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Three Main Points

This Senior Member Track presentation has three distinct but 
complementary messages:
• The discovery of new scientific knowledge is a complicated and 

multi-faceted activity.

• Since the 1970s, AI researchers have been automating individual 
facets of discovery in many disciplines. 

• A remaining challenge for the field is to combine these elements  
into integrated discovery systems.

For this reason, it combines some features of a survey talk with 
aspects of a blue sky talk.
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One of the earliest scientific disciplines, chemistry, illustrates  
different facets of discovery:

• Taxonomic classification of many substances (~800 and earlier)

• Many qualitative chemical reactions (~800 to ~1300 and later)

• Laws of definite proportions (1797), combining volumes (1809)

• Phlogiston (1731) and oxygen (1774) models of combustion

• Structures of molecules, inorganic (1808) and organic (~1860)

• Biochemical processes of cellular metabolism (early 1900s)

Later stages built on earlier ones, progressing from descriptive 
summaries to deeper understanding.
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The Task of Scientific Discovery

We can specify the generic problem of scientific discovery in 
terms of inputs and outputs: 
• Given: Scientific data or phenomena to be described or explained

• Given: Knowledge and heuristics about the scientific domain

• Given: A space of candidate laws, hypotheses, or models

• Find: Laws or models that describe or explain the observations

The results should not only generalize well; they should also  
be stated in an established scientific formalism. 

Thus, we can formulate discovery as heuristic search through 
a space of interpretable candidates. 

4



Scientific Discovery vs. Data Mining

Computational scientific discovery has some similarities to data 
mining, but they are not the same:

Data-mining methods can be applied to scientific data, but they 
seldom produce scientific knowledge.

5

Data Mining Scientific Discovery

Use computational methods Use computational methods
Search space of laws / models Search space of laws / models
Commercial applications Scientific disciplines
Large to giant data sets Small to moderate data sets
Computer science notations Scientific formalisms



Five Types of Scientific Discovery

We can partition scientific discovery into five broad classes of 
component activities: 

• Forming taxonomic hierarchies

• Finding qualitative laws

• Inducing numeric laws / equations 

• Formulating structural models

• Generating process models

We must understand scientific discovery’s facets before talking 
about how we might combine them.  
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Forming Taxonomies

Given a set of observed entities, find a taxonomy that organizes 
them into classes with associated descriptions. 

Examples of computational systems:
• Numerical taxonomy (Sokal & Sneath, 1963) – Biology
• AutoClass (Cheeseman et al, 1988) – Astronomy
• Computational phylogenetics (Warnow, 2018) – Biology
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Finding Qualitative Laws

Given observed entities, their features, and relations, find a set  
of  qualitative laws that describe them. 

Examples of computational systems:
• Glauber (Langley et al., 1987) – Reactions of acids and alkalis
• RL (Lee et al., 1998) – Respiratory syndromes, carcinogens
• PROGOL (King et al., 1996) – Mutagenic chemical structures
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Inducing Numeric Laws

Given a set of observed entities with numeric descriptors, find 
one or more equations that describe these observations. 

Examples of computational systems:
• Bacon (Langley et al., 1980, 1983) – Laws of physics and chemistry
• Fahrenheit (Zytkow et al., 1990) – Laws of electrochemistry
• LaGrange (Dzeroski & Todorovski, 1994) – Ecological dynamics
• Others – Eureqa (Schmidt & Lipson, 2009), SINDy (Brunton, 2016)
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Formulating Structural Models

Given a set of observed entities with descriptors, find structural 
models with inferred components that explain them. 

Examples of computational systems:
• Dalton (Langley et al, 1987) – Inorganic chemical structures
• Gell-Mann (Zytkow & Fischer, 1990) – Elementary particles
• DENDRAL (Lindsay et al., 1980) – Organic chemical structures
• AlphaFold (Jumper et al., 2021) – Protein structures
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Generating Process Models

Given entities described at different points in time, postulate a
set of interacting processes that explain their behavior.  

Examples of computational systems:
• MECHEM (Valdes-Perez, 1994) – Chemical reaction pathways
• ACE (Anderson et al., 2014) – Creation of geological landforms
• ALP (Bohan et al., 2011) – Invertebrate predation networks
• LaGramge (Atanasova et al., 2008) – Aquatic ecosystem models
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Challenges for Integrated Discovery

Despite steady progress on these elements in isolation, we need 
research on integrated systems that: 

• Generate scientific context

• Revise laws and models

• Combine experimentation with discovery

• Identify and measure variables

• Interact with human scientists

There have been some efforts on each topic, but each deserves  
far more attention than it has received.
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Challenge: Generating Scientific Context

Scientific discovery always occurs in some context that takes on 
a diverse set of forms: 
• E.g., methods for law induction assume an existing taxonomy.
• E.g., methods for process modeling build on law-like elements.

