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The Problem

Despite 1ts modest origins, machine learning has come to play
a dominant role 1n artificial intelligence.

Statistical induction on massive data sets has led to impressive
results in multiple areas, including:

o Computer vision
e Natural language
o Game playing

But in the process, the field has lost its intellectual diversity
and abandoned its conceptual roots.

Claim: We can remedy both drawbacks, and devise even more
effective systems, by focusing on human-like learning.



Example: Learning Mathematics

Consider how students master mathematics in our educational
system by learning, successively, to:

: : .. 4
o Recognize and write digits 3 T

e Retrieve and use arithmetic tables 2x1=2,2x2=4,2x3=6

o Carry out multi-column addition, subtraction ~ 321
o Simplify complex fractions 3/4+1/8="2
o Solve algebraic equations, word problems 7x — 5 =2x

This curriculum takes years, but it does not require thousands
of mstances per concept or skill.

The trajectory of human learning here differs drastically from
how we currently train machines.



Example: Learning to Drive

Now consider how people — often teenagers — learn to drive
an automobile by acquiring:

o Categories for roads, lanes, intersections, signs
o Skills for changing lanes, passing, turning, parking
o Social norms for driving, including laws and customs

Mastering these elements requires training and practice, but
most drivers are reasonably good after a short course.

Unlike statistical learners, humans do not need millions of
miles’ experience to acquire basic competence.




Machine Learning: A Brief History

Machine learning was founded more than four decades ago
as a spinoff of mainstream Al:

o First workshop 1980, Journal 1986, Conference 1988
e Focused initially on acquiring symbolic structures
o Concerned with automating creation of expert systems

e But also with modeling high-level learning in humans

This paradigm was successful, producing demonstrations of
new capabilities and deployed systems.

During this early period, links to cognitive psychology played
key roles in the field’s aims and progress.



Machine Learning: More History

The new discipline of machine learning evolved rapidly and,
by the mid-1990s, 1t had:

o Redefined learning as improvement of performance
o Broadened to include statistical methods and neural nets
o Adopted controlled experiments for evaluation purposes
o Birthed the closely related discipline of data mining

Each step seemed a positive one but also took the field further
away from its psychological origins.

More recent results on learning with deep neural networks
have only worsened the situation.



Current State of the Field

Machine learning 1s widely viewed as a great success, but the
most popular approaches depend crucially on:

o Collection of gigantic training sets
o Storage of these data in massive memories

o Processing them on arrays of CPU servers

Progress 1s often measured using mindless ‘bake offs’ that can
rely on questionable metrics.

o Recent results with large language models are impressive but
they are fragile and depend on skilled prompting.

These ‘state of the art’ learning systems bear little resemblance
to the way humans acquire expertise.



Constraints on Learning

To develop Al systems that learn like people, we must first
identify the core features of human learning:

o High-level regularities observed in human cognition
e Recurring phenomena that hold across many settings
o Laws of qualitative structure (Newell & Simon, 1976)
o Not detailed models that fit specific experimental results

Insights about the character of human learning can serve as
strong constraints on system design.

But how might researchers use such constraints effectively?



A Computational Gauntlet

A gauntlet 1s a passage, lined with armed adversaries, that one
must traverse to survive a trial.

» We can use characteristics of human learning
to devise a computational gauntlet.

vvv

 Each constraint introduces a new threat that
Al systems must encounter and overcome.

* To reach the end, they must make it past each
obstacle along the dangerous path.

it R
This offers a radical alternative to the performance-oriented
‘bake offs’ that now guide the field.

But what aspects of human learning can serve this purpose?



Modular Structures

One basic feature of human learning (Bower, 1981) concerns
the nature of acquired content:

» Learning involves the acquisition of modular cognitive
structures.

This does not specify the structures’ details; only that expertise
consists of discrete mental elements.

This contrasts sharply with the 1dea that learning only revises
parameters 1n an existing monolithic structure.

E.g., most neural networks alter the weights on links between
nodes that are given in advance, rather than acquired.
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Composable Elements

A second characteristic 1s enabled by the first one and often
associated with 1t closely:

» Learned cognitive structures can be composed during
performance.

