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The Cognitive Systems Paradigm



The Vision of Artificial Intelligence

The field of artificial intelligence was launched 1in 1956 at the
Dartmouth meeting; its audacious aims were to:

e Understand the mind in computational terms;
e Reproduce all mental abilities 1n computational artifacts.

This view continued through the mid-1980s, but recent years
have seen adoption of very different goals.

Most Al researchers are now content to work on narrowly
defined tasks that involve little intelligence.

In fact, many have forgotten the essential difference between
Al and pattern recognition.



The Cognitive Revolution

During the 1950s/1960s, breakthroughs in both AT and
cognitive psychology resulted from:

e Rejecting behaviorists’ obsession with learning on simple tasks
and information theory’s focus on statistics;

e Studying problem solving, language understanding, and other
tasks that involve thinking (1.e., cognition);

e Emphasizing the role of mental structures in supporting such
complex behaviors.

Yet many modern Al researchers have abandoned the insights
of the cognitive revolution.

Why have so many retreated from the field’s nitial aspirations?



Reasons for the Shift

This change 1n AI’s focus has occurred for a number of reasons,
including:
e Commercial successes of ‘niche’ Al
e Encouraging focus on narrow problems
e Faster processors and larger memories
e Favoring blind search and statistical schemes
e Obsession with quantitative metrics
e Encouraging mindless ‘bake offs’
e Formalist trends imported from computer science
e Favoring simple tasks with optimality guarantees

Together, these have drawn many researchers’ attention away
from AI’s original vision.



The Cognitive Systems Movement

Yet many of the original challenges still remain and offer many
opportunities for research.

Because “Al” has altered 1ts meaning, we will define cognitive
systems (Brachman & Lemnois, 2002) as the field that:

e Designs, constructs, and studies computational artifacts that
exhibit complex, human-like behavior over the full range of
activities we regard as intelligent.

We can distinguish this paradigm from most current AI work
by six major characteristics.

See Advances in Cognitive Systems (http:// www.cogsys.org/).



Feature 1: Focus on High-Level Cognition

One distinctive feature of the cognitive systems movement is its
emphasis on high-level cognition.

Dogs and cats can recognize objects, execute routine skills, and
learn empirically, but only humans can:

e Understand and generate language

e Solve novel and complex problems

e Design and use complex artifacts

e Reason about others’ mental states

e Think about their own thinking

Computational replication of these abilities is a core charge of
cognitive systems research.



Feature 2: Symbol Structures

Another key aspect of cognitive systems research 1s its reliance
on symbol structures, including stored knowledge.

The 1nsight behind the 1950s Al revolution was that computers
are not mere number crunchers.

Computers and humans are general symbol manipulators that:

e Encode content as list structures or similar formalisms

e Create, modify, and interpret this structured content

e Use numbers mainly as annotations on these structures

The paradigm assumes that representing, and reasoning over,
rich symbolic structures 1s key to human-level cognition.



Feature 3: Systems Perspective

Research 1n the paradigm 1s also distinguished by approaching
intelligence from a systems perspective.

While most Al efforts idolize component algorithms, work on
cognitive systems 1s concerned with:

e How different intellectual abilities fit together and interact
e Integrated intelligent agents that combine these capabilities

e Cognitive architectures that offer unified theories of mind

Such systems-level research provides an avenue to artifacts that
exhibit the breadth and scope of human intelligence.

Otherwise, we will be limited to the idiot savants so popular in
academia and industry.



Feature 4: Influence of Human Cognition

Research on cognitive systems also draws 1deas and inspiration
from findings about human cognition.

Many of AI’s early insights came from studying human problem
solving, reasoning, and language use, including:

e How people represent knowledge, goals, and beliefs

e How humans draw inferences and achieve goals

e How people acquire new structures from experience

We still have much to gain from this strategy, even when our
artifacts differ in their operational details.

Human capabilities also offer challenges for cognitive systems
researchers to pursue.

10



Feature 5: Heuristics and Satisficing

Another important assumption of cognitive systems work 1s that
intelligence relies on heuristic methods that:

e Are not guaranteed to find the best or even any solution but
e Greatly reduce search and make problem solving tractable
e Apply to a broader range of tasks than methods with guarantees

They mimic high-level human cognition in that they satisfice by
finding acceptable rather than optimal solutions.

