
Pat Langley
Institute for the Study of
Learning and Expertise

Palo Alto, California

Learning Hierarchical Problem Networks
for Knowledge-Based Planning

Thanks to Howie Shrobe, Boris Katz, Gary Borchardt, Sue Felshin, Mohan Sridharan,
and Ed Katz for useful ideas and discussions. This research was supported by Grant
No. N00014-20-1-2643 from ONR, which is not responsible for its contents.

Reasoning, Search, and Knowledge

Classic accounts of intelligence in humans and machines rely
on three complementary elements:
• Reasoning – Drawing conclusions by composing elements

• Search – Finding solutions in large problem spaces

• Knowledge – Elements for reasoning, guidance for search

Early AI saw rapid progress on reasoning / search, but major
applications awaited expert systems.

Yet knowledge was difficult to extract, which led in turn to
the advent of machine learning.

2

The Need for Planning Expertise

Machine learning has seen decades of progress on classification
and reactive control, but far less on planning.
This technology has improved, but it still benefits greatly from
handcrafted expertise.

3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
State and goal conditions

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
O

nl
y

go
al

 c
on

di
tio

ns

Depots
Logistics
Blocks World

In this talk, I present
a new approach to
learning knowledge
for planning from
sample solutions.

Knowledge better for
points above diagonal
Axes log(CPU seconds)

Search control knowledge

N
o

co
nt

ro
l k

no
w

le
dg

e

Encoding Planning Knowledge

A recurring theme in AI and psychology is the decomposition
of complex problems into simpler ones.

This idea is central to logic programming, but it also appears
in planning as:
• Hierarchical task networks (Nau et al., 2003)

• Teleoreactive logic programs (Choi & Langley, 2005)

• Hierarchical goal networks (Shivashankar et al., 2012)

Here I focus on acquiring knowledge in a new framework –
hierarchical problem networks – that offers advantages.

4

Hierarchical Problem Networks

A hierarchical problem network encodes planning knowledge
as a set of methods, each of which includes:
• A generic goal that the method achieves

• State conditions under which it can apply

• Goal conditions under which it should not apply

• An operator that will achieve the goal

• A subproblem based on the operator’s conditions

An HPN specifies how to decompose an entire problem – a
set of goals – into ordered subproblems.

5

1

Table 1. Four methods for logistics planning that include a head, state conditions,

an operator, a subproblem, and optional goal conditions. These partially encode an

HPN procedure that solves problems in the logistics domain efficiently. The notation

assumes that distinct variables will match against different constant expressions. Bold

and italic fonts for some conditions denote sources of learning discussed later.

((at ?o1 ?l3))
conditions: ((object ?o1) (truck ?t1) (location ?l3) (location ?l1)

(in-city ?l3 ?c1) (in-city ?l1 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (unload-truck ?o1 ?t1 ?l3)
subproblem: ((at ?t1 ?l3) (in ?o1 ?t1))

((at ?t1 ?l1))
conditions: ((truck ?t1) (location ?l3) (location ?l1)

(city ?c1) (in-city ?l3 ?c1) (in-city ?l1 ?c1)
(in-city ?l2 ?c1) (at ?t1 ?l3))

operator: (drive-truck ?t1 ?l3 ?l1 ?c1)
subproblem: ((at ?t1 ?l3))
unless-goals: ((in ?o ?t1)))

((in ?o1 ?t1))
conditions: ((object ?o1) (truck ?t1) (location ?l1) (location ?l3)

(in-city ?l1 ?c1) (in-city ?l3 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (load-truck ?o1 ?t1 ?l1)
subproblem: ((at ?t1 ?l1) (at ?o1 ?l1))

((in ?o1 ?t1)
:conditions ((object ?o1) (truck ?t1) (location ?l1) (airport ?l1)

(location ?l2) (location ?l3) (in-city ?l1 ?c1) (in-city ?l2 ?c1)
(in-city ?l3 ?c2) (at ?t1 ?l2) (at ?o1 ?l3))

:operator (load-truck ?o1 ?t1 ?l1)
:subproblem ((at ?t1 ?l1) (at ?o1 ?l1))

HPN Methods for Logistics

6

HPN Operators for Logistics

7

4 P. Langley

Table 2. Three operators for the logistics planning domain, each specifying an action

(head), conditions, and effects. The domain also includes operators (not shown) for

unloading an airplane, flying an airplane between cities, and loading an airplane.