That 1s, relevant elements of expertise are accessed and then
combined as needed to produce behavior.

E.g., planning systems and sentence parsers compose learned
structures to address multi-step tasks.

Neural networks propagate activations over links, but many
question their capacity for compositional reasoning.
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Examples of Composable Structures

There have been many proposals for modular, composable
structures from psychology, Al, and linguistics:

o Chunks (Miller, 1956)

o Exemplars / Cases (Schank, 1982)

o Grammar rules (Chomsky, 1965)

o Production rules (Newell, 1966)

o Planning operators (Fikes & Nilsson, 1971)
o Stimulus-response pairs (Skinner, 1953)

These differ 1n details, but all are composable at performance
time, qualifying them as generative models.
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Piecemeal Acquisition

Another feature involves how people process experiences and
create new structures. In particular:

e Expertise is acquired in a piecemeal manner, with one
element added at a time.

Humans learn one cognitive structure, then another, continuing
until they achieve broad coverage.

E.g., they acquire each concept and skill for mathematics and
driving in a reasonably independent manner.

They do not create complex models en masse, as done by most
methods for statistical induction.
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Incremental Learning

Another processing constraint focuses not on the knowledge
clements but on handling training cases:

e Learning is an incremental activity that processes one
experience at a time.

This 1s linked to on-line approaches that interleave learning
tightly with performance mechanisms.

E.g., people process the training events for mathematics and
driving in an ongoing stream, not all at once.

Incremental and piecemeal learning can co-occur, but they are
distinct; e.g., most rule induction 1s piecemeal but batch.
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Guidance from Knowledge

The sequential nature of human learning also means that later
processing builds on previous results:

e Learning is guided by knowledge that aids the interpretation
of new experiences.

Because acquisition 1s piecemeal and incremental, it occurs in
the context of existing mental structures.

E.g., complex skills for both mathematics and driving build on
simpler ones acquired earlier in training.

Knowledge 1s central to human learning but it receives limited
attention 1n data-intensive paradigms.
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Rapid Acquisition
A final characteristic of human learning, enabled by piecemeal,

incremental, and knowledge-guided processing, 1s that:

e Cognitive structures are acquired and refined rapidly, each
from small numbers of training cases.

The claim 1s not that all expertise comes from a few instances,
but that we learn modular elements this way.

Human learning curves in mathematics and driving, which
plot performance vs. training cases, are very steep.

Again, this diverges from statistical induction’s dependence on
thousands or millions of items.
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Critiques and Responses

o Why change paradigms when deep learning works so well?

e Because it 1s not as data efficient as human learners. And we
should understand the entire space of learning methods.

o Why build Al systems that learn like people? (planes # birds)

e Birds offer many insights into flight (e.g., /ift, thrust, and drag).
And we now have small drones that fly very much like birds.

e Is this about structure learning vs. parameter estimation?

e No, the question is whether a learner relies only on parameter
estimation or, like humans, acquires new structures.

o Are you saying that human learning never involves statistics?

e No, but the rapid acquisition of new structures 1s a distinctive
feature of human learning; statistics 1s a background process.
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Examples of Human-Like Learning

The literature contains some cases of human-like learning that
count as positive istances:

e Fisher’s (1987) Cobweb — constructs a probabilistic conceptual
taxonomy from unsupervised training cases

e Minton’s (1990) Prodigy — acquires control rules from planning
traces to guide search on future problems

e McClure et al.’s (2015) SAGE — invokes structural analogy to
learn relational concepts from training sequences

e Muggleton et al.’s (2018) meta-interpretive learning — acquires
logic-based concepts very rapidly

These systems fare well on the gauntlet and offer useful role
models for the research community.
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Probabilistic Concept Hierarchies

Fisher’s (1987) Cobweb 1s a process model of categorization
and category learning that:

 Constructs a taxonomy of probabilistic concept descriptions
e Terminal nodes are cases; nonterminals summarize descendants
e Sorts new cases down the hierarchy guided by category utility

e On halting, uses selected concept node to predict missing values

Cobweb unifies 1deas from decision trees, naive Bayes, and
nearest neighbor classifiers.

