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Three Main Points

This Senior Member Track presentation has three distinct but
complementary messages:

* The discovery of new scientific knowledge 1s a complicated and
multi-faceted activity.

* Since the 1970s, Al researchers have been automating individual
facets of discovery in many disciplines.

* A remaining challenge for the field is to combine these elements
into integrated discovery systems.

For this reason, 1t combines some features of a survey talk with
aspects of a blue sky talk.



A Brief History of Chemistry

One of the earliest scientific disciplines, chemistry, illustrates
different facets of discovery:

* Taxonomic classification of many substances (~800 and earlier)
* Many qualitative chemical reactions (~800 to ~1300 and later)

* Laws of definite proportions (1797), combining volumes (1809)
* Phlogiston (1731) and oxygen (1774) models of combustion

* Structures of molecules, inorganic (1808) and organic (~1860)

* Biochemical processes of cellular metabolism (early 1900s)

Later stages built on earlier ones, progressing from descriptive
summaries to deeper understanding.



The Task of Scientific Discovery

We can specify the generic problem of scientific discovery in
terms of inputs and outputs:

» Given: Scientific data or phenomena to be described or explained
» Given: Knowledge and heuristics about the scientific domain
» Given: 4 space of candidate laws, hypotheses, or models

* Find: Laws or models that describe or explain the observations

The results should not only generalize well; they should also
be stated in an established scientific formalism.

Thus, we can formulate discovery as heuristic search through
a space of interpretable candidates.



Scientific Discovery vs. Data Mining

Computational scientific discovery has some similarities to data
mining, but they are not the same:

Data Mining Scientific Discovery
Use computational methods Use computational methods
Search space of laws / models | Search space of laws / models
Commercial applications @ntiﬁc disciplines\
Large to giant data sets Small to moderate data sets >

Computer science notations \Scientiﬁc formalisms /
-

_——

Data-mining methods can be applied to scientific data, but they
seldom produce scientific knowledge.



Five Types of Scientific Discovery

We can partition scientific discovery into five broad classes of
component activities:

* Forming taxonomic hierarchies

* Finding qualitative laws

* Inducing numeric laws / equations
» Formulating structural models

* Generating process models

We must understand scientific discovery’s facets before talking
about how we might combine them.



Forming Taxonomies

Given a set of observed entities, find a taxonomy that organizes
them 1nto classes with associated descriptions.

Dinosaurs
Examples of computational systems:

* Numerical taxonomy (Sokal & Sneath, 1963) — Biology
* AutoClass (Cheeseman et al, 1988) — Astronomy
* Computational phylogenetics (Warnow, 2018) — Biology



Finding Qualitative Laws

G1ven observed entities, their features, and relations, find a set
of qualitative laws that describe them.
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Examples of computational systems:

* Glauber (Langley et al., 1987) — Reactions of acids and alkalis

 RL (Lee et al., 1998) — Respiratory syndromes, carcinogens
* PROGOL (King et al., 1996) — Mutagenic chemical structures



Inducing Numeric Laws

Given a set of observed entities with numeric descriptors, find
one or more equations that describe these observations.

Boyle’s law: V a lP (at constant nand T)

Charles’law: Vo T (at constant nand P)
Avogadro’s law: V a. n (at constant Pand T)

va 1T
P

T T
V = constant x n? = R% Ris the gas constant

PV=nRT

First Law

Planet

Second Law

Third Law
T

Gas Laws

Kepler’s Laws

Examples of computational systems:

Coulomb’s Law

* Bacon (Langley et al., 1980, 1983) — Laws of physics and chemistry

* Fahrenheit (Zytkow et al., 1990) — Laws of electrochemistry

» LaGrange (Dzeroski & Todorovski, 1994) — Ecological dynamics
* Others — Eurega (Schmidt & Lipson, 2009), SINDy (Brunton, 2016)



Formulating Structural Models

Given a set of observed entities with descriptors, find structural
models with inferred components that explain them.

