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The Cognitive Systems Paradigm



The field of artificial intelligence was launched in 1956 at the 
Dartmouth meeting; its audacious aims were to: 

• Understand the mind in computational terms; 

• Reproduce all mental abilities in computational artifacts. 

This view continued through the mid-1980s, but recent years 
have seen adoption of very different goals. 

Most AI researchers are now content to work on narrowly 
defined tasks that involve little intelligence. 

In fact, many have forgotten the essential difference between   
AI and pattern recognition. 

The Vision of Artificial Intelligence
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The Cognitive Revolution

During the 1950s /1960s, breakthroughs in both AI and 
cognitive psychology resulted from:   

• Rejecting behaviorists’ obsession with learning on simple tasks 
and information theory’s focus on statistics; 

• Studying problem solving, language understanding, and other 
tasks that involve thinking (i.e., cognition);   

• Emphasizing the role of mental structures in supporting such 
complex behaviors. 

Yet many modern AI researchers have abandoned the insights  
of the cognitive revolution. 

Why have so many retreated from the field’s initial aspirations? 
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Reasons for the Shift

This change in AI’s focus has occurred for a number of reasons, 
including: 
• Commercial successes of ‘niche’ AI 
• Encouraging focus on narrow problems

• Faster processors and larger memories
• Favoring blind search and statistical schemes

• Obsession with quantitative metrics
• Encouraging mindless ‘bake offs’

• Formalist trends imported from computer science
• Favoring simple tasks with optimality guarantees

Together, these have drawn many researchers’ attention away 
from AI’s original vision.  
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The Cognitive Systems Movement

Yet many of the original challenges still remain and offer many 
opportunities for research. 

Because “AI” has altered its meaning, we will define cognitive 
systems (Brachman & Lemnois, 2002) as the field that: 
•Designs, constructs, and studies computational artifacts that 
exhibit complex, human-like behavior over the full range of 
activities we regard as intelligent. 

We can distinguish this paradigm from most current AI work   
by six major characteristics. 

See Advances in Cognitive Systems (http://www.cogsys.org/). 
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Feature 1: Focus on High-Level Cognition

• Understand and generate language
• Solve novel and complex problems
• Design and use complex artifacts
• Reason about others’ mental states
• Think about their own thinking

One distinctive feature of the cognitive systems movement is its 
emphasis on high-level cognition.  

Dogs and cats can recognize objects, execute routine skills, and 
learn empirically, but only humans can:  

Computational replication of these abilities is a core charge of 
cognitive systems research. 
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Feature 2: Symbol Structures

• Encode content as list structures or similar formalisms
• Create, modify, and interpret this structured content
• Use numbers mainly as annotations on these structures

Another key aspect of cognitive systems research is its reliance 
on symbol structures, including stored knowledge. 

The insight behind the 1950s AI revolution was that computers 
are not mere number crunchers. 

Computers and humans are general symbol manipulators that: 

The paradigm assumes that representing, and reasoning over,  
rich symbolic structures is key to human-level cognition.  
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Feature 3: Systems Perspective

• How different intellectual abilities fit together and interact
• Integrated intelligent agents that combine these capabilities
• Cognitive architectures that offer unified theories of mind

Research in the paradigm is also distinguished by approaching 
intelligence from a systems perspective. 

While most AI efforts idolize component algorithms, work on 
cognitive systems is concerned with: 

Such systems-level research provides an avenue to artifacts that 
exhibit the breadth and scope of human intelligence. 

Otherwise, we will be limited to the idiot savants so popular in 
academia and industry. 
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Feature 4: Influence of Human Cognition

• How people represent knowledge, goals, and beliefs
• How humans draw inferences and achieve goals
• How people acquire new structures from experience

Research on cognitive systems also draws ideas and inspiration 
from findings about human cognition. 

Many of AI’s early insights came from studying human problem 
solving, reasoning, and language use, including: 

We still have much to gain from this strategy, even when our 
artifacts differ in their operational details. 