The system replicates well-known psychological phenomena
like basic-level categories and typicality effects.
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Cobweb Examples and Results

P(Ny)=4/4 p(vic)
TAILS |ONE 0.50
TWO 0.50
COLOR |LIGHT | 0.50
DARK 0.50
NUCLEI [ONE 0.25
TWO 0.50
THREE | 0.25
P(N)=1/4 P(vic) P(Ns)=2/4 p(v|c) p(Ng)=1/4 p(vc)
TAILS |[ONE 1.0 TAILS |[ONE 0.0 TAILS |ONE 1.0
TWO 0.0 TWO 1.0 TWO 0.0
COLOR [LIGHT | 1.0 COLOR [LIGHT | 0.5 COLOR |LIGHT | 0.0
DARK 0.0 DARK 0.5 DARK 1.0
NUCLEI | ONE 1.0 NUCLEI [ONE 0.0 NUCLEI | ONE 0.0
TWO 0.0 TWO 1.0 TWO 0.0
THREE | 0.0 THREE [ 0.0 THREE| 1.0
P(Ng)=1/2 p(v|c) P(N5)=1/2 p(vlc)
TAILS [ONE 0.0 TAILS |ONE 0.0
TWO 1.0 TWO 1.0
COLOR [LIGHT 1.0 COLOR |LIGHT 0.0
DARK 0.0 DARK 1.0
NUCLEI | ONE 0.0 NUCLEI |ONE 0.0
TWO 1.0 TWO 1.0
THREE | 0.0 THREE| 0.0

A Cobweb Hierarchy

Category 3 pcy> S P(4,=V,1C) -2 2 P4, =V,)

Utility — =~ R

Early extensions to Cobweb let it handle numeric
attributes and structured data, as well as mitigate
dependence on the order of training cases.
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Learning Concept Hierarchies

Cobweb 1nterleaves learning with categorization to construct
its hierarchy from unsupervised data by:

e Updating the distribution for concepts to which a case is sorted
e Extending the taxonomy downward on reaching a terminal node
e Adding a new branch when no children are similar enough

e Merging / splitting a node’s children if category utility improves

The system learns categories very rapidly in an incremental,
piecemeal way that builds on prior acquisitions.

Each Cobweb training case leads to both the creation of new
cognitive structures and revision of statistical summaries.
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Recent Extensions to Cobweb

Concept0

Attribute-
Value

Probability

6,6: Filter7

90/300

6,7:Filter2

120/300

label:3

30/300

Concept6

z

Attribute-

Value Probability

6,6: Filter7 12/75

6,7:Filter2 60/75

label:3 9/75

\ Concept22

Concept9 /

Attribute- - Attribute- -
Value Probability Value Probability

6,6: Filter7 5/5 6,6: Filter7 3/4

6,7:Filter2 0/5 6,7:Filter2 4/4
label:3 5/5 label:3 4/4

We have also developed a contextual
version of Cobweb that distinguishes
word senses in textual sequences.

Recent efficiency improvements should
let it acquire a large language model
from a corpus with millions of words.

X \ oncepti1

1
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Attribute-
Value

Probability

6,6: Filter7

20/180

6,7:Filter2

0/180

label:3

0/180

The original Cobweb dealt with ‘tabular’
encodings, but an extension incorporates
convolutional processing of images.

-

MacLellan and Thakur (2021) report
comparisons of the extended Cobweb
with a convolutional neural network
on the MNIST image repository.

!

Error

0.25

Model

— CNN
CNN-Simple
Cobweb/3

— Convolutional Cobweb

100 200 300
# Training Opportunities
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Knowledge-Guided Planning

Minton’s (1990) Prodigy offers an architecture for knowledge-
guided planning that:

e Encodes knowledge as domain operators and control rules for
selecting or rejecting goals, operators, or bindings

 Invokes means-ends analysis to carry out goal-directed search
in a space of problem decompositions

 Uses control rules to reduce search by blocking poor choices
and favoring good ones

Prodigy’s reliance on means-ends analysis 1s consistent with
studies of human problem solving.

