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Progress and Challenges in  
Research on Cognitive Architectures  

Thanks to Herbert Simon, Allen Newell, John Anderson, David Nicholas, John Laird, 
Randy Jones, and many others for discussions that led to the ideas in this talk.  



What is a Cognitive Architecture? 

A cognitive architecture (Newell, 1990) is an infrastructure for 
intelligent systems that:  

•  Specifies those facets of cognition that remain constant across 
different domains;  

•  Including memories and representations of elements in those 
memories, but not their content, which changes over time;  

• Comes with a programming language with a high-level syntax 
that reflects the theoretical assumptions.  

A cognitive architecture moves beyond isolated capabilities, as 
it aims to provide a unified account of the mind. 



Assumptions of Cognitive Architectures 

Most cognitive architectures incorporate key postulates from 
psychological theories:  

These assumptions are shared by many frameworks, with some 
also including problem-space search as a core tenet.  

• Short-term memories are distinct from long-term stores  
• Memories contain modular elements cast as symbol structures 
• Long-term structures are accessed through pattern matching 
• Cognitive processing occurs in retrieval/selection/action cycles 
• Cognition involves dynamic composition of mental structures 
• Learning is monotonic and interleaved with performance 
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Example Cognitive Architectures 

Some well-known cognitive architectures that share these key 
assumptions include:  
• ACT (Anderson, 1982, 1993)  
• Soar (Laird et al., 1987; Laird, 2012)  
•  ICARUS (Langley, Choi, & Rogers 2009) 

Other architectures that share some but not all assumptions are: 
• Prodigy (Minton, 1988; Veloso et al. 1995)  
• CAPS (Thibadeau, 1983)  
• EPIC (Kieras & Meyer, 1997)   
• CLARION (Sun & Zhang, 2004)  
For additional details, see Langley, Laird, and Rogers (2009).  
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Progress: Hybrid Representations / Processing 

Early production-system frameworks like PSG and OPS2 were 
almost entirely symbolic.   

• This was consistent with general emphasis at the time, in both AI 
and cognitive psychology, on symbolic processing. 

But not long after, architectures like ACT, CAPS, and PRISM 
introduced strengths and activations. 

• Later, ACT-R interpreted these numbers in decision-theoretic 
terms, with ICARUS and Soar adopting similar ideas.  

Many modern architectures are hybrid in character rather than 
purely symbolic.  
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Progress: Learning Procedural Knowledge 

Cognitive architectures had their roots in accounts of problem 
solving and heuristic search.  

• Early work had fixed rules, but adaptive production systems 
supported learning new rules.  

• Many efforts on learning search-control knowledge adopted 
this framework. 

Architectures that have incorporated this property include Soar, 
Prodigy, ICARUS, ACT-R, and CLARION.  

Some mechanisms focus on compiling declarative knowledge 
into procedural, others on aiding problem solving.  
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Progress: Using Large-Scale Structures 

Most cognitive architectures encode long-term knowledge as 
condition-action rules.  

• Their supports modularity automated composition, flexibility, 
and ease of acquisition. 

• But other paradigms for intelligent systems, like frames and 
scripts, instead propose larger-scale structures. 

A few architectures have incorporated such structures into their 
framework and syntax (e.g., Prodigy, ICARUS). 

Still, this approach remains uncommon in the paradigm and 
deserves more attention from researchers. 
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Progress: Embodied Agency 

Early cognitive architectures focused on mental capacities and 
were effectively disembodied; this has led to work on:  
• Agents that linked cognition to sensors and effectors:  
• Robo-Soar, which controlled a mobile robot 
• An ICARUS agent for simulated urban driving 
• Soar, ACT, and ICARUS agents for computer games 

• Agents that interacted with humans:  
• TacAir-Soar, which flew simulated tactical air missions 
• ACT-R/E, which lets robots carry out joint tasks with humans 

Extending architectures to include interaction − both physical  
and social − has moved them beyond pure cognition. 
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Progress: Declarative / Episodic Memories 

Initial cognitive architectures encoded all long-term knowledge 
as production rules.  

• Some efforts attempted to represent static facts as rules, but  
the results were awkward. 

• ACT introduced a separate declarative store for facts, with 
working memory being the active portion. 

More recently, multiple architectures (Prodigy, Eureka, Soar, 
ICARUS) have added episodic memories of agent experience. 

