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Background



The Need for Intelligent Assistance

As information and choices become more available, users need
help in finding, and selecting among, the many alternatives.

This has led to the development of recommendation systems,
which attempt to locate and recommend relevant items.



The Need for Personalized Assistance

At the same time, society is becoming ever more
diversified.

Differences in private and professional preferences
are growing.

Internet users are becoming increasingly selective
about what they want to see and purchase.

We need personalized systems that can give users
the information or product they want.

But personalized response requires some model or
profile of the user.




Approaches to User Modeling

There are four distinct approaches to creating and utilizing user
profiles for personalized services:

e manual creation by individual users (e.g., My Yahoo);

e manual creation of stereotypes and assignment of users based
on demographic or behavioral data;

 offline learning of stereotypes from demographic/behavioral
data and assigning users to them;

e online learning of individual user models from traces of their
Interactions.

We will refer to systems of the last sort as adaptive user interfaces.



The Problem of Learning Individual Models

We can state the problem confronting adaptive user interfaces as:

e Given: a set of tasks that require some user decision
* Given: descriptions for each of these tasks
e Given: traces of the user’s decision on each task

e Find: mappings from task features to user decisions

There exist two broad approaches to describing the user’s task:

* collaborative methods refer to other users’ responses to the task

e content-based methods refer to measurable features of the task

Our work focuses on content-based approaches to user modeling.



Examples of Adaptive User Interfaces
Adaptive interfaces have been developed for many different tasks:

e Command and form completion
 Email filtering and filing
 News selection and layout
 Browsing the World Wide Web
e Selecting movies and TV shows
* On-line shopping

e In-car navigation

e Interactive scheduling

e Dialogue systems

These efforts cover a wide spectrum but also raise common issues.
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Definition of an Adaptive User Interface

a software
artifact

that reduces by acquiring

user effort a user model

based on past
user interaction




Definition of a Machine Learning System

a software
artifact

that improves by acquiring

task performance knowledge

based on partial
task experience
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Elements of Machine Learning
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Designing Adaptive User Interfaces



Steps in Developing an Adaptive Interface

Formulating
the Problem

Engineering the Collecting

Representation / User Traces
Modeling
Process

\4

Using the Model
Effectively

Gaining User
Acceptance




Five Paradigms for Machine Learning
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Problem Formulation

The first hurdle of an adaptive interface developer can be stated:

e Given: Some task that an intelligent assistant could aid;

e Find: Some formulation that lets the assistant improve its
performance by learning a user model from experience.

This decision includes making clear design choices about:

* the aspect of user behavior to be predicted;

* the level of description (what constitutes a training case).

Since most robust learning methods focus on supervised learning,
most adaptive interfaces formulate the task in these terms.
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Representation Engineering

Another stage in developing an adaptive interface can be stated:

* Given: A formulation of some task in machine learning terms;

e Find: Some representation for behavior and user models that
makes the learning task tractable.

This decision includes making clear design choices about:

* the information to be used when predicting behavior;

* the internal encoding of that information in the system.

Since most robust learning methods assume an attribute-value
formalism, most adaptive interfaces take this approach.
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Collecting User Traces

A third step in designing an adaptive interface can be posed as:

* Given: A problem formulation in terms of machine learning
and a representation of user behavior;

e Find: An effective way to collect traces of this behavior.

This decision includes making clear design choices about:

* how to transform these traces into training instances;

e what action the user must take to generate the traces.

Since people seldom like extra burdens, an 1deal adaptive interface
requires no extra user effort to collect such traces.
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Using the Learned Model

Another essential step in the development process can be stated:

* Given: An approach to learning a user model for some task;

* Find: Some way to invoke the model that helps the user
perform the task more effectively.

This decision includes making clear design choices about:

 when and how to present the model’s predictions to user;

* how to handle cases in which these predictions are wrong.

The 1deal adaptive interface lets the user take advantage of good
predictions and ignore bad ones.
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Gaining User Acceptance

A final important facet of the development process can be stated:

e Given: A complete adaptive user interface for some task;

e Find: Ways to get people to try the system and to become
long-term users.

Attracting first-time users involves marketing much more than
technology, but, without it, a good system may be 1ignored.

However, a system that 1s well-designed and easy to use 1S more
likely to retain users over long periods.
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Examples of Adaptive User Interfaces



The Task of Route Selection

A decision-making task that confronts drivers can be stated as:

e Given: The driver’s current location C;
e Given: The destination D that the driver desires;
» Given: Knowledge about available roads (e.g., a digital map);

o Find: One or more desirable routes from C to D.

Computational route advisors already exist in both rental cars
and on the World Wide Web.

However, they do not give personalized navigation advice to
individual drivers.