Isolated systems depend on humans to provide this context, but 
integrated ones must generate their own.
Response: Cumulative systems can use the output from some 
modules as input to others.

A basic design would be a simple pipeline architecture, although 
feedback loops can be important. 
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Challenge: Revising Laws and Models

New observations become available over time, which makes 
science an on-line activity and means that: 
• Batch processing will not suffice for extended operation

• The discovery process must support revision of law and models

This poses a challenge to cumulative approaches, as the context   
for previous discoveries can change. 

Response: An integrated system can record these dependencies, 
identify where revisions are needed, and make local updates.

This is akin to classical techniques for truth maintenance that 
support belief revision (e.g., Doyle, 1979).
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PV =  c1 PV =  c2 PV =  c3 PV =  c4 PV =  c5 PV =  c6 PV =  c7 PV =  c8 PV =  c9

c/N = d1 c/N = d2 c/N = d3

d = aT + b
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Challenge: Closed-Loop Discovery

A few AI systems have merged experiment design with discovery. 
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“Self-driving labs” are popular, but few find interpretable models.

it varies independent variables, and detect irrelevant 
variables. 

Placing FAHRENHEIT ‘(in charge” of laboratory ex- 
periments challenged us with new tasks. To be suc- 
cessful in the chemistry experiments, FAHRENHEIT 
must be able to (1) find “points of special interest”, 
such as maxima, and incorporate them into a recur- 
sive mechanism for detection of multidimensional reg- 
ularities, (2) determine reproducibility of results, (3) 
determine the error for each new concept, (4) establish 
empirical semantics, and (5) establish the communica- 
tion between the brain (FAHRENHEIT) and the hands 
and eyes (PC), including a command language used by 
FAHRENHEIT. We will briefly describe the first four. 

Handling ‘especial points”. Quantitative discovery 
systems were traditionally preoccupied with numerical 
regularities, whereas scientists are also interested in 
other aspects of numerical data, especially in “special 
points” such as maxima, minima, discontinuities, ze- 
ros, and so forth. Sometimes finding a special point is 
more important than detecting a regularity. FAHREN- 
HEIT has been able to find many special points but it 
has used them for another purpose. FAHRENHEIT 
has been able to find boundaries of regularities, reg- 
ularities on boundaries and boundaries of boundaries. 
It turned out that the same recursive mechanism for 
generalization to new variables applies to all types of 
special points. The system needed only a small change 
in code, after which it can mix and match various tasks 
of function analysis for different independent variables. 
For instance, FAHRENHEIT can now search for the 
maxima of regularities, for regularities on maxima, or 
for maxima of a regularity on minima. Problem 1 in 
section 2 requires detection of the location and height 
of each peak in a sequence of data for each pulse height, 
such as shown in Figure 3. Then, FAHRENHEIT is 
supposed to find separate regularities for the locations 
and heights of maxima for different ions. The electrode 
potential is .the independent variable for the former, 
while pulse height is the independent variable for the 
latter. 

Determining the reproducibility of results. In 
the repeatability study FAHRENHEIT performs a 
number of experiments without changing any values of 
controlled variables. Then it analyses the data, trying 
to separate an area of constancy from the remaining 
data in which there is either another regularity or no 
regularity can be found. FAHRENHEIT’s capability 
for finding multiple regularities and their boundaries 
is essential on this task. 

Handling experimental error. For each new vari- 
able generated by FAHRENHEIT, such as the maxi- 
mum location or the slope of a linear regularity, the 
system finds the error. Each error is computed from 
appropriate data. For instance, the error of maxima lo- 
cation and height can be inferred from the repeatability 
study. The error is necessary for the generalization of 
results to new dimensions. It also allows to determine 
the quality of final results. 
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Fig. 3 DPV of metal ions (20ppm CL?, Pb2’,nd C%‘) 
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Fig. 4 Regularities for the maximum 

4. Results of experiments 
We started with the repeatability study, that is with 
problem 2 in section 2, using the pulse height of 15 mV. 
We repeated the experiment 20 times. Each time our 
system collected 360 datapoints, measuring the current 
as a function of potential of the working electrode. For 
a single pulse the results are plotted in Figure 3. In 120 
minutes 7200 datapoints were collected and analysed, 
60 maxima have been located and nine regularities, in- 
cluding six constancies, have been found. By analysing 
the ranges of constancy FAHRENHEIT detected that 
repeatability of maxima heights are different for differ- 
ent ions, and that each maximum is measured with a 
specific error as described in the “rows” errors and “re- 
peatability” in Table 1. As a result, we use the number 
of 7 repetitions before we change the drop of mercury. 

