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Abstract

In this paper we report on an approach to learning object
models for use in recognition and reconstruction. Our
framework represents objects in an image using gener-
alized cylinders and organizes knowledge about classes
of objects in a Bayesian network. The recognition pro-
cess involves propagating evidence through this inference
network, whereas learning relies on updating of the net-
work’s conditional probabilities based on training cases.
We report preliminary experimental results with syn-
thetic data that suggest our method improves its recog-
nition accuracy with experience. We also consider our
framework’s relation to other research on learning object
knowledge for image understanding.

1. Introduction

The image-understanding process relies on accurate
knowledge. This statement holds for all levels of vi-
sual processing, but seems especially true at the later
stages, where object recognition and reconstruction re-
quire models of objects or object classes that occur in the
domain. And though one could, in principle, enter such
domain-specific knowledge manually, this technique can
be expensive, time consuming, and a source of errors.
Most existing image-understanding systems include just
a few models in their libraries, due to the difficulty of
entering models and organizing them in memory. For
domains with hundreds or thousands of object classes,
some automated process of model construction seems to
be necessary.

In this paper we present one approach to automating
the acquisition and revision of object models that draws
on recent work in machine learning. In particular, we
consider representational, performance, and induction
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methods that have two properties useful for computer
vision: the ability to operate over object descriptions at
multiple levels of aggregation; and the use of probabili-
ties to handle the uncertainty inherent in image under-
standing. We also report experimental evidence, using
synthetic but realistic data, that the learning algorithm
leads to more accurate recognition of object classes as it
gains experience in a domain, and that it can take advan-
tage of approximate domain knowledge when present.

Although our effort holds some features in common
with other work on learning object models, it differs
in the central role played by two representational as-
sumptions which we will discuss shortly: that three-
dimensional objects can be usefully represented as gener-
alized cylinders and that models of object classes can be
usefully encoded in Bayesian networks. As we will see,
the performance and learning algorithms follow directly
from these assumptions.

2. Representing Objects in Images

Before one can recognize objects in an image, one must
first be able to represent those objects. The literature
on computer vision contains many responses to this ba-
sic issue. Some researchers describe objects in terms
of low-level features (e.g., Murase & Nayar, 1993; Pope
& Lowe, 1993). Others represent objects using a set
of characteristic views that describe the objects’ appear-
ance from alternative perspectives (e.g., Dickinson, Pent-
land, & Rosenfeld, 1992). We prefer three-dimensional
over two-dimensional representations because the latter
are subject to much more variation across different per-
spectives. For example, characteristic views require one
to store many distinct ‘object’ descriptions in memory
for each physical object, which leads to high costs in the
match process. This greater complexity should also re-
quire more training cases during learning, since the large
number of views means there are many more parame-
ters to determine, compared to the perspective-invariant
models used by 3D schemes.
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Figure 1: (a) The wing of an airplane, along with the (b) axis function, (¢) cross section, and (d) sweep function

that characterize it as a generalized cylinder.

Given our bias toward three-dimensional representa-
tions, we prefer volume-oriented formalisms over surface-
oriented ones, as volumetric representations support
clean decomposition of objects into natural parts (i.e.,
parts correspond to volume elements, defined by continu-
ity, rather than to surface elements). They can also give
access to quasi-invariants that reduce the computational
complexity of matching and that simplify discrimination
between an image’s figure and ground.

One approach that has these desirable characteristics,
and which has received considerable attention in the vi-
sion community, describes complex objects as combina-
tions of generalized cylinders, a three-dimensional for-
malism that represents each component of the object in
terms of a two-dimensional cross section that is swept
through a path. We limit ourselves here to homoge-
neous generalized cylinders, a special class in which the
cross section has constant shape and orientation, but can
vary in size over the course of the path; thus, the sweep
function specifies only scaling information.