Human capabilities also offer challenges for cognitive systems 
researchers to pursue. 
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Feature 5: Heuristics and Satisficing

• Are not guaranteed to find the best or even any solution but

• Greatly reduce search and make problem solving tractable
• Apply to a broader range of tasks than methods with guarantees

Another important assumption of cognitive systems work is that 
intelligence relies on heuristic methods that:

They mimic high-level human cognition in that they satisfice by 
finding acceptable rather than optimal solutions. 

Much of the flexibility in human intelligence comes from its use 
of heuristic methods. 
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Feature 6: Exploratory Research

• Demonstrations of entirely new functionality
• Novel approaches to well-established problems
• Analyses of challenging cognitive tasks
• Architectures and frameworks for integrated intelligence

Cognitive systems research also differs from mainstream AI is 
that it encourages exploratory research, such as: 

Studies must still make clear claims and support them, but many 
forms of evidence are possible. 

Competitions and ‘bake offs’ encourage incremental progress 
and premature convergence on narrow problems. 

12



Newell and Simon (1976) proposed two hypotheses that underlie 
most work on cognitive systems:
• The ability to encode, manipulate, and interpret symbol structures 

offers the means for general intelligent action.

• Problem solving involves heuristic search through a space of 
states (symbol structures) generated by mental operators.

We offer a third claim – the social cognition hypothesis – that deals 
with interactive behavior: 

• Intelligence requires the ability to represent, reason over, and use 
models of other agents’ mental states. 

Humans are inherently social animals, and many key cognitive 
faculties involve thinking about others. 

Three Hypotheses for Cognitive Systems
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Examples of Interactive 
Cognitive Systems



SHRDLU (1970) was an early AI system 
that answered questions in English and 
executed complex commands. 
Although limited in scope, it reproduced 
many aspects of human dialogue. 

Person: Pick up a big red block.
Computer: OK.
Person: Grasp the pyramid.
Computer: I don't understand which                 

pyramid you mean.
Person (changing his mind): Find a block 

which is taller than the one you are 
holding and put it into the box. 

Computer: OK.
Person: What does the box contain?
Computer: The blue pyramid and the blue 

block.
Person: What is the pyramid supported by?
Computer: The box.
Person: How many blocks are not in the            

box?
Computer: Four of them.
Person: Is at least one of them narrower            

than the one which I told you to pick up?
Computer: Yes, the red cube.

SHRDLU (1970)
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Carnegie Learning’s Algebra Tutor (1999)

This tutor encodes knowledge about algebra as production rules, 
infers models of students’ knowledge, and provides personalized 
instruction. 

The system has been 
adopted by hundreds of 
US middle schools. 
Studies have shown 
that it improves student 
learning in this domain 
by 75 percent.  
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TacAir-Soar (1997)

The TacAir-Soar system reproduces pilot 
behavior in tactical air combat. 
It combines abilities for spatio-temporal 
reasoning, plan generation / recognition, 
language, and coordination. 
The system flew 722 missions during the 
STOW-97 simulated training exercise. 

17



Façade (2003–2007)

Mateas and Stern’s Façade is a graphical environment in which 
characters interact with the user and each other.

The agents understand and 
generate sentences, control 
gaze and expression, and they 
exhibit distinct personalities. 

Façade characters use a rich 
knowledge base to produce  
inferences, carry out physical 
activities, and engage socially. 
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A Conversational Architecture

Gabaldon, Langley, and Meadows (2014) describe DIGA, an 
architecture for conversational agents that:

• Cleanly separates domain-level from dialogue-level content
• Distinguishes conceptual knowledge from goal-oriented skills

The architecture operates in discrete cycles, during which it: 
• Observes new speech acts, including                                        

ones it generates itself
• Uses inference to update its model                                                 

of other agent’s beliefs and goals

• Executes skills to produce utterances based on this model

At a high level, it operates in a manner similar to production-
system architectures like Soar and ACT-R.
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M: We have a man injured!
A: Ok. What type of injury?
M: He’s bleeding. 
A: How bad is the bleeding? 
M: Pretty bad. I think it is the artery.
A: Ok. Where is the injury?
M: It’s on the left leg. 
A: Apply pressure on the leg’s    

pressure point.