These extensions offer a reasonable balance between procedural 
and declarative content. 
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Challenge: Understanding / Interpretation 

Traditional cognitive architectures adopted an action metaphor; 
rules comprise a condition side and an action side.  

• This emphasis came from merging theories of problem solving 
with behaviorist notions of stimulus-response pairs. 

But understanding sequences of connected events has received 
little attention from architecture researchers. 

• John needed money. He got his gun. He drove to the pawn shop. 

This requires generating explanations via abductive inference;    
it does not lend itself to the action metaphor.  

There has been research on such problems, but not within the  
cognitive architecture paradigm. 
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Challenge: Dynamic Memory  

As noted earlier, cognitive architecture has long been concerned 
with procedural learning.  

• But other knowledge involves categories and their organization, 
which are not primarily about action. 

There have been some encouraging forays into this area: 

• Schank’s (1982) theory of dynamic memory focused on it, but   
did not special a complete architecture. 

• Li et al. (2012) report a refinement of ICARUS that extends its 
conceptual memory by defining new terms.  

But we need more work in the cognitive architecture paradigm 
on this important topic.  
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Challenge: Creative Problem Solving 

One of the distinctive features of human cognition is creativity: 
solving novel problems in surprising ways.   

• There has been AI work on this topic, but little cast within 
cognitive architectures. 

The two primary exceptions to this trend have been: 

• EUREKA (Jones & Langley, 2005), which joined problem-space 
search with spreading-activation retrieval;  

• CLARION (Helie & Sun, 2010), which also used activation-based 
retrieval, but for soft constraint satisfaction. 

An especially important, but understudied, topic is reformulating 
problems to make them more tractable. 
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Challenge: Emotions / Metacognition 

Like most AI, architecture research has focused on intellectual 
activities like planning, reasoning, and language. 

But people also experience emotions when playing a challenging 
opponent or reading a moving story.   

• Some (Marsella et al. 2010) has developed models of emotion 
using existing architectures. 

• But only a few efforts (Marinier & Laird, 2007) have added them 
as core architectural elements. 

We need more work in this area, especially as emotions relate to 
metacognition (Cox, 2007) to modulate other mental activities. 
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Challenge: Personality / Goal Reasoning  

Another topic widely studied in psychology, but not in cognitive 
architectures, is personality. 

Trait theory is widely used for synthetic characters, but it makes 
little contact with other aspects of cognition.   

• Rizzo et al. (1999) reported an extension to Prodigy that models 
personality in terms of priorities on abstract goals. 

• This suggests a link to goal reasoning (Aha et al., 2013), with  
personal styles determined by goal-generating rules. 

If so, then personalities, like emotions, play metacognitive roles 
that modulate intelligent behavior. 

We need more research to explore this and other promising ideas.  
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Peripheral Topics 

I have omitted three topics that may concern some listeners: 
• Sensorimotor processing is necessary to interact with the world.  
• But rats, pigeons, and roaches do this quite well; this suggests it     

is less central to understanding intelligence. 

• Statistical learning accounts for gradual change over time. 
• But such background processes are not distinctive to humans and  

do not explain their often rapid learning. 
• Neuroscience studies the biological underpinnings of the mind. 
• But it offers little about high-level cognition, and we can model 

intelligence in more abstract terms. 

These are legitimate areas of research, but they are not the most 
important for progress on cognitive architectures.  
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In this talk, I reviewed the notion of a cognitive architecture and 
some common themes in the area.  
•  Some tenets (e.g., symbolic matching), are shared with other 

parts of AI, but others (e.g., unified theories) are distinctive.  
I also examined areas in which the paradigm has progressed:   
•  Hybrid representations, procedural learning, large-scale 

structures, embodied agents, and declarative memories. 
However, I also identified some open challenges for research: 
•  Abductive understanding, dynamic memory, creative problem 

solving, emotions, and personality.  
The cognitive architecture movement has been very successful, 
but does not yet have truly unified theories of the mind. 

Summary Remarks 
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Closing Dedication!

       Allen Newell (1927 – 1992)                   Herbert Simon (1916 – 2001) 

I would like to dedicate this talk to two of AI’s founding fathers: 

Both were interdisciplinary researchers who contributed not only 
to AI but to other disciplines, including psychology. 
Allen Newell and Herb Simon were excellent role models who we 
should all aim to emulate.  
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