((unload-truck ?o ?t ?l)
:conditions ((object ?o)(truck ?t)(location ?l)(at ?t ?l)(in ?o ?t))
:effects ((at ?o ?l)(not (in ?o ?t))))

((drive-truck ?t ?l1 ?l2 ?c)
:conditions ((truck ?t)(location ?l1)(location ?l2)(city ?c)

(in-city ?l1 ?c)(in-city ?l2 ?c)(at ?t ?l1))
:effects ((at ?t ?l2)(not (at ?t ?l1))))

((load-truck ?o ?t ?l)
:conditions ((object ?o)(truck ?t)(location ?l)(at ?t ?l)(at ?o ?l))
:effects ((in ?o ?t)(not (at ?o ?l))))

However, HPN methods can also include an optional field that specifies when
we should not invoke them. This refers not to the current state but rather to
other goals in the current problem that are unsatisfied in the state. The second
method in Table 1 includes such an unless-goals condition, which indicates that
we should not attempt to achieve (at ?t ?l2) by driving truck ?t if (in ?o ?t)

is an open goal. The reasoning is straightforward: any package that we want in
the truck should already be in the vehicle before we move it. Such constraints
are similar in spirit to rejection rules in problem solvers like Prodigy (Minton,
1988), but they are embedded in methods rather than stored separately.

Naturally, an HPN knowledge base also requires definitions for the domain
operators that appear in methods. As in other AI planning frameworks, these
give the name and arguments for an action, its effects in terms of added and
deleted relations, and the conditions under which these effects occur. Table 2
presents operator descriptions for three actions from the logistics domain: un-
loading a truck, driving a truck, and loading a truck. The domain knowledge
also includes three analogous actions for unloading an airplane at an airport,
flying it from one airport to another, and loading it at an airport. Instances of
these operators serve as terminal nodes in hierarchical plans, whereas instances
of HPN methods correspond to nonterminal nodes.

2.2 Hierarchical Problem Decomposition

The HPN framework assumes the presence of a problem solver that can use
available methods to generate plans. We can specify this performance task more
explicitly in terms of inputs and outputs:
• Given: A set of HPN methods and associated domain operators;
• Given: An initial state specified as a conjunctive set of relations;
• Given: A problem specified as a conjunctive set of goals;
• Find : A hierarchical plan that transforms the initial state into one that

satisfies all problem goals.

Hierarchical Problem Decomposition

Given goals to achieve and an initial state, a planner can use
HPN methods to:
• Iteratively examine the topmost problem on a stack and place

new subproblems above it.

• Recursively decompose a problem into subproblems to give an
operator sequence that achieves the problem’s goals.

• Pursue AND/OR search through a space of decompositions
defined by methods and problem goals.

Problem solving is similar to that for HTNs and HGNs, but it
decomposes problems rather than tasks or goals.

8

The Task of Learning HPNs

We can specify the task of learning an HPN in terms of inputs
and outputs:
• Given: Domain operators with conditional effects of actions;

• Given: Training tasks with initial states and conjunctive goals;

• Given: A hierarchical plan for each task that achieves its goals;

• Find: An HPN that solves training tasks efficiently and that
generalizes well to new cases.

The learned HPN should find plans with little or no search and
improvement should occur rapidly.

9

Inputs to HPN Learning

Consider a simple hierarchical plan for a one-goal logistics problem.

This sample plan provides one training problem for HPN learning.

10

at o1 l3

drive-truck t1 l1 l3 c1

unload-truck o1 t1 l3

at t1 l3in o1 t1

load-truck o1 t1 l1

at t1 l1

drive-truck t1 l2 l1 c1

at o1 l1

at t1 l2in-city l2 c1 in-city l1 c1 in-city l3 c1

Each operator connects
a goal to subgoals that
satisfy its conditions.

Terminal nodes denote
relations that hold in
the initial state.

at o1 l3

drive-truck t1 l1 l3 c1

unload-truck o1 t1 l3

at t1 l3in o1 t1

load-truck o1 t1 l1

at t1 l1

drive-truck t1 l2 l1 c1

at o1 l1

at t1 l2in-city l2 c1 in-city l1 c1 in-city l3 c1

For HPN structure, we create one method per sample decomposition.

Goals serve as method heads, so nonterminal symbols are unneeded.

Here learning produces four
methods, one for unload-truck,
one for load-truck, and
two for drive-truck.

Identifying HPN Structure

11

Each method’s subproblem
comes from its operator’s
dynamic conditions.

