tiv
e

sa
m

pl
in

g

HPS parameters support
empirical comparison of
different strategies.

This study compares the
nodes visited by depth-
first search and iterative
sampling when combined
with forward chaining.

Depth-First Search vs. Iterative Sampling

14

Each point denotes a pair of
runs on a distinct problem

from the Blocks World

Our final study examined the ability to use domain-specific
decompositions to reduce search.

We showed that HPS solves Blocks World problems efficiently
using hierarchical methods, including recursive ones:

• When stated in terms an initial state and a task to accomplish;
• When specified using an initial state, goals, and a task;
• When stated using an initial state and goals but no task.

The first two conditions required little search; the third took
more but still less than without domain knowledge.

The second and third settings exceed the abilities of traditional
HTN planning systems.

Benefits of Domain Knowledge

15

How do our theoretical claims, and their embodiment in HPS,
relate to previous research?
•  Problem solutions are represented by decomposition trees.

•  Widely adopted in both theorem proving and HTN planning.
•  Strategic content underlies variation in problem solving.

•  Soar uses meta-level control to implement different strategies.
•  HPS is closer to Prodigy, but has substantially greater coverage.

• Domain expertise takes the form of generalized decompositions.
•  In HTN planning, but seldom joined with primitive operators.
•  Other forms of knowledge, like rejection rules, are possible.

We have drawn on these earlier ideas but also combined them
to produce an extended theory of problem solving.

Relations to Earlier Research

16

Soar (Laird, 2012) can reproduce the same strategies as HPS,
but they offer different theories of problem solving:
• HPS makes stronger assumptions about structures and processes;
•  Just as Soar makes stronger assumptions than EPIC or even Lisp.

The ability to generate the same behaviors is not equivalent to
providing the same theoretical account.
•  Soar does not offer architecture-level support for storing multiple

problem decompositions;
• One could write Soar programs that do so, but this extra layer of

interpretation would slow processing.

The tradeoff is that HPS must store a search tree of different
decompositions, which may have other processing costs.

But What About Soar?

17

Our revised theory, and the HPS system, offer an improved
account of problem solving, but future work should:
•  Extend the framework to reproduce regression planning and

abstraction.
•  Support more adaptive problem solving by:

•  Collecting meta-level data (e.g., relative branching factors)
•  Making parameter settings conditional on these statistics

•  Learn decompositions from successful problem solving by:
•  Recording traces of solutions for particular problems;
•  Storing generalized versions of these traces for future use.

The result will be an even more flexible and inclusive account
of problem solving in cognitive systems.

Plans for Future Work

18

End of Presentation!

19