The system unifies AI’s four key 1deas: reasoning, heuristic
search, knowledge, and learning.
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Learning Search-Control Knowledge

Prodigy acquires planning expertise from traces of its own
search processes by:

e Using a generic theory of problem solving to explain why each
choice led to success or failure

e Compiling each explanation into a control rule for selecting or
rejecting a goal, operator, or binding

e Collecting statistics on these rules’ utilities to determine which
ones to retain or abandon

The system substantially reduces both nodes examined and
CPU time to solve new problems in many domains.

Prodigy combines rapid generation of new structures through
knowledge with their gradual evaluation by statistics.

24



Prodigy Examples and Results

A Prodigy Rejection Rule

(FAILS goal node)
if (AND (CURRENT-GOAL node goal)
(MATCHES goal (ON x y))
(OR (AND (KNOWN (ON-TABLE Y))
(EQUAL x y))
(AND (KNOWN (ON y 2))
(EQUAL x y))
(AND (KNOWN (HOLDING Y))
(EQUAL x y))))

A Prodigy Selection Rule

(SUCCEEDS goal node)

if (AND (CURRENT-GOAL node goal)
(MATCHES goal (HOLDING x))
(KNOWN node (1S-BLOCK x))
(KNOWN node (ON-TABLE x)))

Prodigy’s Utility Criterion

Utility = (AvrSavings X ApplicFreq) — AvrMatchCost ,

Prodigy’s many successors supported planning
by abstraction, analogical problem solving, and
learning for plan quality rather than efficiency.

Cumulative Time (CPU Seconds)
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Hierarchical Problem Networks

HPNL (Langley, 2022) learns hierarchical

methods from sample solutions to decompose

complex problems into simpler ones.

The system uses domain constraints to
identify conditions on its methods, not
classic EBL or ILP techniques.

HPN Methods for Logistics

((at 701 713))
conditions:

operator:
subproblem:
((at 7t1 711))
conditions:

operator:
subproblem:
unless-goals:
((in 701 7t1))
conditions:

operator:

subproblem:
((in 7ol 7t1)
:conditions

:operator
:subproblem

((object ?01) (truck 7t1) (location ?13) (location ?711)
(in-city ?13 ?cl) (in-city 711 ?c1) (at ?7t1 ?13) (at 7ol ?11))
(unload-truck 7ol 7t1 713)
((at 7t1 713) (in 7ol 7t1))

((truck 7t1) (location 713) (location 711)
(city ?c1) (in-city ?13 ?cl) (in-city 711 7cl)
(in-city 712 7c1) (at 7t1 ?13))

(drive-truck 7t1 713 711 7cl)

((at 7t1 713))

((in 70 7t1)))
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(in-city ?11 ?cl) (in-city 713 ?c1) (at ?7t1 ?13) (at 7ol ?11))
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Analogical Concept Learning

McClure et al.’s (2015) SAGE can acquire complex concept
descriptions from labeled training cases by:

e Representing each concept as a set of relational literals with
associated probabilities

e For each new training case T:

e Using structural analogy to retrieve descriptions similar to T
and selecting the best candidate C

e [f C and T match well enough, then using T to update C’s
probabilities and to add new relations

e Else storing a new disjunctive description based on case T

SAGE learns geographical concepts, musical genres, and
object shapes far more rapidly than statistical methods.
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Meta-Interpretive Learning

Muggleton et al. (2018) report a new abductive approach to
learning relational logic programs that:

e Uses domain-independent knowledge stated as logical rules
o Searches for simple explanations that cover each case

e Posits new predicates that may be reused in the explanation
o Transforms the explanations into domain rules for later use

Meta-interpretive learning (MIL) masters visual concepts and
control programs very rapidly, often from single cases.

This work demonstrates that representation learning is not
limited to deep neural networks.
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Inductive Process Modeling

Inductive process modeling (Langley,
2019) constructs explanations of time
series from background knowledge.

Discovered models comprise sets of
differential equations organized into
higher-level processes.

