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Examples of Scientific Discoveries!

Science is a distinguished by its reliance on formal laws, models, 
and theories of observed phenomena.    

We often refer to the 
process of finding 
such accounts as 
scientific discovery.   

Kepler’s laws of planetary motion   Newton’s theory of gravitation   Krebs’ citric acid cycle   

Dalton’s 
atomic 
theory 
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Philosophers of science claimed that scientific discovery could 
not be analyzed in rational terms. Popper (1934) wrote:	  

The initial stage, the act of conceiving or inventing a theory, 
seems to me neither to call for logical analysis nor to be 
susceptible of it … My view may be expressed by saying that 
every discovery contains an ‘irrational element’, or ‘a creative 
intuition’…  

He was not alone. Hempel and many others believed discovery 
was inherently irrational and beyond understanding.  

However, advances made in two fields – cognitive psychology 
and artificial intelligence – in the 1950s suggested otherwise.  

Mystical Views of Scientific Discovery 
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Scientific Discovery as Problem Solving!

•  Search through a space of problem states 

•  Generated by applying mental operators 

•  Guided by heuristics to make it tractable 

Simon (1966) offered another view – scientific discovery is a 
variety of problem solving that involves:   

Heuristic search had been implicated in many cases of human 
cognition, from proving theorems to playing chess.  

This framework offered not only a path to understand scientific 
discovery, but also ways to automate this mysterious process.  
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Early Progress!

•  Input numeric observations for a number of variables;  
•  Carried out search in a problem space of theoretical terms;  
•  Using operators that combined old terms into new ones;  
•  Guided by heuristics that noted regularities in data; and  
•  Applied these recursively to formulate higher-level relations.  

One of the first systems that adapted Simon’s ideas on discovery 
was Bacon (Langley, 1981), a computer program that:    

This approach let it rediscover scientific laws from the history of 
physics and chemistry.  
The system adopted Sir Francis Bacon’s proposal that scientific 
discovery use data-driven strategies.   
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Some Laws Discovered by Bacon  
(Langley et al., 1983) 

Basic algebraic relations: 
•  Ideal gas law   PV =  aNT + bN 
•  Kepler’s third law   D3 = [(A – k) / t]2 = j 
•  Coulomb’s law   FD2 / Q1Q2 = c 
•  Ohm’s law    TD2 /  (LI – rI) = r 

Relations with intrinsic properties: 
•  Snell’s law of refraction  sin I / sin R  = n1 / n2 
•  Archimedes’ law   C  = V  +  i 
•  Momentum conservation  m1V1 =  m2V2 
•  Black’s specific heat law  c1m1T1 + c2m2T2 = (c1m1+ c2m2 ) Tf  
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1989 1990 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 

Bacon.1–Bacon.5 Abacus,  
Coper 

Fahrehneit, E*,  
Tetrad, IDSN 

Hume, 
ARC 

DST, GPN 
LaGrange SDS SSF, RF5, 

LaGramge 

Dalton,  
Stahl 

RL, Progol 

Gell-Mann BR-3, 
Mendel Pauli Stahlp, 

Revolver ←Dendral 

←AM Glauber NGlauber IDSQ,  
Live 

IE Coast, Phineas, 
AbE, Kekada Mechem, CDP Astra, 

GPM 

HR 

BR-4 

Numeric laws Qualitative laws Structural models Process models Legend 

Research on computational scientific discovery covers many forms 
of laws and models.  

Early Progress in Scientific Discovery 

Most early work focused on historical examples, but more recent 
efforts have aided the scientific enterprise.   
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Successes of Computational Scientific Discovery 

AI systems of this type have helped to discover new knowledge 
in many scientific fields:  

• Reaction pathways in catalytic chemistry (Valdes-Perez, 1994, 1997)  
• Qualitative chemical factors in mutagenesis (King et al., 1996) 
• Quantitative laws of metallic behavior (Sleeman et al., 1997) 
• Quantitative conjectures in graph theory (Fajtlowicz et al., 1988) 
• Qualitative conjectures in number theory (Colton et al., 2000) 
• Dynamic laws of ecological behavior (Todorovski et al., 2000) 
• Models of gene-influenced metabolism in yeast (King et al., 2009) 

Each of these has led to publications in the refereed literature of 
the relevant scientific field (Langley, 2000).    
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Books on Scientific Discovery 

Research on computational scientific discovery has produced a 
number of books on the topic.   

These further demonstrate the diversity of problems and methods 
while emphasizing their underlying unity.    

1987   1990   2007   
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• Used computational methods to find regularities in the data  

• Adopted heuristic search through a space of hypotheses 

• Emphasized the availability of large amounts of data 

• Focused on commercial applications and data sets 

During the 1990s, a new paradigm known as data mining and 
knowledge discovery emerged that: 

Most work used notations invented by computer scientists, unlike 
work on scientific discovery, which used scientific formalisms.  

Data mining has been applied to scientific data, but the results 
seldom bear a resemblance to scientific knowledge. 

The Data Mining Movement 
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Discovering Explanatory Models 

The early stages of any science focus on descriptive laws that 
summarize empirical regularities.  

Mature sciences instead emphasize the creation of models that 
explain phenomena in terms of:  

• Inferred components and structures of entities 

• Hypothesized processes about entities’ interactions 

Explanatory models move beyond description to provide deeper 
accounts linked to theoretical constructs.   

Can computational mechanisms address this more sophisticated 
side of scientific discovery?  
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Classic Work: DENDRAL  
(Lindsay et al.,1980) 

The DENDRAL system inferred a molecule’s chemical bonds 
given its component formula and a mass spectrogram. 