M: Roger that.
A: Has the bleeding stopped?
M: No. He’s still bleeding. 
A: Ok. Apply a tourniquet.
M: Where do I put the tourniquet? 
A: Just below the joint above the 

wound. 
M: Ok. The bleeding stopped.
A: Good job.
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M: human medic  A: advisor

DIGA incrementally updates its model of the medic’s beliefs and 
goals, which it uses to generate utterance content. 

Sample Dialogue for DIGA Medic Assistant



Interactive Task Learning for Games

Hinrichs and Forbus (2014) 
describe a system that learns 
concepts and rules for games 
from instructions and sketches, 
after which it can play the 
games legally but poorly. 
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Queens; and simple Sokoban puzzles. These simplifications were necessary to restrict the agent’s 
search space, as well as to simplify the state representation that the agent needed to maintain – 
large state representations of similar objects can lead to combinatorics in matching rules, which 
slows execution. These simplifications are not fundamental limitations, as descriptions of games 
can include any number of objects, prepositions, colors, shapes, actions, or goals. However, the 
system does not currently have the necessary mechanisms for avoiding the computational 
performance issues that arise with large numbers of pieces or locations.  
  Our future goals include improving Rosie’s ability to handle more complex tasks that contain 
more objects and constraints. To maintain efficient execution as the number of objects increase, 
we plan to introduce an attention mechanism that would let the agent focus on only a subset of the 
game state.  We also plan on adding a mechanism to learn game-specific action models so that the 
agent can avoid simulations of its primitive actions. We also plan to improve Rosie’s sensing and 
robotic capabilities so that it can solve all tasks in the real world. A significant milestone would 
be for Rosie to learn to play a competent game of real-world chess through instruction.  

3.2  Generality 

To evaluate the generality of the system, we instructed Rosie in eleven different tasks and then 
examined the diversity of concepts, actions, and goals required in them. These games range from 
simple board/grid type games like Tic-Tac-Toe to three-dimensional puzzles like Tower of Hanoi 
and Blocks World to more complex transport puzzles such as Sokoban. Table 2 lists the games 
that were taught, as well as the concepts required for each game. 

Table 2. Description of the games learned and the concepts taught for each game. 

Game Spatial Concepts Actions Goal Failure 
Tic-Tac-Toe on, under, linear place 3-in-a-row  
Connect-3 on, under, linear stack-place 3-in-a-row  
Tower of Hanoi on, under, smaller smaller-stack stacked  
Five Puzzle on, under, near, 

diagonal 
slide matching-

location 
 

Frogs and Toads left, right, on, 
under 

slide-l, slide-r, 
jump-l, jump-r 

side-swap  

Four Queens on, under, linear place all-placed no-attack 
Blocks World on, under stack order-

stacked 
 

Sokoban on, under, linear, 
diagonal 

push, slide blocks-in  

Peg Solitaire on, under, linear jump-remove one-left  
Knight’s Tour on, under, aligned-

vert, aligned-horiz 
knight-a, knight-
b 

all-placed  

River Crossing left, right, aligned move-l, move-r, 
carry-l, carry-r 

right-bank fox-goose, 
goose-beans 

T. R. HINRICHS AND K. D. FORBUS 
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layers (like tracing paper). Layers contain entities called glyphs that consist of ink segments. 
Glyphs also have semantic content, expressing either an entity in the depicted world or a 
relationship or elaboration between such entities.  

When a human instructor teaches or plays a board game, he or she draws glyphs to represent 
the pieces or marks and the board. As these pieces are introduced and identified, the system adds 
them to a subsketch that we can think of as a catalog. The catalog holds prototypes of pieces or 
marks, but does not preserve any particular spatial arrangement between them. When objects are 
named, the system associates the prototype name with the glyph. Figure 3 shows the state of a 
sketch and instructions when the teacher is about to introduce the second player, O. 

Later, when the system starts to play a learned game, it generates another subsketch to 
represent the current state of the game. It marks or populates the board by instantiating a 
prototype glyph from the catalog into a legal location on the game board. 

5.  Learning and Generalizing 

User interactions are passed from the language and sketch agents to the reasoning agent in the 
form of reified communication events. This does two things: It preserves the relative ordering of 
utterances and gestures, and it supports flexible control for interactive learning and game play. 
The learner can respond to a request or declarative statement, or the creation, destruction, 
movement, or selection of a sketch entity. Moreover, it can wait for such a typed event, and keep 
track of the last entity created, moved, and so forth. This enables flexibility in presentation 
ordering and it allows implicit turn taking. There is no need for the human opponent to say “your 
turn”, because the agent is waiting for an entity creation event from which to update the state and 
start its move. 