21



An Approach to Route Selection

Here 1s a one approach to learning route preferences, though not
the first we considered:

e Formulation: LLearn a “subjective” function to evaluate entire routes

Representation: Global route features computable from digital maps

Data collection: Preference of one complete route over another

Induction: A method for learning weights from preference data

Using model: Apply subjective function to find “optimal” route

This method learns a user model with respect to the entire route.

In this way, it avoids two important problems: data fragmentation
and credit assignment.
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The Adaptive Route Advisor

We incorporated these design choices into the Adaptive Route
Advisor (Fiechter, Rogers, & Langley, 1999), which:

e models driver preferences in terms of 14 global route features
o gives the driver two alfernative routes he might take
e lets the driver refine these choices along route dimensions

e uses driver choices to refine its model of his preferences

e invokes the driver model to recommend future routes

Note that providing drivers with choices lets the system collect
data on route preferences in an unobtrusive manner.
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The Adaptive Route Advisor

-Car Adaptive Route Advisor

In-Car Adaptive Route Advisor
(Trip |RBUtEE)| TornE) fBdi (TFip) Routes [Tumns | Modify|

. Turns Distance
Origin:

Time Inters. Hwy Total
929 E EL CAMINO REAL SUNNYVALE CA

Destination:

1510 PAGE MILL ROAD PALO ALTO CA

User ID: [FIECHTE
Compute Route

2.0 Mi.
—_—

122.079214 37.384704

n-Car Adavllve Route Advisor

[ Routes Turns | Modify |

(T7ip | Routes |Turns |Modify|

Distance
Time Inters. L Total

: 4 .
Faster Shorter Simpler i 3 i

H 3 . i B

Less Hwy More Hwy Familiar Different
Select Cancel

In-Car Adaptive Route Advisor

i Adaplive Route Advisor Map

2.0 Mi.
—
122.086116 37.374372
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Driver Model and Training Cases

The Adaptive Route Advisor represents the driver model as a
weighted linear combination of route features.

Time
Distance

» Cost

Training data: [x0, x1, x2, x3] 1s better than [y0, y1, y2, y3].

The system uses each training pair as constraints on the weights
found during the learning process.
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Experimental Results on Route Advice

Experiments with 24 subjects show the Route Advisor improves
its predictive ability rapidly with experience.
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Experimental Results on Route Advice

Analyses also show that personalized user models produce better
results than generalized models, even when given more data.
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The Task of Destination Selection

Aother type of decision that confronts drivers can be stated as:

e Given: The driver’s current location C;
* Given: Some goal the driver wants to achieve (e.g., eat lunch);
* Given: Knowledge about available nearby destinations;

e Find: One or more destinations D that achieve the goal.

Many recommendation systems are available on the World Wide
Web, including ones that suggest restaurants.

However, they are 1ll suited for use in the driving environment,
where visual attention 1s a limited resource.
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Conversational Destination Advice

One approach to destination recommendation can be cast as:

o Formulation: Learn to predict features user cares about in items
o Representation: Conditions /weights on attributes and values

o Data collection: Converse with user to help him make decisions,
noting whether he accepts or rejects questions and items

o Induction: Any supervised induction method

o Using model: Guide the dialogue by selecting informative
questions and suggesting likely values

This design relies on the 1dea of a conversational user interface.

Spoken-language versions of this approach appear well suited
to the driving environment.
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The Adaptive Place Advisor

We implemented this approach in the Adaptive Place Advisor
(Langley, Thompson, Elio, & Haddadi, 1999), which:

e engages in spoken conversations to help a user refine goals
* incorporates a dialogue model to constrain this process
 collects and stores traces of interaction with the user

e personalizes both its questions and recommended items

Our work focused on recommending restaurants to users who
want advice about where to eat.

We believe this approach to recommendation will work well
for drivers, but it also has broader applications.
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A Sample Destination Dialogue

Inquirer: Where do you think | should eat tonight?
Advisor: Well, what type of cuisine would you like?
Inquirer: What types are there?

Advisor: Some examples are Chinese, Indian, and
Mediterranean.

Inquirer: Oh, maybe Indian.

Advisor: What quality rating would you like?
Inquirer: 1 don't care, as long as it's cheap.
Advisor: How do you want to pay?

Inquirer: No, | think I'd like Chinese instead.

Advisor: Okay, we'll switch to Chinese food. What city do you
prefer?

Inquirer: How about Berkeley?

Advisor: | know three cheap Chinese restaurants in Berkeley.
One is the Long Life Vegi House on 2129 University

Avenue. Does that sound alright?
Inquirer: Sure, that sounds fine.
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Time Per Conversation
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The Task of Resource Scheduling

Another complex problem that people encounter can be stated:

* Given: A set of tasks or jobs that must be done soon;
e Given: A limited set of resources available for these jobs;
* Given: Knowledge about constraints on jobs and resources;

* Fiind: One or more schedules that complete the jobs.

Many automated scheduling systems are used in industry, and
some Interactive schedulers exist.

