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Despite its modest origins, machine learning has come to play 
a dominant role in artificial intelligence. 

Statistical induction on massive data sets has led to impressive 
results in multiple areas, including: 
• Computer vision
• Natural language
• Game playing

But in the process, the field has lost its intellectual diversity 
and abandoned its conceptual roots. 

Claim: We can remedy both drawbacks, and devise even more 
effective systems, by focusing on human-like learning. 

The Problem
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Consider how students master mathematics in our educational 
system by learning, successively, to: 

• Recognize and write digits
• Retrieve and use arithmetic tables
• Carry out multi-column addition, subtraction
• Simplify complex fractions
• Solve algebraic equations, word problems

This curriculum takes years, but it does not require thousands 
of instances per concept or skill. 

The trajectory of human learning here differs drastically from 
how we currently train machines. 

Example: Learning Mathematics

3

3 7
6

4

2 × 1 = 2, 2 × 2 = 4, 2 × 3 = 6
327

⎼ 64
3/4 + 1/8 = ?

7x ⎼ 5 = 2x



Now consider how people – often teenagers – learn to drive 
an automobile by acquiring: 

• Categories for roads, lanes, intersections, signs

• Skills for changing lanes, passing, turning, parking

• Social norms for driving, including laws and customs

Mastering these elements requires training and practice, but 
most drivers are reasonably good after a short course. 

Unlike statistical learners, humans do not need millions of 
miles’ experience to acquire basic competence. 

Example: Learning to Drive
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Machine learning was founded more than four decades ago  
as a spinoff of mainstream AI:   

• First workshop 1980, Journal 1986, Conference 1988
• Focused initially on acquiring symbolic structures
• Concerned with automating creation of expert systems
• But also with modeling high-level learning in humans

This paradigm was successful, producing demonstrations of 
new capabilities and deployed systems.  

During this early period, links to cognitive psychology played 
key roles in the field’s aims and progress. 

Machine Learning: A Brief History 
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The new discipline of machine learning evolved rapidly and,  
by the mid-1990s, it had:   

• Redefined learning as improvement of performance

• Broadened to include statistical methods and neural nets

• Adopted controlled experiments for evaluation purposes

• Birthed the closely related discipline of data mining

Each step seemed a positive one but also took the field further 
away from its psychological origins. 

More recent results on learning with deep neural networks 
have only worsened the situation. 

Machine Learning: More History 
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Machine learning is widely viewed as a great success, but the 
most popular approaches depend crucially on:   

• Collection of gigantic training sets
• Storage of these data in massive memories
• Processing them on arrays of CPU servers

Progress is often measured using mindless ‘bake offs’ that can 
rely on questionable metrics. 
• Recent results with large language models are impressive but 

they are fragile and depend on skilled prompting. 

These ‘state of the art’ learning systems bear little resemblance 
to the way humans acquire expertise. 

Current State of the Field
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To develop AI systems that learn like people, we must first 
identify the core features of human learning:   

• High-level regularities observed in human cognition

• Recurring phenomena that hold across many settings

• Laws of qualitative structure (Newell & Simon, 1976) 

• Not detailed models that fit specific experimental results

Insights about the character of human learning can serve as 
strong constraints on system design. 

But how might researchers use such constraints effectively? 

Constraints on Learning
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A Computational Gauntlet

A gauntlet is a passage, lined with armed adversaries, that one 
must traverse to survive a trial.  

• We can use characteristics of human learning                            
to devise a computational gauntlet. 

• Each constraint introduces a new threat that                          
AI systems must encounter and overcome. 

• To reach the end, they must make it past each                              
obstacle along the dangerous path. 

This offers a radical alternative to the performance-oriented 
‘bake offs’ that now guide the field.  
But what aspects of human learning can serve this purpose? 
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Modular Structures

One basic feature of human learning (Bower, 1981) concerns 
the nature of acquired content:

• Learning involves the acquisition of modular cognitive 
structures.

This does not specify the structures’ details; only that expertise 
consists of discrete mental elements.

This contrasts sharply with the idea that learning only revises 
parameters in an existing monolithic structure. 

E.g., most neural networks alter the weights on links between 
nodes that are given in advance, rather than acquired. 
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Composable Elements

A second characteristic is enabled by the first one and often 
associated with it closely:

• Learned cognitive structures can be composed during  
performance.

That is, relevant elements of expertise are accessed and then  
combined as needed to produce behavior.