The reasoning agent is responsible for translating (possibly incomplete) predicate calculus 
statements into operational game rules. This is a translation from one formal representation to 
another, so it is much more straightforward than language interpretation. 

 

Figure 3. State of sketch and instructions prior to introducing second player ‘O’. 

Kirk and Laird (2016) report a 
similar system that learns to 
play 17 different games from 
visual demonstrations and 
instructions, asking questions 
when necessary. Learning is 
very rapid, as in humans. 



T. FRASCA, B. OOSTERVELD, E. KRAUSE, AND M. SCHEUTZ

Scheutz et al. (2018). Prior to our extensions the actions learned using DIARC involved only the
actions of the robotic agent itself, not the actions of others. Additionally, objects involved in these
actions were not consistently modeled over the course of action execution. To enable the learning of
interactions, we extended DIARC for multi-agent action execution, the detection and observation of
other agents, and the tracking of task-related objects across the execution of an action. Fig. 1 depicts
all components involved in interaction learning, the components we have extended in this work are
highlighted (white background). We modified: (1) the Goal Manager component to include mod-
els of other agent’s actions, observations of those actions, and the ability to learn new interactions;
(2) the Vision component to observe the actions of other agents, and to ground specific agents and
objects in the physical world across action sequences; and (3) the Natural Language Understanding
component to understand references to objects and agents across sequences of instructions, allowing
the agent to know which objects and agents are involved across every step in a sequence of actions.

Figure 1: Overview of relevant components and their connections (modified components with white back-
ground, see text for details). The architecture receives information about the world through its Automatic
Speech Recognition (ASR) and Vision components. The information from the Speech Recognition is passed
to Natural Language Understanding (NLU) and the Parser (PARSE) converts text to a semantic representa-
tion. Reference Resolution (RR) then grounds the semantic information with its perceptions of the world.
This semantic information is used by the Dialogue Manger, the Goal and Action Manager, and the Belief
component. These components allow the agent to reason about language. They also allow the agent to reason
about visual information. They interact with the Vision component to search for and ground visual informa-
tion about entities in the world. The reasoning done by these components allows the agent to interact with
the world through language via the Natural Language Generation (NLG) component and Speech Synthesis
component. The agent can also physically interact with the world via the Robot Controller component.
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Rapid Learning of Interaction Skills

Frasca et al. (2018) describe  
DIARC, an architecture that 
learns interaction skills (e.g., 
passing a knife) from both 
spoken language instructions 
and demonstrations. 
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The integrated system acquires 
complex interaction skills from 
single demonstrations, learning 
about not only its role, but the 
roles of other participants. 

ONE-SHOT INTERACTION LEARNING

Figure 2: The PR2 observing the human grabbing the knife.

The teacher tells the agent, “I will grab the knife,” resulting in the goal graspObject(instructor,
object_0). Unlike the prior goals submitted, the actor is the instructor. When checking the pre-
conditions for “graspObject”, Goal Manager detects that the actor is not a DIARC agent, and that
the pre-conditions of the action are not observable. Therefore, the robot assumes the condition is
true, and continues with the execution sequence. However, since the action is being executed by the
human, Goal Manager does not direct the robot to perform the action, but rather continues to the
effect checking phase by starting up an observer for the touching(instructor, object_0) goal.

Because the action is part of the overall “pass” action, it is added to the Learning State. When
processing the action, Goal Manager notices that the ?actor does not equal self and since an ?actor
variable already exists in the Learning State with a different value, it creates and adds a new variable
?var_0 to the Learning State. Goal Manager then adds the ?object to the action-step. Finally, the
“releaseObject” action is processed and added to the Learning State.

Learning State
Name: pass
Args: ?actor ?object ?var_0
Steps: pickUp ?actor ?object

moveObject ?actor ?object forward
graspObject ?var_0 ?object
releaseObject ?actor ?object

Human: That is how you pass me the knife.
Robot: Ok.