In the next experiment, reported in Figure 4 and in 
Table 1, we aimed at the detection of regularities that’ 
describe changes of the peaks as a function of the pulse 

Bacon (Langley, 1981)
Fahrenheit (Zytkow et al., 1990)

Kekada (Kulkarni & Simon, 1988) Adam (King et al., 2009)
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Challenge: Measuring / Identifying Variables

Discovery systems can also measure and identify new variables. 
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Construct virtual
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equation discovery

The second variety is rare but is a form of integrated discovery.

Nasim et al. (1993)

M. Nasim, S. Rayaprolu, T. Niu et al. Journal of Nuclear Materials 574 (2023) 154189 

Fig. 1. Pattern recognition of TEM micrographs of nanovoids in Cu ( 110 ) film captured during in situ Kr ion irradiation at 350 °C, over 0.5-0.6 dpa. (a–c) In situ TEM radiation 
snapshots taken at 0, 50, and 100 s, respectively. (d–e) The nanovoids present in the corresponding snapshots as detected by the U–Net model (Numbers in bracket represent 
the diameter of nanovoids in unit of nm). 
confirm the void size fluctuation, manual measurements were 
performed for selected nanovoids. As shown in Fig. 2 c-d, voids 
of different initial size show various magnitude of fluctuation as 
confirmed by in–depth TEM analyses. To confirm that the void size 
fluctuation is a real phenomenon, and not a result of error arising 
from rastering of ion beam, we compared the results from two in 
situ radiation experiments, with and without beam rastering. We 
found that irrespective of the presence of beam rastering, void 
size fluctuation was observed frequently as shown in Fig. 3 . The 
manual measurement, along with the experiments with and with- 
out beam rastering confirms that void size fluctuation indeed is a 
physical phenomenon, hence providing one of the first empirical 
evidence for the random size fluctuation. In addition to the void 
size fluctuations over short period of time, the long-term (over 
3 min) size variations of the voids in Fig. 4 a shows the voids 
undergo shrinkage in different magnitudes. The voids with smaller 
initial size shrink more compared to the larger voids, in agreement 
with the previous studies of void size evolutions [27–29] . 

Void swelling, accompanied by significant volumetric expan- 
sion, is often observed in metallic materials subjected to radiation 
damage. In contrast to conventional anticipation, the nanovoids 
in Cu ( 110 ) film were found to shrink constantly under high 
temperature in situ radiation. The shrinkage of porosity has been 
previously reported in nanoporous (NP) Ag, NP Au and single 
crystal–like Cu embedded with nanovoids under room temper- 
ature radiation [ 29 , 4 8 , 4 9 ]. Such void shrinkage phenomenon is 
tightly associated with the preferential absorption of interstitial 
type of defects by void surfaces. The stress field analysis sug- 
gested the existence of strong tensile stresses in the vicinity 
of voids, resulting in reduced loop migration energy, thereby 
facilitating the absorption of interstitial loops by void surface 

[27] . Recent phase–field simulation study also reveals that the 
biased interstitial flux to void would lead to the shrinkage of voids 
and the void shrinkage rate was inversely proportional to the 
original void diameter [29] . The larger curvature of smaller voids 
may foster a higher concentration of interstitials and accelerated 
interstitial diffusion, leading to the faster shrinkage of smaller 
voids. 

The key bottleneck that prevented the discovery of void size 
fluctuations previously is the simultaneous need for in situ TEM 
radiation of specimens with voids and the insurmountable effort 
required to manually analyze the hundreds of thousands of TEM 
micrographs with high precision. Most prior manual analyses used 
sampling techniques to examine only a small fraction of discrete 
frames, where noticeable changes can be identified with naked 
eyes. However, as void size fluctuations occur rapidly and the 
dimension of variation is often at small scale, it is not readily 
apparent from visual inspection or partial sampling of TEM data. 
The lack of automated high–fidelity TEM micrograph analyses 
prevented the discovery of void size fluctuation phenomena. Our 
machine learning based detect–and–track system can overcome 
this limitation by automating the manual analysis process. By us- 
ing only a few TEM micrographs, labeled with human supervision, 
our machine learning model can detect nanovoids in thousands 
of frames with high precision. The greedy matching is then able 
to associate the voids in different frames, enabling us to track the 
changes in these voids (size, geometry, position, migration etc.). To 
confirm the detection of void size fluctuation obtained from our 
model, we performed manual TEM analyses ( Fig. 2 c–d) and found 
the results to be highly accurate (99% pixelwise accuracy). 