E.g., planning systems and sentence parsers compose learned 
structures to address multi-step tasks. 

Neural networks propagate activations over links, but many  
question their capacity for compositional reasoning. 
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There have been many proposals for modular, composable 
structures from psychology, AI, and linguistics:   

• Chunks (Miller, 1956)

• Exemplars / Cases (Schank, 1982)

• Grammar rules (Chomsky, 1965)

• Production rules (Newell, 1966)

• Planning operators (Fikes & Nilsson, 1971)

• Stimulus-response pairs (Skinner, 1953)

These differ in details, but all are composable at performance 
time, qualifying them as generative models.

Examples of Composable Structures
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Piecemeal Acquisition

Another feature involves how people process experiences and 
create new structures. In particular:

• Expertise is acquired in a piecemeal manner, with one 
element added at a time.

Humans learn one cognitive structure, then another, continuing 
until they achieve broad coverage. 

E.g., they acquire each concept and skill for mathematics and 
driving in a reasonably independent manner. 

They do not create complex models en masse, as done by most 
methods for statistical induction.
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Incremental Learning

Another processing constraint focuses not on the knowledge 
elements but on handling training cases:

• Learning is an incremental activity that processes one 
experience at a time.

This is linked to on-line approaches that interleave learning  
tightly with performance mechanisms. 

E.g., people process the training events for mathematics and 
driving in an ongoing stream, not all at once. 

Incremental and piecemeal learning can co-occur, but they are 
distinct; e.g., most rule induction is piecemeal but batch.
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Guidance from Knowledge 

The sequential nature of human learning also means that later 
processing builds on previous results:

• Learning is guided by knowledge that aids the interpretation 
of new experiences.

Because acquisition is piecemeal and incremental, it occurs in 
the context of existing mental structures.

E.g., complex skills for both mathematics and driving build on 
simpler ones acquired earlier in training. 

Knowledge is central to human learning but it receives limited 
attention in data-intensive paradigms.
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Rapid Acquisition

A final characteristic of human learning, enabled by piecemeal,  
incremental, and knowledge-guided processing, is that:

• Cognitive structures are acquired and refined rapidly, each 
from small numbers of training cases.

The claim is not that all expertise comes from a few instances, 
but that we learn modular elements this way.

Human learning curves in mathematics and driving, which 
plot performance vs. training cases, are very steep.

Again, this diverges from statistical induction’s dependence on 
thousands or millions of items. 
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Critiques and Responses
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• Why change paradigms when deep learning works so well? 

• Because it is not as data efficient as human learners. And we 
should understand the entire space of learning methods. 

• Why build AI systems that learn like people? (planes ≠ birds)
• Birds offer many insights into flight (e.g., lift, thrust, and drag). 

And we now have small drones that fly very much like birds. 
• Is this about structure learning vs. parameter estimation? 
• No, the question is whether a learner relies only on parameter 

estimation or, like humans, acquires new structures.  
• Are you saying that human learning never involves statistics? 
• No, but the rapid acquisition of new structures is a distinctive 

feature of human learning; statistics is a background process.  



The literature contains some cases of human-like learning that 
count as positive instances:   
• Fisher’s (1987) Cobweb – constructs a probabilistic conceptual 

taxonomy from unsupervised training cases   
• Minton’s (1990) Prodigy – acquires control rules from planning 

traces to guide search on future problems
• McClure et al.’s (2015) SAGE – invokes structural analogy to 

learn relational concepts from training sequences
• Muggleton et al.’s (2018) meta-interpretive learning – acquires 

logic-based concepts very rapidly

These systems fare well on the gauntlet and offer useful role 
models for the research community. 

Examples of Human-Like Learning
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Fisher’s (1987) Cobweb is a process model of categorization 
and category learning that:   

• Constructs a taxonomy of probabilistic concept descriptions
• Terminal nodes are cases; nonterminals summarize descendants

• Sorts new cases down the hierarchy guided by category utility
• On halting, uses selected concept node to predict missing values

Cobweb unifies ideas from decision trees, naive Bayes, and 
nearest neighbor classifiers.

The system replicates well-known psychological phenomena 
like basic-level categories and typicality effects. 

Probabilistic Concept Hierarchies
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Fig. 3. A sample COBWEB hierarchy with nodes numbered in order of creation. 

