
Thanks to G. Bradshaw, W. Bridewell, S. Dzeroski,  H. A. Simon, L. Todorovski, R.
Valdes-Perez, and J. Zytkow for discussions that led to many of these ideas, which
was partly funded by ONR Grant No. N00014-11-1-0107.

Pat Langley
 Department of Computer Science

University of Auckland
Silicon Valley Campus

Carnegie Mellon University

Themes and Progress in
Computational Scientific Discovery



Examples of Scientific Discoveries

Science is a distinguished by its reliance on formal laws, models,
and theories of observed phenomena.

We often refer to the
process of finding
such accounts as
scientific discovery.

Kepler’s laws of planetary motion Newton’s theory of gravitation Krebs’ citric acid cycle

Dalton’s
atomic
theory



Philosophy of Science

• character of scientific observations and experiments;

• structure of scientific theories, laws, and models;

• nature of scientific explanations and predictions;

• evaluation of scientific theories, models, and laws.

The philosophy of science has studied science since the 19th
Century, focusing on the:

However, philosophers of science typically avoided the topic
of scientific discovery.



Many have claimed that scientific discovery cannot be analyzed
in rational terms. Popper (1934) wrote:

The initial stage, the act of conceiving or inventing a theory,
seems to me neither to call for logical analysis nor to be
susceptible of it … My view may be expressed by saying that
every discovery contains an ‘irrational element’, or ‘a creative
intuition’…

He was not alone. Hempel and many others believed discovery
was inherently irrational and beyond understanding.

Mystical Views of Scientific Discovery



His ideas provided a powerful new approach to understanding
the nature of scientific discovery.

Moreover, it offered ways to automate this mysterious process.

Scientific Discovery as Problem Solving

• Search through a space of connected problem states;

• Generated from earlier states by mental operators;

• Guided by heuristics that keep the search tractable.

Simon (1966) offered another view – that scientific discovery
is a variety of problem solving that involves:



The Task of Scientific Discovery

We can state the discovery task in terms of the inputs provided
and the outputs produced:

• Given: A set of scientific data or phenomena to be modeled;

• Given: A space of candidate laws, hypotheses, or models
stated in an established scientific formalism;

• Given: Knowledge and heuristics for the scientific domain;

• Find: Laws or models that describe or explain the data or
phenomena (and that generalize well).

We can develop AI systems that carry out search through this
space of candidate accounts.



Some Laws Discovered by Bacon
(Langley et al., 1983)

Basic algebraic relations:
• Ideal gas law PV =  aNT + bN
• Kepler’s third law D3 = [(A – k) / t]2 = j
• Coulomb’s law FD2 / Q1Q2 = c
• Ohm’s law TD2 /  (LI – rI) = r

Relations with intrinsic properties:
• Snell’s law of refraction sin I / sin R  = n1 / n2

• Archimedes’ law C  = V  +  i
• Momentum conservation m1V1 =  m2V2

• Black’s specific heat law c1m1T1 + c2m2T2 = (c1m1+ c2m2 ) Tf
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Research on computational scientific discovery covers many forms
of laws and models.

Early Progress in Scientific Discovery

Most early work focused on historical examples, but more recent
efforts have aided the scientific enterprise.



Successes of Computational Scientific Discovery

AI systems of this type have helped to discover new knowledge
in many scientific fields:

• Qualitative chemical factors in mutagenesis (King et al., 1996)
• Quantitative laws of metallic behavior (Sleeman et al., 1997)
• Quantitative conjectures in graph theory (Fajtlowicz et al., 1988)
•Qualitative conjectures in number theory (Colton et al., 2000)
• Temporal laws of ecological behavior (Todorovski et al., 2000)
• Reaction pathways in catalytic chemistry (Valdes-Perez, 1994, 1997)

Each of these has led to publications in the refereed literature of
the relevant scientific field (Langley, 2000).



Books on Scientific Discovery

Research on computational scientific discovery has produced a
number of books on the topic.

These further demonstrate the diversity of problems and methods
while emphasizing their underlying unity.

1987 1990 2007



• Emphasized the availability of large amounts of data;

• Used computational methods to find regularities in the data;

• Adopted heuristic search through a space of hypotheses;

• Initially focused on commercial applications and data sets.

During the 1990s, a new paradigm known as data mining and
knowledge discovery emerged that:

Most work used notations invented by computer scientists, unlike
work on scientific discovery, which used scientific formalisms.

Data mining has been applied to scientific data, but the results
seldom bear a resemblance to scientific knowledge.

The Data Mining Movement



Discovering Explanatory Models

The early stages of any science focus on descriptive laws that
summarize empirical regularities.

Mature sciences instead emphasize the creation of models that
explain phenomena in terms of:

• Inferred components and structures of entities;

• Hypothesized processes about entities’ interactions.

Explanatory models move beyond description to provide deeper
accounts linked to theoretical constructs.

Can we develop computational systems that address this more
sophisticated side of scientific discovery?