Much of the flexibility in human intelligence comes from its use
of heuristic methods.
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Feature 6: Exploratory Research

Cognitive systems research also differs from mainstream Al 1s
that 1t encourages exploratory research, such as:

e Demonstrations of entirely new functionality
e Novel approaches to well-established problems
e Analyses of challenging cognitive tasks

e Architectures and frameworks for integrated intelligence

Studies must still make clear claims and support them, but many
forms of evidence are possible.

Competitions and ‘bake offs’ encourage incremental progress
and premature convergence on narrow problems.
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Three Hypotheses for Cognitive Systems

Newell and Simon (1976) proposed two hypotheses that underlie
most work on cognitive systems:

e The ability to encode, manipulate, and interpret symbol structures
offers the means for general intelligent action.

e Problem solving involves heuristic search through a space of
states (symbol structures) generated by mental operators.

We offer a third claim — the social cognition hypothesis — that deals
with interactive behavior:

e Intelligence requires the ability to represent, reason over, and use
models of other agents’ mental states.

Humans are inherently social animals, and many key cognitive
faculties involve thinking about others.
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Examples of Interactive
Cognitive Systems



SHRDLU (1970)

SHRDLU (1970) was an early Al system
that answered questions in English and
executed complex commands.

Although limited in scope, it reproduced
many aspects of human dialogue.

Person: Pick up a big red block.

Computer: OK.

Person: Grasp the pyramid.

Computer: I don't understand which
pyramid you mean.

Person (changing his mind): Find a block
which is taller than the one you are
holding and put it into the box.

Computer: OK.

Person: What does the box contain?

Computer: The blue pyramid and the blue
block.

Person: What is the pyramid supported by?

Computer: The box.

Person: How many blocks are not in the
box?

Computer: Four of them.

Person: Is at least one of them narrower
than the one which I told you to pick up?

Computer: Yes, the red cube.
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Carnegie Learning’s Algebra Tutor (1999)

This tutor encodes knowledge about algebra as production rules,
infers models of students’ knowledge, and provides personalized

instruction.

The system has been
adopted by hundreds of
US middle schools.

Studies have shown
that 1t improves student
learning in this domain
by 75 percent.
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TacAir-Soar (1997)

The TacAir-Soar system reproduces pilot
behavior in tactical air combat.
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Facade (2003-2007)

Mateas and Stern’s Facade is a graphical environment in which
characters interact with the user and each other.

The agents understand and
generate sentences, control
gaze and expression, and they
exhibit distinct personalities.

Facade characters use a rich
knowledge base to produce
inferences, carry out physical
activities, and engage socially.




A Conversational Architecture

Gabaldon, Langley, and Meadows (2014) describe DIGA, an
architecture for conversational agents that:

e Cleanly separates domain-level from dialogue-level content

e Distinguishes conceptual knowledge from goal-oriented skills

The architecture operates 1n discrete cycles, during which it:

Speech Act
Observation

e Observes new speech acts, including
ones it generates itself [

e Uses inference to update its model [ Skl }( re— J
of other agent’s beliefs and goals Execution

L Inference

e Executes skills to produce utterances based on this model

At a high level, 1t operates in a manner similar to production-

system architectures like Soar and ACT-R.
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Sample Dialogue for DIGA Medic Assistant

M: We have a man injured! M: Roger that.

A: Ok. What type of injury? A: Has the bleeding stopped?

M: He’s bleeding. M: No. He’s still bleeding.

A: How bad is the bleeding? A: Ok. Apply a tourniquet.

M: Pretty bad. I think it is the artery. ™M: Where do I put the tourniquet?

A: Ok. Where is the injury? A: Just below the joint above the

M: It’s on the left leg. wound. .

s Ay s n e lass M: Ok. T%le bleeding stopped.
pressure point. A: Good job.