HPN Methods for Logistics

12

Each method’s subproblem
comes from its operator’s
dynamic conditions.

1

Table 1. Four methods for logistics planning that include a head, state conditions,

an operator, a subproblem, and optional goal conditions. These partially encode an

HPN procedure that solves problems in the logistics domain efficiently. The notation

assumes that distinct variables will match against different constant expressions. Bold

and italic fonts for some conditions denote sources of learning discussed later.

((at ?o1 ?l3))
conditions: ((object ?o1) (truck ?t1) (location ?l3) (location ?l1)

(in-city ?l3 ?c1) (in-city ?l1 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (unload-truck ?o1 ?t1 ?l3)
subproblem: ((at ?t1 ?l3) (in ?o1 ?t1))

((at ?t1 ?l1))
conditions: ((truck ?t1) (location ?l3) (location ?l1)

(city ?c1) (in-city ?l3 ?c1) (in-city ?l1 ?c1)
(in-city ?l2 ?c1) (at ?t1 ?l3))

operator: (drive-truck ?t1 ?l3 ?l1 ?c1)
subproblem: ((at ?t1 ?l3))
unless-goals: ((in ?o ?t1)))

((in ?o1 ?t1))
conditions: ((object ?o1) (truck ?t1) (location ?l1) (location ?l3)

(in-city ?l1 ?c1) (in-city ?l3 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (load-truck ?o1 ?t1 ?l1)
subproblem: ((at ?t1 ?l1) (at ?o1 ?l1))

((in ?o1 ?t1)
:conditions ((object ?o1) (truck ?t1) (location ?l1) (airport ?l1)

(location ?l2) (location ?l3) (in-city ?l1 ?c1) (in-city ?l2 ?c1)
(in-city ?l3 ?c2) (at ?t1 ?l2) (at ?o1 ?l3))

:operator (load-truck ?o1 ?t1 ?l1)
:subproblem ((at ?t1 ?l1) (at ?o1 ?l1))

at o1 l3

drive-truck t1 l1 l3 c1

unload-truck o1 t1 l3

at t1 l3in o1 t1

load-truck o1 t1 l1

at t1 l1

drive-truck t1 l2 l1 c1

at o1 l1

at t1 l2in-city l2 c1 in-city l1 c1 in-city l3 c1

Finding state conditions relies on much simpler analysis than ILP or EBL.

Here (at T1 L2) becomes a condition because it conflicts with (at T1 L3).

The key purpose is to ensure
that all arguments of an
operator are bound.

Inferring State Conditions

13

Basic state conditions
come from domain
constraints.

E.g., an object cannot
be in two places at
the same time.

≠

≠
≠

HPN Methods for Logistics

14

Basic state conditions
come from domain
constraints.

1

Table 1. Four methods for logistics planning that include a head, state conditions,

an operator, a subproblem, and optional goal conditions. These partially encode an

HPN procedure that solves problems in the logistics domain efficiently. The notation

assumes that distinct variables will match against different constant expressions. Bold

and italic fonts for some conditions denote sources of learning discussed later.

((at ?o1 ?l3))
conditions: ((object ?o1) (truck ?t1) (location ?l3) (location ?l1)

(in-city ?l3 ?c1) (in-city ?l1 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (unload-truck ?o1 ?t1 ?l3)
subproblem: ((at ?t1 ?l3) (in ?o1 ?t1))

((at ?t1 ?l1))
conditions: ((truck ?t1) (location ?l3) (location ?l1)

(city ?c1) (in-city ?l3 ?c1) (in-city ?l1 ?c1)
(in-city ?l2 ?c1) (at ?t1 ?l3))

operator: (drive-truck ?t1 ?l3 ?l1 ?c1)
subproblem: ((at ?t1 ?l3))
unless-goals: ((in ?o ?t1)))

((in ?o1 ?t1))
conditions: ((object ?o1) (truck ?t1) (location ?l1) (location ?l3)

(in-city ?l1 ?c1) (in-city ?l3 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (load-truck ?o1 ?t1 ?l1)
subproblem: ((at ?t1 ?l1) (at ?o1 ?l1))

((in ?o1 ?t1)
:conditions ((object ?o1) (truck ?t1) (location ?l1) (airport ?l1)

(location ?l2) (location ?l3) (in-city ?l1 ?c1) (in-city ?l2 ?c1)
(in-city ?l3 ?c2) (at ?t1 ?l2) (at ?o1 ?l3))

:operator (load-truck ?o1 ?t1 ?l1)
:subproblem ((at ?t1 ?l1) (at ?o1 ?l1))

at o1 l3

drive-truck t1 l1 l3 c1

unload-truck o1 t1 l3

at t1 l3in o1 t1

load-truck o1 t1 l1

at t1 l1

drive-truck t1 l2 l1 c1

at o1 l1

at t1 l2in-city l2 c1 in-city l1 c1 in-city l3 c1

We may need to include static literals to ensure proper argument bindings.