3.3.2. Classification and learning in COBWEB 

The basic COBWEB algorithm is quite simple, as can be seen from the 
summaries in Tables 5 and 6. Again classification and learning are intertwined, 
with each instance being sorted down through a concept hierarchy and altering 
that hierarchy in its passage. The system initializes its hierarchy to a single 
node,  basing the values of this concept 's attributes on the first instance. Upon 
encountering a second instance, COBWEB averages its values into those of the 
concept and creates two children, one based on the first instance and another  
based on the second. 

Unlike EPAM and UNIMEM, Fisher's model does not use explicit tests or 
indices to retrieve potential categories. Instead, at each node COBWEB retrieves 
all children and considers placing the instance in each of these categories. Each 
of these constitutes an alternative clustering (a set of clusters with a common 
parent)  that incorporates the new instance. Using an evaluation function that 
we describe in Section 3.3.3, it then selects the best such clustering. COBWEB 
also considers creating a new category that contains only the new instance, and 
compares this clustering to the best clustering that uses only existing categories. 

If the clustering based on existing classes wins the competition, COBWEB 
modifies the probability of the selected category and the conditional prob- 
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Gluck and Corter build on expression (2) in their derivation. They define 
category utility as the increase in the expected number of attribute values that 
can be correctly guessed, given a set of n categories, over the expected number 
of correct guesses without such knowledge. The latter term is simply 

II 2 (E i E j P ( A  i = ~ ) ) ,  so one must subtract this from expression (2). The 
complete expression for category utility is thus 

K 
P(Ck) ~, ~'~ P(A i = V~j[ Ck) 2 -- ~ '  ~ P(Zi  : V0.) 2 

k:l  i j i j (3) 
K 

Note that the difference between the two expected numbers is divided by K, 
the number of categories. This division lets one compare different size cluster- 
ings, which must occur whenever one considers merging, splitting, or creating a 
new category. 

Since category utility is based on expected numbers of correct guesses about 
attribute values, it suggests predictive ability as the natural measure of 
behavior. Fisher has tested COBWEB on both natural and artificial domains, 
measuring its performance by asking it to predict missing attribute values on 
test instances. This approach is similar to Quinlan's [34] methodology for 
evaluating supervised learning systems, except that one averages across many 
attributes rather than predicting a single one (the class name). In Section 4, we 
will extend this notion of prediction (and category utility) to domains involving 
numeric attributes. 

COBWEB is not the first inductive learning system that has employed an 
evaluation function based on information theory. The best-known work of this 
type is Quinlan's [34] ID3 method for constructing decision trees. Machine 
learning researchers have explored many extensions and variations of the basic 
technique, including incremental versions (Schlimmer and Fisher [38]). Ren- 
dell et al.'s [35] PLS system also uses an information-theoretic metric to direct 
its divisive construction of disjunctive concept descriptions. In addition, Han- 
son and Bauer [16] have used an information-based function in their WITT 
clustering system, Cheeseman et al. [6] have used a Bayesian approach in their 
nonincremental clustering system AUTOCLASS, and Anderson (personal com- 
munication) has used conditional probabilities in his recent work on incremen- 
tal clustering. 

3.3.4. Comments on COBWEB 
Like its predecessors, one can view C O B W E B  as carrying out a hill-climbing 
search through a space of concept hierarchies. In this case, there are four main 
operators: 

-classifying the object into an existing class; 
-creating a new class (a new disjunct); 

Early extensions to Cobweb let it handle numeric 
attributes and structured data, as well as mitigate 
dependence on the order of training cases. 

A Cobweb Hierarchy
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Cobweb interleaves learning with categorization to construct 
its hierarchy from unsupervised data by:   
• Updating the distribution for concepts to which a case is sorted

• Extending the taxonomy downward on reaching a terminal node

• Adding a new branch when no children are similar enough

• Merging / splitting a node’s children if category utility improves 

The system learns categories very rapidly in an incremental, 
piecemeal way that builds on prior acquisitions. 

Each Cobweb training case leads to both the creation of new 
cognitive structures and revision of statistical summaries.

Learning Concept Hierarchies

21



Recent Extensions to Cobweb

22

The original Cobweb dealt with ‘tabular’ 
encodings, but an extension incorporates 
convolutional processing of images. 

MacLellan and Thakur (2021) report 
comparisons of the extended Cobweb 
with a convolutional neural network 
on the MNIST image repository. 