E.g., from the formula C6H5OH and other relevant information, 
the program produced structures like:  

H 
C 

HC OH 

H 
C 

C 
H 

C 
H 

C 

DENDRAL relied on heuristic search to infer structural models,  
using knowledge from 20th Century chemistry as a guide. 
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Classic Work: MECHEM  
(Valdes-Perez, 1994)  

MECHEM was a graphical interactive system that generated 
plausible pathways to explain chemical reactions. 

The system used constrained 
exhaustive search to generate 
candidate explanations.  

Users could select constraints 
they deemed relevant to the 
current task.  

MECHEM found numerous 
pathways that led to articles 
in the chemistry literature.  
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Recent Progress: Inductive Process Modeling 

!!!

Time-series data

Generic processes

Process 
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process 
Modeling

exponential_growth(Organism1)
  rate R = Organism1
  derivatives  d[Organism1,t] = a * R
  parameters a = 0.75

holling(Organism2, Organism1)
  rate R = Organism2 * Organism1
  derivatives   d[Organism2,t] = b * R,
                     d[Organism1,t] = c * R
  parameters  b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
  rate R = X
  derivatives  d[X,t] = a * R
  parameters a > 0

holling(X [predator], Y [prey]) [predation]
  rate R = X * Y
  derivatives   d[X,t] = b * R, d[Y, t] = c * R
  parameters  b > 0, c < 0

Inductive process modeling constructs explanations of time series 
from background knowledge (Bridewell et al., 2008).  

  

 

 

 

 

 

 
 

Models are stated as sets of differential equations organized into 
higher-level processes.  14 



Successes of Inductive Process Modeling!

aquatic ecosystems protist dynamics 

hydrology biochemical kinetics 15 



Heuristic Search for Process Models in RPM 
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Later equations are  
constrained by processes  
included in earlier ones 
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Scaling to Complex Models 
RPM also finds an accurate model for a 20-organism food chain.  

 
 

 

 

 

 

 

 
 

This suggests the system scales well to difficult modeling tasks.  
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Recent Progress: Cell Biology 

King et al. (2009) have constructed an integrated system for 
biological discovery that:  

• Designs auxotrophic growth studies with yeast gene knockouts 
• Runs these experiments using a robotic manipulator 
• Measures the growth rates for each experimental condition 
• Revises its causal model for how genes influence metabolism 

This closes the loop between experiment design, data collection,  
and model construction in biology.  

Their system has found models of metabolic regulation in yeast. 

Zytkow et al. (1990) reported a much earlier robot scientist in the 
field of electrochemistry. 
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Recent Progress: Food Webs in Ecology 

In other recent work, Bohan et al. (2011) have used abductive 
logic programming to:  

• Process data on relative abundances on invertebrates in fields 

• Use knowledge about relative size, cooccurence, and predation 

•  Infer a three-level food web that relates 45 distinct species 

Examination of the literature showed that most of these links 
were consistent with known predatory relations.  

However, the system also hypothesized novel predations that 
ecologists found interesting and important.   

19 



Recent Progress: Cosmogenic Dating 

Anderson et al. (2014) report ACE, an AI system for cosmogenic 
dating in geology that:  

•  Inputs nucleotide densities for rocks from a landform 

•  Incorporates knowledge about possible geological processes 

• Generates process models for how the landform was produced 

• Weighs arguments for and against each process explanation 

ACE has been downloaded ~600 times and is still used actively 
by many geologists to understand their data.  
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Lessons for the Research Community!

Research on scientific discovery offers some important lessons:  
•  Science adopts explicit formalisms for theories and models that are 

communicable to others.  
•  Scientific research is not entirely data driven; it often uses existing 

knowledge to aid the discovery process.  
• Data is not the sole driver of discovery; science is a closed loop of 

model revision and data collection.  
•  Science is concerned with more than prediction; mature fields insist 

that observations be explained in deeper terms.  
•  Scientific insights do not require large amounts of data; in many 

fields, one must work with sparse samples. 

We need less work on large data sets and more work on scaling 
to complex models and to large spaces of models.    
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Myths about Computers in Science!

Finally, we should debunk three damaging myths (PITAC, 2005):  
•  Computing is changing the basic nature and operation of science.  
• No. Science has always been a computational endeavor, and digital 

computers do not alter its basic steps or their relationships.  
•  Traditional science stood on two legs – theory and observation – and 

computing offers a third – simulation – and a fourth – data analysis.  
• No. Every facet of science is computational, and we can develop 

digital aids to make it more efficient and effective.  
•  Computer-aided science is best pursued with domain-specific tools.  
• No. There are general principles of science that apply to many 

fields, and we can encode them in programming abstractions. 

We need less rhetoric on how ‘computers will change everything’ 
and more work on how to aid the standard scientific process.  
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Summary Remarks 
There has been a long history of work on computational scientific 
discovery, including methods for constructing:  

•  Descriptive laws stated as numeric equations  

•  Explanatory models of structures and processes 

Recent research has emphasized the latter, which is associated 
with more mature fields of science.  

Work in this paradigm discovers knowledge stated in formalisms 
and concepts that are familiar to scientists. 

Challenges involve dealing not with ‘big data’, but with complex 
models and large search spaces.  
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In Memoriam!

Herbert A. Simon  
(1916 – 2001) 

In 2001, the field of computational scientific discovery lost two of 
its founding fathers.  

Both were interdisciplinary researchers who published in computer 
science, psychology, philosophy, and statistics. 

Herb Simon and Jan Zytkow were excellent role models for us all.   

Jan M. Zytkow 
(1945 – 2001) 



End of Presentation!