A Quantitative Process Model

(a) organism_loss[phyto, detritus]
rate r = phyto
equations d[phyto,t] = —0.05 % r
d[detritus,t] = 0.05 * r
nutrient_uptake[phyto, nitro]
rate r = phyto x nitro
equations d[phyto,t] = 0.5 r
d[nitro,t] = —0.005 * r
remineralization[detritus, nitro]
rate r = detritus
equations d[detritus,t] = —0.04 x r
d[nitro,t] = 0.04 x r

(b) d[phyto,t] = —0.05 x phyto + 0.5 x phyto * nitro
d[nitro,t] = —0.005 * phyto * nitro 4+ 0.04  detritus
d[detritus,t] = 0.05 * phyto + —0.04 * detritus

Time-series data

Target variables

Organismi [predator, prey]
Organism2 [predator, prey]

Inductive Process
Modeling

exponential_growth(X [prey]) [growth]
rate R=X
derivatives d[X,t] =a*R
parameters a > 0

holling(X [predator], Y [prey]) [predation]
rate R=X*Y
derivatives d[X,t] = b *R, d[Y, ] =c *R
parameters b>0,c<0

Generic processes

exponential_growth(Organism1)
rate R = Organism1l
derivatives d[Organisml,t]=a*R
parameters a = 0.75

holling(Organism2, Organism1)
rate R = Organism2 * Organism1
derivatives d[Organism2,t] = b * R,
d[Organism1,t] = ¢ * R
parameters b = 0.0024, ¢ =-0.011

Process
models

Trajectories for 20-Organism Food Chain

-

Population

o
®

o
o

<
EN

29



Comparison of Characteristics

We can compare how these systems — and the most popular class of
statistical learners — fare on the computational gauntlet.

Characteristics Deep Net | Cobweb | Prodigy SAGE MIL
Modular structures o ° ° ° °
Composable elements © o ° o °
Piecemeal learning o ° ° ° °
Incremental processing o ° ° ° o
Knowledge guidance © ° ® ° ®
Rapid acquisition o ° o o o

The table shows that Cobweb, Prodigy, SAGE, and meta-interpretive
learning all pass most of its challenges.



Can Neural Nets Learn Like Humans?

Some may believe neural networks cannot exhibit human-like
learning, but there are counterexamples:

e Neural networks can support transfer of expertise from earlier
training to produce rapid learning on related tasks.

e Cascade correlation (Fahlman & Lebiere, 1990) learns network
structure in a piecemeal way, adding one node at a time.

e Adaptive Resonance Theory (Grossberg, 1987) 1s incremental
and piecemeal, adding nodes when none match well enough.

The latter two combine the creation of new structures with
statistical updates, much as Cobweb, Prodigy, and SAGE.

These results suggest the 1ssue lies not with neural networks,
but with how most developers instantiate them.
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Fostering Work on Human-Like Learning

Research on human-like learning was once widely accepted
by the Al community. How can we restore this vision?

* Broaden education to cover classic methods

» Expand funding to support human-like approaches
o Establish publication venues that value such work

e Champion evaluation with computational gauntlets

Together, these steps can help create a Zeitgeist that recaptures
the spirit of early Al and machine learning.

This call to arms echoes similar appeals by Fahlman (2012),
Marcus and Davis (2021), and others.
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Making the Gauntlet Operational

Before we can use the computational gauntlet for evaluation
of learning systems, we must:

* Specify a dependent measure for each hurdle

* Some qualitative but others a matter of degree

e Provide training sets that allow cumulative learning

e To demonstrate ability to benefit from knowledge

* Encourage reporting of learning curves

» To show rates of improvement and asymptotes

We can then compare these to the characteristics of human
learning 1n chosen target domains.
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Summary Remarks

Machine learning, despite impressive advances, has abandoned
many of its early, profound insights.

A promising alternative 1s to develop Al systems that learn 1n a
more human-like manner by:

* Acquiring modular, composable structures in a piecemeal,
incremental way, aided by knowledge, from little data.

We can treat these features as design constraints that define a
computational gauntlet for learning systems.

I call on audacious AI researchers to tackle this challenge.
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The Computational Gauntlet

Modular
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