CONVOLUTIONAL COBWEB

Figure 3. Examples of the two internal hierarchies learned by Convolutional Cobweb. Shown on the top is a
hierarchy of 3x3 convolutional filters learned directly from the images. Shown on the bottom is a hierarchy
of concepts learned over the convolutional filter representations.
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We have also developed a contextual
version of Cobweb that distinguishes 
word senses in textual sequences. 

Recent efficiency improvements should 
let it acquire a large language model 
from a corpus with millions of words. 



Minton’s (1990) Prodigy offers an architecture for knowledge-
guided planning that:   

• Encodes knowledge as domain operators and control rules for 
selecting or rejecting goals, operators, or bindings

• Invokes means-ends analysis to carry out goal-directed search 
in a space of problem decompositions

• Uses control rules to reduce search by blocking poor choices 
and favoring good ones

Prodigy’s reliance on means-ends analysis is consistent with 
studies of human problem solving. 

The system unifies AI’s four key ideas: reasoning, heuristic 
search, knowledge, and learning. 

Knowledge-Guided Planning
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Prodigy acquires planning expertise from traces of its own 
search processes by:   
• Using a generic theory of problem solving to explain why each 

choice led to success or failure 
• Compiling each explanation into a control rule for selecting or 

rejecting a goal, operator, or binding 
• Collecting statistics on these rules’ utilities to determine which 

ones to retain or abandon 

The system substantially reduces both nodes examined and 
CPU time to solve new problems in many domains.

Prodigy combines rapid generation of new structures through  
knowledge with their gradual evaluation by statistics.

Learning Search-Control Knowledge
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Prodigy Examples and Results
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Fig. 2. Continued. 

Table 2 
Number of unsolved test problems (within 80 CPU seconds) 

Blocks STRIPS Scheduling 
domain domain domain 

With hand-coded rules 0 1 4 
With learned rules 2 3 7 
Without rules 19 49 32 
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STRIPS Robot

Scheduling
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logical t ransformations carry out more  complex manipulations such as raising 
common subexpressions. These first two stages terminate relatively quickly 
given the set of t ransformations currently in the system. In the third stage, a 
simple theorem prover  applies optional,  user-supplied simplification axioms, 
each of which encodes a t ransformation,  using a variation of Brown's  scheme 
[1]. Since theorem proving is a potentially unbounded process, PRODIGY will 
terminate this process if it exceeds a specified time limit. 

In practice, we have found that compression is crucial for making EBL useful 
in PRODIGY. Compress ion eliminates a significant amount  of redundancy in the 
learned rules. The majori ty of the simplifications involve very simple reduc- 
tions and reorderings; however,  without these simplifications, the learned 
control rules would have hundreds,  if not thousands of terms. For example,  the 
architecture-level axioms for FAILS require several pages of dense logical 
notation. Without compression,  the descriptions learned by analyzing failures 
tend to be pages long, and highly redundant .  

5.3. Evaluating the utility of an explanation 

The utility of a control rule learned by PRODIGY'S EBS process is measured in 
terms of the speedup that results f rom the rule's use. Specifically, utility is 
given by the cost /benefi t  formula: 

Utility = ( Av rS a v i n gs  × App l i cFreq )  - A v r M a t c h C o s t  , 

where AvrSav ings  is the average time savings produced when the rule is 
applicable due to the fact that search is eliminated, Appl i cFreq  is the probabili- 
ty that the rule is applicable when it is tested, and A v r M a t c h C o s t  is the average 
time cost of matching the rule. 

After  learning a control rule, PRODIGY produces an initial estimate of  the 
rule's utility based on the training example that produced the rule. Specifically, 
the system compares  the t ime cost of  matching the rule against the time savings 
that the rule would have produced by eliminating search. Only if the savings 
outweigh the cost is the rule included in the active set of control rules. This 

6 estimation phase eliminates rules that are obviously poor.  
After  a rule is added to the system, PRODIGY at tempts  to empirically 

validate the utility est imate,  so that it can discard any remaining rules which 

o An important side-effect of this process is that it prevents ineffective rules from participating in 
the explanation process. For each control rule in the system, there is a corresponding domain-level 
axiom that is built so that, for instance, if a rejection rule fires, PRODIGY can explain why the 
rejected alternative was rejected. When poor rules are added to the system, they tend to degrade 
the explanations produced during the time that they are present, leading to a snowballing effect 
where more and more poor rules are learned. 
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describing the task domain. Whereas  the architectural-level axioms are hand- 
crafted, the domain-level axioms are automatically derived f rom the problem 
solving operators  and any existing search control rules. To construct an 
explanation, an algorithm called explanation-based specialization (EBS) is used. 
EBS maps directly f rom the problem solving trace into an explanation, as 
described in [23]. No search is involved, since the explanation is determined 
completely by the problem solving trace. The EBS algorithm then finds the 
weakest  preconditions of the explanation,  which constitutes the initial learned 
description. 