We can find these two static conditions by chaining out from L1 and L2.

Here the load-truck operator
picks up the package O1
at its current location.

Extending State Conditions

15

This is possible because
we have (at O1 L1)
and (at T1 L2).

And because we have
(in-city L1 C1) and
(in-city L2 C1).

HPN Methods for Logistics

16

Chaining adds static
conditions to ensure
proper bindings.

1

Table 1. Four methods for logistics planning that include a head, state conditions,

an operator, a subproblem, and optional goal conditions. These partially encode an

HPN procedure that solves problems in the logistics domain efficiently. The notation

assumes that distinct variables will match against different constant expressions. Bold

and italic fonts for some conditions denote sources of learning discussed later.

((at ?o1 ?l3))
conditions: ((object ?o1) (truck ?t1) (location ?l3) (location ?l1)

(in-city ?l3 ?c1) (in-city ?l1 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (unload-truck ?o1 ?t1 ?l3)
subproblem: ((at ?t1 ?l3) (in ?o1 ?t1))

((at ?t1 ?l1))
conditions: ((truck ?t1) (location ?l3) (location ?l1)

(city ?c1) (in-city ?l3 ?c1) (in-city ?l1 ?c1)
(in-city ?l2 ?c1) (at ?t1 ?l3))

operator: (drive-truck ?t1 ?l3 ?l1 ?c1)
subproblem: ((at ?t1 ?l3))
unless-goals: ((in ?o ?t1)))

((in ?o1 ?t1))
conditions: ((object ?o1) (truck ?t1) (location ?l1) (location ?l3)

(in-city ?l1 ?c1) (in-city ?l3 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (load-truck ?o1 ?t1 ?l1)
subproblem: ((at ?t1 ?l1) (at ?o1 ?l1))

((in ?o1 ?t1)
:conditions ((object ?o1) (truck ?t1) (location ?l1) (airport ?l1)

(location ?l2) (location ?l3) (in-city ?l1 ?c1) (in-city ?l2 ?c1)
(in-city ?l3 ?c2) (at ?t1 ?l2) (at ?o1 ?l3))

:operator (load-truck ?o1 ?t1 ?l1)
:subproblem ((at ?t1 ?l1) (at ?o1 ?l1))

at o1 l3

drive-truck t1 l1 l3 c1

unload-truck o1 t1 l3

at t1 l3in o1 t1

load-truck o1 t1 l1

at t1 l1

drive-truck t1 l2 l1 c1

at o1 l1

at t1 l2in-city l2 c1 in-city l1 c1 in-city l3 c1

We must also find goal conditions to constrain the order of method selection.

Thus, we must add goal condition (in ?O1 ?T1) to the (at ?T1 ?L3) method.

Here we should not attempt
to achieve (at T1 L3) until
we achieve (in O1 T1).

Finding Goal Conditions

17

We can detect this goal
interaction from the
two subplans.

The subplan for (at T1 L3)
will clobber (at T1 L1),
which the other needs.

before

HPN Methods for Logistics

18

1

Table 1. Four methods for logistics planning that include a head, state conditions,

an operator, a subproblem, and optional goal conditions. These partially encode an

HPN procedure that solves problems in the logistics domain efficiently. The notation

assumes that distinct variables will match against different constant expressions. Bold

and italic fonts for some conditions denote sources of learning discussed later.