Now the teacher indicates the end of learning phase by saying, “That is how you pass me the knife.”
Then Goal Manager constructs a new action script from the Learning State.
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These diverse systems show the range of possible applications. 

Some Other Examples

• COLLAGEN (Rich et al. 2001), which helps users in operating 
complex devices, asking questions and giving advice as needed

• Tutorial dialogue systems (Graesser et al., 2001) that converse in 
spoken language, giving personalized instruction. 

• The Virtual Humans project (Swartout et al., 2006), which has 
created many synthetic characters that interact with users. 

• The Artificial Receptionist (Bohus & Horvitz, 2009), which 
welcomes and interacts with visitors in spoken dialogue. 

• CWMS, a collaborative problem solver that helps its users analyze 
situations and generate plans via spoken dialogue (Allen et al., 2018).

Other researchers have also developed cognitive systems with 
interactive abilities, including: 
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Research Challenges for 
Interactive Cognitive Systems



Guidelines for Challenge Problems

• Focus on tasks that require high-level cognition
• Benefit from structured representations and knowledge 
• Require system-level integration of capabilities
• Have human role models that offer insights
• Be complex enough to need heuristic approaches
• Depend centrally on processing social structures

New problems can foster progress in any area, and productive 
challenges for interactive cognitive systems should: 

They must also move beyond the Turing test by emphasizing 
goal-oriented behavior. 
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Deep Conversational Assistants

• Carry out extended dialogues about goal-directed activities
• Take into account the surrounding task context
• Infer common ground (Clark, 1996) for joint beliefs / goals
• Store and utilize previous interactions with the user

Spoken-language dialogue is the natural mode for providing aid 
on tasks like driving, cooking, and shopping. 
Compared to humans, systems like Siri are primitive, and we 
need more effective conversational assistants that:  

These would carry out deep language processing, reason about 
others’ mental states, and help them achieve their goals.  
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Rich Nonplayer Game Characters

• Infer other players’ goals and use them toward their own ends
• Interact with human players in constrained natural language
• Cooperate with them on extended tasks of common interest
• Form long-term relationships based on previous interactions

Synthetic characters are rampant in today’s computer games,  
but they are typically shallow.  

We should develop more compelling nonplayer characters that:  

Such agents would generate much richer and more enjoyable 
experiences for human players. 
For this purpose, they must reason about others’ mental states. 
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A Truly General Gamer

• Play that class of game in competitions
• Discuss previous games with other players
• Provide commentary on games played by others
• Analyze and discuss particular game situations
• Teach the game to a human novice

Humans use their domain knowledge in different ways, and we 
need multifunctional systems with the same versatility. 
One example might be a system that, given knowledge about a 
class of games, can:  

This should demonstrate breadth of intellectual ability but avoid 
the knowledge acquisition bottleneck. 

28



A Synthetic Character Actor

Our society devotes far more attention to its movie stars than 
to scientists and scholars. 

Imagine a synthetic character actor with general acting skills 
and the ability to: 

Most scenes would involve interaction with other actors, and 
thus require social cognition. 

Requiring the system to take on radically different characters 
would test its generality. 

• Read scripts / background stories for very different parts
• Adopt beliefs, goals, emotions and personality for the role
• Audition for the part, breathing life into the lines
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Some Necessary Components

• Representing other agents’ mental states
• Reasoning flexibly about others’ beliefs and goals
• Social plan understanding from others’ observed behavior  
• Social plan generation to manipulate others’ actions
• Understanding and planning in task-oriented dialogue
• Cognitive accounts of emotion, morals, and personality   

Cognitive systems involve integration, but we also need research 
on core abilities for social cognition:  

Human-level cognitive systems must exhibit all these capacities, 
and we need research on each topic. 

30



Summary Remarks

• Stating six distinctive features of research in this area

• Reviewing three hypotheses about intelligent behavior
• Presenting examples of interactive cognitive systems

• Posing challenge tasks for interactive cognitive systems

In this talk, I discussed the cognitive systems paradigm, which 
pursues AI’s original vision, by: 

Research in this emerging field retains the audacity of early AI 
and promises to keep us occupied for years to come. 
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