5.2. Compression: Improving an explanation 

The purpose of compression is to reduce the match cost of the descriptions 
produced by EBS (and thereby increase the utility of the resulting search 
control rules). Compression is essentially a simplification process. PRODIGY'S 
compressor  module operates  on the learned description, first employing partial 
evaluation [15], then applying domain- independent  logical t ransformations,  4 
and finally calling a theorem prover  which can take advantage of user-supplied, 
domain-specific simplification axioms. 5 To illustrate the effect of compression,  
let us consider a very simple blocks world example.  An initial learned 
description, which states that (ON x x )  is unachievable,  can be simplified as 
shown below. To do so the compressor  employs some simple equivalence 
preserving transformations and a domain-specific simplification axiom stating 
that a block is either on the table, on another  block, or being held. 

(FAILS goal node) 
if (AND (CURRENT-GOAL node goal) 

(MATCHES goal (ON x y)) 
(OR (AND (KNOWN (ON-TABLE y)) 

(EQUAL X y)) 
(AND (KNOWN (ON y z)) 

(EQUAL X y)) 
(AND (KNOWN (HOLDING y)) 

(EQUAL X y)))) 

4 PRODIGY's domain-independent transformations enable it to take advantage of standard 
simplification rules, such as DeMorgan's law, as well as other transformations that are more 
specific to the architecture, such as conjunct ordering heuristics. 

5 The simplification axioms are optional. They are used because the domain operators do not 
describe the domain completely. In particular, the set of legal initial states is unspecified. For 
example, one simplification axiom for the blocks world states that the robot can be holding only 
one block at a time, a fact that is impossible to ascertain from the operators alone. For each of the 
domains described in this paper, the set of simplification axioms is very small. 
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reduces to 

(FAILS goal node) 
if (AND (CURRENT-GOAL node goal) 

(MATCHES GOAL (ON X X))) 

In addition to simplifying individual descriptions, the compressor can also 
combine results from multiple examples in order to reduce total match cost. A 
very simple example is shown below. The first rule in the figure states that the 
goal (HOLDING X) will succeed (i.e., can be achieved) if block x is on the table. 
The second rule indicates that the goal (HOLDING y) will succeed if block y is 
on another block. These can be compressed into a single rule stating that a goal 
(HOLDING Z) will always succeed, since the block z must be either on the table 
or on another block. 

(SUCCEEDS goal node) 
if (AND (CURRENT-GOAL node goal) 

(MATCHES goal (HOLDING x)) 
(KNOWN node (IS-BLOCK x)) 
(KNOWN node (ON-TABLE x))) 

(SUCCEEDS goal node) 
if (AND (CURRENT-GOAL node goal) 

(MATCHES goal (HOLDING y)) 
(KNOWN node (IS-BLOCK y)) 
(KNOWN node (IS-BLOCK w)) 
(KNOWN node (ON y w))) 

reduce to 

(SUCCEEDS goal node) 
if (AND (CURRENT-GOAL node goal) 

(MATCHES goal (HOLDING z))) 

The compressor's task of minimizing description's match cost is, unfortunate- 
ly, undecidable. To see this, consider that the most inexpensive descriptions to 
match are (TRUE) and (FALSE), Therefore an optimal compressor would be 
able to reduce all valid formulas to (TRUE) and all unsatisfiable formulas to 
(FALSE). However, arbitrary first-order sentences can be represented in PRO- 
DIGY'S description language, and this task is undecidable for first-order logic. 