((at ?o1 ?l3))
conditions: ((object ?o1) (truck ?t1) (location ?l3) (location ?l1)

(in-city ?l3 ?c1) (in-city ?l1 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (unload-truck ?o1 ?t1 ?l3)
subproblem: ((at ?t1 ?l3) (in ?o1 ?t1))

((at ?t1 ?l1))
conditions: ((truck ?t1) (location ?l3) (location ?l1)

(city ?c1) (in-city ?l3 ?c1) (in-city ?l1 ?c1)
(in-city ?l2 ?c1) (at ?t1 ?l3))

operator: (drive-truck ?t1 ?l3 ?l1 ?c1)
subproblem: ((at ?t1 ?l3))
unless-goals: ((in ?o ?t1)))

((in ?o1 ?t1))
conditions: ((object ?o1) (truck ?t1) (location ?l1) (location ?l3)

(in-city ?l1 ?c1) (in-city ?l3 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (load-truck ?o1 ?t1 ?l1)
subproblem: ((at ?t1 ?l1) (at ?o1 ?l1))

((in ?o1 ?t1)
:conditions ((object ?o1) (truck ?t1) (location ?l1) (airport ?l1)

(location ?l2) (location ?l3) (in-city ?l1 ?c1) (in-city ?l2 ?c1)
(in-city ?l3 ?c2) (at ?t1 ?l2) (at ?o1 ?l3))

:operator (load-truck ?o1 ?t1 ?l1)
:subproblem ((at ?t1 ?l1) (at ?o1 ?l1))

To show effectiveness, we implemented a learning system –
HPNL – and ran experiments with:
• Three planning domains (Blocks World, Logistics, Depots)
• 30 distinct problems for each domain / solutions 4 to 21 steps
• A limit of 30 to 50 plan steps and 20,000 decompositions
• Each problem used first for testing and then for training
• Decompositions / CPU seconds as dependent measures
• Averaged results over 100 random problem orders

We focused on learning rate, learned vs. handcrafted expertise,
and benefits of goal conditions.

Empirical Evaluation

19

0 5 10 15 20 25 30
Number of training problems

0.
0

50
00

10
00

0
15

00
0

20
00

0
N

um
be

r o
f d

ec
om

po
si

tio
ns

Unless
Learn
Expert

Number of decompositions needed to solve problems in the Blocks World.

Each curve shows means with 95% confidence intervals over 100 orders.

HPNL Results on Blocks World

20

Mastery occurs
very rapidly in
this domain.

But only if we
include goal
conditions.

Processing (CPU seconds) needed to solve problems in the Blocks World.

Each curve shows means with 95% confidence intervals over 100 orders.

0 5 10 15 20 25 30
Number of training problems

0.
0

0.
2

0.
4

0.
6

0.
8

C
PU

 s
ec

on
ds

 to
 s

ol
ut

io
n

Unless
Learn
Expert

More Results on Blocks World

21

HPNL does not
seem to have a
utility problem.

0 5 10 15 20 25 30
Number of training problems

0.
0

50
00

10
00

0
15

00
0

20
00

0
N

um
be

r o
f d

ec
om

po
si

tio
ns

Unless
Learn
Expert

Number of decompositions needed to solve problems in Logistics planning.

Each curve shows means with 95% confidence intervals over 100 orders.

HPNL Results on Logistics

22

This domain is
harder than
Blocks World.

But expertise
relies less on
goal conditions.

Number of decompositions needed to solve problems in the Depots domain.

Each curve shows means with 95% confidence intervals over 100 orders.

0 5 10 15 20 25 30
Number of training problems

0.
0

50
00

10
00

0
15

00
0

20
00

0
N

um
be

r o
f d

ec
om

po
si

tio
ns

Unless
Learn
Expert

HPNL Results on Depots

23

Learning curves
are similar in
this domain.

But HPNL never
defeats search
completely.

Related Research

Our approach to learning plan knowledge shares some themes
with previous work:

• Acquiring HTNs/HGNs from sample plans / solutions

• Ilghami et al. (2002), Hogg et al. (2008), Nejati et al. (2006)

• Learning decomposition rules from problem solving

• Marsella (1993), Shavlik (1990), Reddy / Tadepalli (1997)

• Inductive programming (Schmid & Kitzelmann, 2011)

• Meta-interpretive learning (Cropper & Muggleton, 2015)

However, there are important differences, such as our use of
domain constraints and goal interactions.

24

Plans for Future Work

In future research, we will carry out more experiments that:
• Compare our approach to classic EBL and ILP techniques

• Examine other planning domains to ensure generality

We will also improve HPNL’s learning rate by replacing:
• Substitution of constants with variables by propagation of

dependencies through sample plans

• Chaining technique for static relations with specialized form
of inductive logic programming

These should produce HPN methods that generalize better
to novel test problems.