M: human medic A: advisor

DIGA incrementally updates its model of the medic s beliefs and

goals, which it uses to generate utterance content.
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Interactive Task Learning for Games

Hinrichs and Forbus (2014)

describe a system that learns
concepts and rules for games
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Rapid Learning of Interaction Skills

Frasca et al. (2018) describe
DIARC, an architecture that
learns interaction skills (e.g.,
passing a knife) from both
spoken language instructions
and demonstrations.
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Some Other Examples

Other researchers have also developed cognitive systems with
interactive abilities, including:

e COLLAGEN (Rich et al. 2001), which helps users in operating
complex devices, asking questions and giving advice as needed

e Tutorial dialogue systems (Graesser et al., 2001) that converse in
spoken language, giving personalized instruction.

e The Virtual Humans project (Swartout et al., 2006), which has
created many synthetic characters that interact with users.

e The Artificial Receptionist (Bohus & Horvitz, 2009), which
welcomes and interacts with visitors in spoken dialogue.

e CWMS, a collaborative problem solver that helps its users analyze
situations and generate plans via spoken dialogue (Allen et al., 2018).

These diverse systems show the range of possible applications.
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Research Challenges for
Interactive Cognitive Systems



Guidelines for Challenge Problems

New problems can foster progress 1n any area, and productive
challenges for interactive cognitive systems should:

e Focus on tasks that require high-level cognition

e Benefit from structured representations and knowledge
e Require system-level integration of capabilities

e Have human role models that offer insights

e Be complex enough to need heuristic approaches

e Depend centrally on processing social structures

They must also move beyond the Turing test by emphasizing
goal-oriented behavior.
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Deep Conversational Assistants

Spoken-language dialogue 1s the natural mode for providing aid
on tasks like driving, cooking, and shopping.

Compared to humans, systems like Sir1 are primitive, and we
need more effective conversational assistants that:

e Carry out extended dialogues about goal-directed activities

e Take into account the surrounding task context
e Infer common ground (Clark, 1996) for joint beliefs / goals

e Store and utilize previous interactions with the user

These would carry out deep language processing, reason about
others’ mental states, and help them achieve their goals.
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Rich Nonplayer Game Characters

Synthetic characters are rampant in today’s computer games,
but they are typically shallow.

We should develop more compelling nonplayer characters that:

e Infer other players’ goals and use them toward their own ends

e Interact with human players in constrained natural language

e Cooperate with them on extended tasks of common interest

e Form long-term relationships based on previous interactions
Such agents would generate much richer and more enjoyable
experiences for human players.

For this purpose, they must reason about others’ mental states.
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A Truly General Gamer

Humans use their domain knowledge in different ways, and we
need multifunctional systems with the same versatility.

One example might be a system that, given knowledge about a
class of games, can:

e Play that class of game in competitions

e Discuss previous games with other players

e Provide commentary on games played by others
e Analyze and discuss particular game situations

e Teach the game to a human novice

This should demonstrate breadth of intellectual ability but avoid
the knowledge acquisition bottleneck.
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A Synthetic Character Actor

Our society devotes far more attention to 1ts movie stars than
to scientists and scholars.

Imagine a synthetic character actor with general acting skills
and the ability to:

e Read scripts / background stories for very different parts
e Adopt beliefs, goals, emotions and personality for the role

e Audition for the part, breathing life into the lines

Most scenes would 1nvolve interaction with other actors, and
thus require social cognition.

Requiring the system to take on radically different characters
would test its generality.
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Some Necessary Components

Cognitive systems involve integration, but we also need research
on core abilities for social cognition:

e Representing other agents’ mental states

e Reasoning flexibly about others’ beliefs and goals

e Social plan understanding from others’ observed behavior
e Social plan generation to manipulate others’ actions

e Understanding and planning in task-oriented dialogue

e Cognitive accounts of emotion, morals, and personality

Human-level cognitive systems must exhibit all these capacities,
and we need research on each topic.
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Summary Remarks

In this talk, I discussed the cognitive systems paradigm, which
pursues Al’s original vision, by:

e Stating six distinctive features of research in this area

e Reviewing three hypotheses about intelligent behavior

e Presenting examples of interactive cognitive systems

e Posing challenge tasks for interactive cognitive systems

Research 1n this emerging field retains the audacity of early Al
and promises to keep us occupied for years to come.
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