In fact, PRODIGY'S compressor is not guaranteed to minimize match cost. 
The compressor employs a set of heuristic transformations, each of which tends 
to reduce match cost. In the first stage of compression, individual atomic 
formulas are transformed to less expensive formulas (e.g., TRUE and FALSE) 
via partial evaluation. In the second stage of compression, domain-independent 

A Prodigy Rejection Rule

A Prodigy Selection Rule

Prodigy’s Utility Criterion

Prodigy’s many successors supported planning 
by abstraction, analogical problem solving, and 
learning for plan quality rather than efficiency.
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HPN Methods for Logistics

Hierarchical Problem Networks

at o1 l3

drive-truck t1 l1 l3 c1

unload-truck o1 t1 l3

at t1 l3in o1 t1

load-truck o1 t1 l1

at t1 l1

drive-truck t1 l2 l1 c1

at o1 l1

at t1 l2in-city l2 c1 in-city l1 c1 in-city l3 c1

1

Table 1. Four methods for logistics planning that include a head, state conditions,

an operator, a subproblem, and optional goal conditions. These partially encode an

HPN procedure that solves problems in the logistics domain efficiently. The notation

assumes that distinct variables will match against different constant expressions. Bold

and italic fonts for some conditions denote sources of learning discussed later.

((at ?o1 ?l3))
conditions: ((object ?o1) (truck ?t1) (location ?l3) (location ?l1)

(in-city ?l3 ?c1) (in-city ?l1 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (unload-truck ?o1 ?t1 ?l3)
subproblem: ((at ?t1 ?l3) (in ?o1 ?t1))

((at ?t1 ?l1))
conditions: ((truck ?t1) (location ?l3) (location ?l1)

(city ?c1) (in-city ?l3 ?c1) (in-city ?l1 ?c1)
(in-city ?l2 ?c1) (at ?t1 ?l3))

operator: (drive-truck ?t1 ?l3 ?l1 ?c1)
subproblem: ((at ?t1 ?l3))
unless-goals: ((in ?o ?t1)))

((in ?o1 ?t1))
conditions: ((object ?o1) (truck ?t1) (location ?l1) (location ?l3)

(in-city ?l1 ?c1) (in-city ?l3 ?c1) (at ?t1 ?l3) (at ?o1 ?l1))
operator: (load-truck ?o1 ?t1 ?l1)
subproblem: ((at ?t1 ?l1) (at ?o1 ?l1))

((in ?o1 ?t1)
:conditions ((object ?o1) (truck ?t1) (location ?l1) (airport ?l1)

(location ?l2) (location ?l3) (in-city ?l1 ?c1) (in-city ?l2 ?c1)
(in-city ?l3 ?c2) (at ?t1 ?l2) (at ?o1 ?l3))

:operator (load-truck ?o1 ?t1 ?l1)
:subproblem ((at ?t1 ?l1) (at ?o1 ?l1))

HPNL (Langley, 2022) learns hierarchical 
methods from sample solutions to decompose 
complex problems into simpler ones. 

The system uses domain constraints to 
identify conditions on its methods, not  
classic EBL or ILP techniques. 

A Sample Logistics Plan

HPNL on Logistics



McClure et al.’s (2015) SAGE can acquire complex concept 
descriptions from labeled training cases by:   

• Representing each concept as a set of relational literals with 
associated probabilities

• For each new training case T:
• Using structural analogy to retrieve descriptions similar to T 

and selecting the best candidate C
• If C and T match well enough, then using T to update C’s 

probabilities and to add new relations
• Else storing a new disjunctive description based on case T 

SAGE learns geographical concepts, musical genres, and 
object shapes far more rapidly than statistical methods.

Analogical Concept Learning
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Muggleton et al. (2018) report a new abductive approach to 
learning relational logic programs that: 

• Uses domain-independent knowledge stated as logical rules

• Searches for simple explanations that cover each case

• Posits new predicates that may be reused in the explanation

• Transforms the explanations into domain rules for later use

Meta-interpretive learning (MIL) masters visual concepts and 
control programs very rapidly, often from single cases. 

This work demonstrates that representation learning is not 
limited to deep neural networks.

Meta-Interpretive Learning

28



Inductive process modeling (Langley, 
2019) constructs explanations of time 
series from background knowledge. 

Discovered models comprise sets of 
differential equations organized into 
higher-level processes. 

29
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1 3

always increase or decrease over time, as other processes may also influence their 
values.

Table 1(a) shows a simple model for an aquatic ecosystem with three variables: 
phytoplankton, nitrogen, and detritus. This includes three distinct processes, one 
for phytoplankton loss, one for uptake of nitrogen by phytoplankton, and another 
for remineralization of nitrogen from detritus. The variables phyto and nitro refer 
to the concentrations of phytoplankton and nitrogen, respectively. Each process has 
an associated rate expression, one specifying that the rate equals the product of two 
variables and the others stating that it equals a single variable. Each process also 
includes two associated derivatives that are proportional to the rate, with parameters 
detailing this functional dependence. Table 1(b) translates these processes into a set 
of differential equations, one per variable, with each term on the right-hand sides 
mapping onto an equation fragment in some process. The two notations produce the 
same dynamic behavior, but the first one has a higher-level organization.