Benzene Caffeine

Cartographic Maps Chemical Structures Planetary Layers

Examples of computational systems:

* Dalton (Langley et al, 1987) — Inorganic chemical structures

* Gell-Mann (Zytkow & Fischer, 1990) — Elementary particles

* DENDRAL (Lindsay et al., 1980) — Organic chemical structures
* AlphaFold (Jumper et al., 2021) — Protein structures
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Generating Process Models

Given entities described at different points in time, postulate a
set of interacting processes that explain their behavior.
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Examples of computational systems:

Planetary Nebula
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Stellar Transitions

* MECHEM (Valdes-Perez, 1994) — Chemical reaction pathways
* ACE (Anderson et al., 2014) — Creation of geological landforms
 ALP (Bohan et al., 2011) — Invertebrate predation networks

* LaGramge (Atanasova et al., 2008) — Aquatic ecosystem models
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Challenges for Integrated Discovery

Despite steady progress on these elements 1n 1solation, we need
research on integrated systems that:

* Generate scientific context

* Revise laws and models

* Combine experimentation with discovery
* Identify and measure variables

e Interact with human scientists

There have been some efforts on each topic, but each deserves
far more attention than 1t has received.
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Challenge: Generating Scientific Context

Scientific discovery always occurs in some context that takes on
a diverse set of forms:

* E.g., methods for law induction assume an existing taxonomy.

* E.g., methods for process modeling build on law-like elements.

Isolated systems depend on Aumans to provide this context, but
integrated ones must generate their own.

Response: Cumulative systems can use the output from some
modules as input to others.

Forming Finding Inducing Formulating Generating
Taxonomies Qualitative Laws Numeric Laws Structural Models Process Models

A basic design would be a simple pipeline architecture, although
feedback loops can be important.
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Challenge: Revising Laws and Models

New observations become available over time, which makes
science an on-line activity and means that:

 Batch processing will not suffice for extended operation

* The discovery process must support revision of law and models

This poses a challenge to cumulative approaches, as the context
for previous discoveries can change.

Response: An integrated system can record these dependencies,
identify where revisions are needed, and make local updates.

This 1s akin to classical techniques for truth maintenance that
support belief revision (e.g., Doyle, 1979).
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Challenge: Closed-Loop Discovery

A few Al systems have merged experiment design with discovery.
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Knowledge-Rich
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Robot
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Kekada (Kulkarni & Simon, 1988) Adam (King et al., 2009)

“Self-driving labs” are popular, but few find interpretable models.
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Challenge: Measuring / Identifying Variables

Discovery systems can also measure and identify new variables.

Construct virtual
measuring devices
for user-given terms

Introduce new
variables during
equation discovery

Intrinsic Properties
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LASDI + SINDy (Fries et al., 2022)

The second variety is rare but is a form of integrated discovery.
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Challenge: Interacting with Human Scientists

Autonomous discovery is not the only target; Al systems should
also interact and collaborate with human scientists.

* There have been some examples in discovering taxonomies,
causal models, and process accounts, but we need more.

The first step 1s a cognitive task analysis that 1dentifies elements
of scientific discovery, which we have done.

Forming Finding Inducing Formulating Generating
Taxonomies Qualitative Laws Numeric Laws Structural Models Process Models

Response: Choose which discovery elements / subelements to
automate and which to reserve for humans.

We can base decisions on factors like subtask difficulty, effort
involved, and human preferences.
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Challenge: Evaluating Integrated Discovery

We must also 1dentify testbeds and criteria to evaluate integrated
discovery systems, including:
* Synthetic environments that obey known principles:
* E.g., AI2's ScienceWorld (Wang et al., 2022)
* Includes laws of chemistry, electricity, thermodynamics
* Can compare discovered knowledge to known targets
 Natural domains that support integrated discovery:
 E.g., astronomy, materials science, gut microflora
* Must measure predictive accuracy without known targets
* But humans can also rate understandability, plausibility

Any viable testbed should involve all facets of discovery and
provide ready sources of data.
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Summary Remarks

This talk made three points about the computational discovery
of scientific knowledge:

* Discovery has many facets — forming taxonomies, inducing
descriptive laws, finding explanatory models.

* The past 50 years have seen major progress on automating
cach of these scientific tasks.

* Integrating these abilities, and combining them with others,
remains a key challenge for the field.

We need more research 1n the spirit of early Al, which pursued
audacious visions like integrated discovery systems.
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