But these systems do not generate personalized schedules that
reflect the preferences of individual users.
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An Approach to Personalized Scheduling

Here 1s one approach to preferences about learning schedules:

e Formulation: Learn a utility function to evaluate entire schedules

Representation: Global features computable from the schedule

Data collection: Preference of one candidate schedule over others

Induction: A method for learning weights from preference data

Using model: Apply ‘subjective’ function to find a good schedule

This method 1s similar to that in the Adaptive Route Advisor.

But it assumes search through a space of complete schedules
(a repair space), which requires some initial schedule.
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The INCA System

We implemented this design in INCA (Gervasio, Iba, & Langley,
1999), an interactive scheduler that:

* retrieves an initial schedule from a personalized case library
e suggests to the user improved schedules from which to select
* lets the user direct search to improve on certain dimensions

* collects user choices to refine its personalized utility function
* stores solutions in the case base to 1nitialize future schedules

e invokes the user model to recommend future schedule repairs

As betore, providing users with choices lets the system collect
data on schedule preferences in an unobtrusive manner.
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INCA: Interactive Scheduling
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Experimental Results with INCA

Experiments with the INCA scheduling system suggest that:

* it improves its ability to predict user choices over time

» personalized case libraries are more effective than generic
* its advice provides greater benefit on harder problems

* linear models give usetul predictions even when false

e more detailed guidance speeds the user-modeling process

These studies (Gervasio et al., 1999) used a mixture of human
and synthetic subjects.
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INCA and Task Characteristics

Experiments with INCA suggest that retrieving personalized
schedules helps users more as task difficulty increases.
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Personalized Travel Advice

E%'MyTraveIAgent by MindShadow (oI X]

Earlier Departure Later Departure Earlier Return Later Return

Airline IDep. date] Dep. time | Arrival | Ret. datel Ret. time [ Ret. arr. l Cost | Duration | #Stops I#Connectl Layovers
Ametican Airlines Mar 13 6:35 AM 1:20 PM| Mar18 8:03 AM| 11:35AM|  560.00 10117 2 2 2:26
Ametrican Airlines Mar 14 6:35 AM 1:20 PM Mar19 8:03 AM| 11:35AM  476.00 1017 2 2 2:26
American Airlines Mar 13 7:59 A 1:26 PM| Mar19 8:05 Ah 9:47 AM 545.00 7:09 0 0 0:00
Ametrican Aitlines Mar 14 6:33AM  11:55AM| Mar19 8:05 A 9:47 AM|  524.00 7:04 0 0 0:00

OUTBOUND FLIGHT:

Ametican Aitlines flight 1228 on a McDonnell Dougl SPE0
From: San Jose, CA (SJC) Wed, Mar 13, 2002 at 07:59 AM (PST)
To: DallasiFt Worth, TX (DFW) Wed, Mar 13, 2002 at 01:26 PM (CST)

RETURN FLIGHT:
Ametrican Airlines flight 639 on a Boeing 757

From: DallasiFt Worth, TX (DFW) Tue, Mar 19, 2002 at 08:05 AM (CST)
To: San Jose, CA(SJC) Tue, Mar 19, 2002 at 09:47 AM (PST)
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Personalized Bookmarks
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Personalized Apartment Finding
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Challenges of Adaptive Interfaces

Adaptive user interfaces have clear attractions but also pose some
challenges to developers:

formulation of user modeling as an induction task
engineering of representation to support learning process
unobtrusive collection of training data from users
effective application of learned user model

requirement for some form of online learning

necessity for induction from few training cases

These challenges overlap with other applications of machine
learning, but also raise some new issues.
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The Promise of New Sensors

Adaptive interfaces rely on user traces to drive their modeling
process, so they stand to benefit from developments like:

e GPS and cell phone locators

* robust software for speech recognition

e accurate eye and head trackers

* real-time video interpreters

e wearable body sensors (GSR, heart rate)
e portable brain-wave sensors

As such devices become more widespread, they will offer new
sources of data and support new types of adaptive services.
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Adaptive Interfaces as Psychological Models

We can view adaptive interfaces as automatically creating
cognitive simulations, in that they:

* develop knowledge structures to describe user preferences
* make explicit predictions about the user’s future behavior

e explain individual differences through personalization

But we can distinguish two approaches to cognitive simulation:

e process models that embody architectural principles

» content models of behavior at the knowledge level

Both have roles to play, but content models are more relevant
to personalization and adaptive interfaces.
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Closing Remarks

In summary, adaptive interfaces integrate ideas from machine
learning, intelligent agents, and human-computer interaction.

This approach to automated personalization of services offers:

e an alternative to the dominant “big data” perspective
* many unexplored niches for research and application

* challenges of system design rather than algorithm creation

These adaptive systems promise to change the way we interact
with, and think about, computer software.

49