4  Using rate-based process models

We can use such a quantitative process model by compiling it into a set of differ-
ential equations. For each endogenous variable v, one collects all equation frag-
ments from processes in which v appears on the left-hand side. The differential 
equation for that variable has the sum of these fragments as its right-hand side. 
This produces a set of linked equations that one can provide to a standard dif-
ferential equation solver like CVODE (Cohen and Hindmarsh 1996) to simulate 
the behavior of each variable over time. For this purpose, we must provide not 

Table 1  (a) A rate-based process model for an aquatic ecosystem that relates concentrations of phyto-
plankton, nitrogen, and detritus. Each process specifies a rate expression and a set of derivatives propor-
tional to this rate, which changes over time. (b) A set of linked differential equations that produce the 
same dynamic behavior as the process model

!!!

Time-series data

Generic processes

Process 
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process 
Modeling

exponential_growth(Organism1)
  rate R = Organism1
  derivatives  d[Organism1,t] = a * R
  parameters a = 0.75

holling(Organism2, Organism1)
  rate R = Organism2 * Organism1
  derivatives   d[Organism2,t] = b * R,
                     d[Organism1,t] = c * R
  parameters  b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
  rate R = X
  derivatives  d[X,t] = a * R
  parameters a > 0

holling(X [predator], Y [prey]) [predation]
  rate R = X * Y
  derivatives   d[X,t] = b * R, d[Y, t] = c * R
  parameters  b > 0, c < 0
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A Quantitative Process Model

Trajectories for 20-Organism Food Chain

Inductive Process Modeling



Comparison of Characteristics

Characteristics Deep Net Cobweb Prodigy SAGE Meta-Int

Modular structures � • • • •
Composable elements �· � • � •
Piecemeal learning � • • • •
Incremental processing � • • • �
Knowledge guidance �· • �· • �·
Rapid acquisition � • • • •

We can compare how these systems – and the most popular class of 
statistical learners – fare on the computational gauntlet.  

The table shows that Cobweb, Prodigy, SAGE, and meta-interpretive 
learning all pass most of its challenges.  
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Some may believe neural networks cannot exhibit human-like 
learning, but there are counterexamples: 
• Neural networks can support transfer of expertise from earlier 

training to produce rapid learning on related tasks.
• Cascade correlation (Fahlman & Lebiere, 1990) learns network 

structure in a piecemeal way, adding one node at a time.
• Adaptive Resonance Theory (Grossberg, 1987) is incremental   

and piecemeal, adding nodes when none match well enough.

The latter two combine the creation of new structures with 
statistical updates, much as Cobweb, Prodigy, and SAGE. 

These results suggest the issue lies not with neural networks, 
but with how most developers instantiate them.

Can Neural Nets Learn Like Humans? 
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Fostering Work on Human-Like Learning

Research on human-like learning was once widely accepted  
by the AI community. How can we restore this vision? 

∙ Broaden education to cover classic methods

∙ Expand funding to support human-like approaches

∙ Establish publication venues that value such work

∙ Champion evaluation with computational gauntlets

Together, these steps can help create a Zeitgeist that recaptures 
the spirit of early AI and machine learning. 

This call to arms echoes similar appeals by Fahlman (2012), 
Marcus and Davis (2021), and others. 
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Making the Gauntlet Operational

Before we can use the computational gauntlet for evaluation 
of learning systems, we must:

∙ Specify a dependent measure for each hurdle
∙ Some qualitative but others a matter of degree

∙ Provide training sets that allow cumulative learning
∙ To demonstrate ability to benefit from knowledge

∙ Encourage reporting of learning curves
∙ To show rates of improvement and asymptotes

We can then compare these to the characteristics of human 
learning in chosen target domains. 
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Summary Remarks

Machine learning, despite impressive advances, has abandoned 
many of its early, profound insights. 

A promising alternative is to develop AI systems that learn in a 
more human-like manner by:  

• Acquiring modular, composable structures in a piecemeal, 
incremental way, aided by knowledge, from little data. 

We can treat these features as design constraints that define a 
computational gauntlet for learning systems. 

I call on audacious AI researchers to tackle this challenge. 
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