25

Summary Remarks

This talk reviewed hierarchical problem networks and their
use for knowledge-based planning. It also:

• Specified the task of learning HPNs from sample plans

• Presented a novel approach to this task that:
• Maps each plan decomposition onto an HPN method
• Relies on domain constraints to find state conditions
• Examines goal interactions to identify goal conditions

Experiments with three domains suggest that the approach
learns effective HPNs very rapidly.

26

References

Cropper, A., & Muggleton, S. H. (2015). Learning efficient logical robot strategies in-
volving composable objects. Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence (pp. 3423–3429). Buenos Aires: AAAI Press.

Hogg, C., Muñoz-Avila, H., & Aha, D. W. (2008). HTN-Maker: Learning HTNs with
minimal additional knowledge engineering required. Proceedings of the Twenty-Third
National Conference on Artificial Intelligence. Chicago: AAAI Press.

Ilghami, O., Nau, D. S., Muñoz-Avila, H., & Aha, D. W. (2002). CaMeL: Learning
method preconditions for HTN planning. Proceedings of the Sixth International
Conference on AI Planning and Scheduling (pp. 131–141). Toulouse: AAAI Press.

Nejati, N., Langley, P., & Könik, T. (2006). Learning hierarchical task networks by
observation. Proceedings of the Twenty-Third International Conference on Machine
Learning (pp. 665–672). Pittsburgh, PA.

Reddy, C., & Tadepalli, P. (1997). Learning goal-decomposition rules using exercises.
Proceedings of the Fourteenth International Conference on Machine Learning
(pp. 278–286). Nashville, TN: Morgan Kaufmann.

Schmid, U., & Kitzelmann, E. (2011). Inductive rule learning on the knowledge level.
Cognitive Systems Research, 12, 237–248.

Shavlik, J. (1990) Acquiring recursive and iterative concepts with explanation-based
learning. Machine Learning, 5, 39–70.

27

28

HIERARCHICAL PROBLEM NETWORKS

Table 1. Comparison of hierarchical problem networks with three other approaches to planning in terms of
seven characteristics. The symbol • indicates that a feature is present, whereas � denotes that a feature is
absent. Subsection 3.1 discusses the distinguishing characteristics in greater detail.

REPRESENTATIONAL AND Classic HTN HGN HPN
PROCESSING ASSUMPTIONS Planners Planners Planners Planners

Generate sequential plans that achieve goals • • • •
Decompose complex activities hierarchically � • • •
Methods require that relations hold in state � • • •
Methods indexed by goals they achieve � � • •
Decompose problems into subproblems � � � •
Methods require that goals are not unsatisfied � � � •
Methods are linked to primitive operators � � � •

sets of goals – rather than decomposing individual tasks or goals. This feature enables a second
one: the ability to specify methods that apply only when certain goals are not unsatisfied in the
current state, which in turn constrains the order in which these goals are addressed. Finally, HPNs
assume that each method is linked directly to a primitive operator that determines its head and
subproblems. Together, these assumptions provide greater representational power than traditional
hierarchical techniques, offering an effective and compact way to encode procedural expertise while
still supporting heuristic search when such knowledge is limited.

4. The HPD Problem-Solving Architecture
We have developed a problem-solving architecture – the Hierarchical Problem Decomposer (HPD)
– that incorporates these postulates. As Langley (2018) notes, there are usually many ways to make
a theory operational and thereby testable, and here we present only one alternative. We start by
examining HPD’s representational formalism, then describe the mechanisms that operate over it.

4.1 Representation in the HPD Architecture

The HPD architecture embodies the representational commitments listed in the previous section,
reflecting them in its syntax for encoding long-term and short-term structures, as in many cognitive
architectures (Langley, Laird, & Rogers, 2009). This provides a programming language for denoting
states, problems, and procedures that underlie problem solving. The notation has much in common
with those used in logic programming (Lloyd, 1984) and hierarchical task networks (Nau et al.,
2003), but there are also some important differences with implications for processing.

For example, Table 2 (a) specifies a state from the Blocks World that involves 13 distinct literals.
These use the predicates on, ontable, clear, holding, and hand-empty, which can share
arguments to describe relational configurations. Similarly, Table 2 (b) presents a problem from the
Blocks World. This also consists of relational literals, but it refers to desired state elements and it
omits ones that hold no interest. Here the problem’s goals specify a tower with A on B, B on C, and

7

Hierarchical problem networks share features with earlier planning
frameworks, but also have important differences.

This table compares HPNs with HTNS, HGNs, and classic planners
along seven dimensions.

Comparison to Alternatives