Classic Work: DENDRAL
(Lindsay et al.,1980)

The DENDRAL system inferred a molecule’s chemical bonds
given its component  formula and a mass spectrogram.

E.g., from the formula C6H5OH and other relevant information,
the program produced structures like:
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DENDRAL relied on heuristic search to infer structural models,
using    knowledge from 20th Century chemistry as a guide.



Classic Work: MECHEM
(Valdes-Perez, 1994)

MECHEM was a graphical interactive system that generated
plausible pathways to explain chemical reactions.

The screenshot shows, clock-
wise from the upper left:
• the main menu;
• the current reaction;
• a sample mechanism;
• a set of constraints; and
• the system’s output log.

These made MECHEM
more accessible to chemists.



Inductive Process Modeling
(Bridewell et al., 2008)

process exponential_growth 
  variables:  P {population} 
  equations: d[P,t] = [0, 1,∞] × P 

process logistic_growth
  variables:  P {population}
  equations: d[P,t] = [0, 1, ∞] × P × (1 − P / [0, 1, ∞])

process constant_inflow
  variables:  I {inorganic_nutrient}
  equations: d[I,t] = [0, 1, ∞]

process consumption
  variables:  P1 {population}, P2 {population},
nutrient_P2
  equations: d[P1,t] = [0, 1, ∞] × P1 × nutrient_P2,
                   d[P2,t] = − [0, 1, ∞] × P1 × nutrient_P2

process no_saturation
  variables:  P {number}, nutrient_P {number}
  equations: nutrient_P = P

process saturation
  variables:  P {number}, nutrient_P {number}
  equations: nutrient_P = P / (P + [0, 1, ∞])

model AquaticEcosystem

variables: nitro, phyto, zoo, nutrient_nitro, nutrient_phyto
observables: nitro, phyto, zoo

process phyto_exponential_growth
  equations: d[phyto,t] = 0.1 × phyto

process zoo_logistic_growth
  equations: d[zoo,t] = 0.1 × zoo / (1 − zoo / 1.5)

process phyto_nitro_consumption
  equations: d[nitro,t] = −1 × phyto × nutrient_nitro,
                   d[phyto,t] = 1 × phyto × nutrient_nitro

process phyto_nitro_no_saturation
  equations: nutrient_nitro = nitro

process zoo_phyto_consumption
  equations: d[phyto,t] = −1 × zoo × nutrient_phyto,
                   d[zoo,t] = 1 × zoo × nutrient_phyto

process zoo_phyto_saturation
  equations: nutrient_phyto = phyto / (phyto + 0.5)

Heuristic
Search

observations

generic processes

process model
phyto, nitro, zoo, 
nutrient_nitro, nutrient_phyto 

entities

constraints
Always-together[growth(P), loss(P)]
Exactly-one[lotka-volterra(P, G), ivlev(P, G), watts(P, G)]
At-most-one[photoinhibition(P, E)]
Necessary[nutrient-mixing(N), remineralization(N, D)]



Recent Progress: Biological Models

King et al. (2009) have constructed an integrated system for
biological discovery that:

• Designs auxotrophic growth studies with yeast gene knockouts;
• Runs these experiments using a robotic manipulator;
• Measures the growth rates for each experimental condition; and
• Revises its causal model for how genes influence metabolism.

This closes the loop between experiment design, data collection,
and model construction in biology.

But note that Zytkow et al. (AAAI-90) reported an even earlier
robot scientist in the field of electrochemistry.



Recent Progress: Cosmogenic Dating

Anderson et al. (2014) report ACE, an AI system for cosmogenic
dating that:

• Designs inputs nucleotide densities for rocks from a landform;

• Generates process accounts for how the landform was produced;

• Weighs arguments for and against each process explanation.

ACE has been downloaded ~600 times and is used actively by
many geologists to understand their data.

The system is user-extensible and, years after it launch, has led
to zero requests for help from computer scientists.



Big Data and Scientific Discovery

• Scaling to large and heterogeneous data sets;

• Scaling to large and complex scientific models;

• Scaling to large spaces of candidate models.

Digital collection and storage have led to rapid growth of data
in many areas.

The big data movement seeks to capitalize on this content, but,
in science at least, we must address three distinct issues:

We need far more work on the last two issues, for which methods
from computational scientific discovery are well suited.



Summary Remarks

There has been a long history of work on computational scientific
discovery, including methods for constructing:

• Descriptive laws stated as numeric equations

• Explanatory models of structures and processes

Recent research has focused on the latter, which is associated
with more mature fields of science.

Work in this paradigm discovers knowledge stated in formalisms
and concepts that are familiar to scientists.

Challenges involve dealing not with ‘big data’, but with complex
models and large search spaces.
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In Memoriam

Herbert A. Simon
(1916 – 2001)

In 2001, the field of computational scientific discovery lost two of
its founding fathers.

Both were interdisciplinary researchers who published in computer
science, psychology, philosophy, and statistics.

Herb Simon and Jan Zytkow were excellent role models for us all.

Jan M. Zytkow
(1945 – 2001)
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