Prior studies also suggest that nanovoids could become mobile 
during irradiation at elevated temperatures. In situ TEM experi- 
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time required to heat the liquid to this temperature. For 600 grams of water, the slope, 
s, is 0.4 and the intercept, i, is 20. 

When the mass of the sample is varied, IDS finds that the intercept, i, of the linear 
relation between the final temperature and time remains constant at 20. However, the slope, 
s, of this linear relation changes as the mass of the sample varies. When the mass is 900 
grams, s has a value of 0.27, and when the mass is 500 grams, s is 0.48. Based on these 
values, IDS decides that s = 239.24 x 1~mass(b); Figure 8 shows the part of the state 
hierarchy relevant to this discovery, including the quantitative law. Restating these relations, 
one can deduce that 

1 
t i m e  - 239 .2~  x m a s s ( b )  X ( t e m p ( b )  -- 20) .  

In this experiment, the burner has an output of one Kilojoule per second, so one second 
is equivalent to one Kilojoule of energy. Thus, the value of 239.24 is the reciprocal of the 
specific heat of water expressed in Kilojoules per gram degree Celsius. When IDS observes 
experimental conditions in which the sample is HC1 and HNO3, the system finds values 
of 143.47 and 65.75, respectively. As a result, it infers this coefficient as an intrinsic prop- 
erty and stores values for H20, HC1, and HNO 3 in the object hierarchy. 

The system can also discover regularities from a more elaborate experiment that starts 
by heating a solid object until the solid begins to melt and a liquid appears. Heating con- 
tinues until the solid disappears and the temperature of the liquid starts to increase. When 

water(b) 
burner(c) 

A temp(b) > 0 
s = 239.24 / mass(b) 

2 / I 3 \ 4 

water(m) water(o) water(q) 
burner(n) burner(p) burner(r) 

A temp(m) > 0 A temp(o) > 0 A temp(q) > 0 
mass(m) = 600 mass(o) = 900 mass(q) = 500 

temp(m) = 0.40 time + 20 temp(o) = 0.27 time + 20 temp(q) = 0.48 t ime + 20 

Figure 8. Partial state taxonomy for the discovery of specific heat for water. LASDI + SINDy (Fries et al., 2022)
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SINDy can be used as LaSDI framework
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te
nt

 S
pa

ce
 V

ar
ia

bl
es



Challenge: Interacting with Human Scientists

Autonomous discovery is not the only target; AI systems should 
also interact and collaborate with human scientists.  

• There have been some examples in discovering taxonomies, 
causal models, and process accounts, but we need more. 

The first step is a cognitive task analysis that identifies elements 
of scientific discovery, which we have done. 

Response: Choose which discovery elements / subelements to 
automate and which to reserve for humans. 

We can base decisions on factors like subtask difficulty, effort 
involved, and human preferences. 

17

Forming
Taxonomies

Finding 
Qualitative Laws

Inducing 
Numeric Laws

Formulating 
Structural Models

Generating 
Process Models



Challenge: Evaluating Integrated Discovery

We must also identify testbeds and criteria to evaluate integrated 
discovery systems, including: 
• Synthetic environments that obey known principles:
• E.g., AI2's ScienceWorld (Wang et al., 2022)
• Includes laws of chemistry, electricity, thermodynamics
• Can compare discovered knowledge to known targets

• Natural domains that support integrated discovery:
• E.g., astronomy, materials science, gut microflora
• Must measure predictive accuracy without known targets
• But humans can also rate understandability, plausibility

Any viable testbed should involve all facets of discovery and 
provide ready sources of data. 
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Summary Remarks

This talk made three points about the computational discovery  
of scientific knowledge: 

• Discovery has many facets – forming taxonomies, inducing 
descriptive laws, finding explanatory models. 

• The past 50 years have seen major progress on automating 
each of these scientific tasks. 

• Integrating these abilities, and combining them with others, 
remains a key challenge for the field.  

We need more research in the spirit of early AI, which pursued  
audacious visions like integrated discovery systems. 
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