Following Binford, Levitt, and Mann’s (1989) previous
work 1n this area, we describe each generalized cylinder
in terms of three functions: a cross section, an axis func-
tion, and a sweep function. The cross section is a surface
that typically specifies the shape of a cut made perpen-
dicular to the major axis of the object, the axis function
describes the three-dimensional path of that axis, and
the sweep function specifies the transformation of the
cross section along the length of the sweep. Figure 1
shows the wing of an airplane, along with the cross sec-
tion, axis function, and sweep function for this structure.

There are many different ways to represent functions
of this sort internally. For instance, we might de-
scribe each function using a piecewise linear or piecewise
quadratic function, or we might use a single higher-order
polynomial. Here we use instead a sequence of points.
For the cross section, the first point corresponds to some
arbitrary position along the curve; the axis function be-
gins at one end of the object; and the scaling function
indicates size as a function of distance along the axis.

The above formalism lets one represent a rich set of
primitive objects, but more complicated structures re-
quire an extended language. We describe each com-
plex object as a compound of generalized-cylinder parts,
along with a set of relations among those parts. Al-
though we could specify these spatial relations in terms
of the components’ positions and orientations within a
common coordinate system, we instead use higher-order
relations that are invariant across different perspectives.

In particular, we select one component P (the one
with the longest axis, which is likely to be visible from
most perspectives) as primary for a given complex object
and compute its spatial relations with each non-primary
component C'. In particular, we compute the straight-
line vector P4 between the first and last points along the
primary P’s axis, and we compute an analogous vector
C'y for each nonprimary component. We then compute
the dot product of these two vectors to determine the
angle between the two components’ axes. This scalar
takes on values between zero (when C' and P are parallel)
and one (when C and P are perpendicular). Consider
the plane depicted in Figure 2; here the angle between



Figure 2: An airplane that can be described in terms of six component parts (the fuselage, two main wings, two tail
wings, and a tail), each characterized in turn as generalized cylinders. The orientations and relative sizes of these

components provide important constraints on the concept.

the axis of the plane’s fuselage (the primary component)
and the axis of its left wing is 60 degrees, giving 0.866 as
the dot product. A more swept-back wing would have a
lower value.

The above term describes the spatial relations be-
tween the component objects’ axes, but not the rela-
tions among their cross sections. For the primary com-
ponent, we use a similar measure found by computing
the straight-line vector Pc that starts at each cross sec-
tion’s center (measured at the first point along the axis)
and ends at the first point describing the cross section.
As before, we compute the analogous vector C'¢ for each
nonprimary component, then calculate the dot product
for each pair, which varies from zero (when the cross sec-
tions are oriented in the same direction) and one (when
they are perpendicular). For the plane in Figure 2, this
term 1s needed to specify the relative orientation of the
two wings, to ensure they point in the same direction.

Finally, we characterize the relative sizes of object
components in terms of the lengths of their axes. Specif-
ically, for each nonprimary component C' we compute
the ratio Pz /P4, using the same vectors we computed
to describe the angles between component axes. This
scalar can range from —oo to oo, though 1t will often
be less than one because the primary component will be
larger than other parts. For instance, the axis length for
the plane fuselage in Figure 2 is longer than those for
the wings or tail.

3. Representing Classes in Memory

In the previous section we described our representation
for objects that appear in images. However, to sup-
port recognition and reconstruction, long-term memory
must contain more than descriptions of individual ob-
jects; it must also store descriptions of object classes.
Such descriptions must specify both the structure held

in common among members of each class and their in-
herent variation. For example, the typical plane includes
a fuselage, two major wings, two tail wings, and a tail in
roughly the same configuration, but the details of these
components and their spatial relations vary considerably.

Researchers have developed a number of methods for
representing abstract classes. One common approach is
to use a logical description that specifies a set of sufficient
features or relations for membership in a class. How-
ever, we favor a probabilistic framework that lets one
take uncertainty into account during the inference pro-
cess. One common organization for probabilistic knowl-
edge is known as a Bayesian network (Charniak, 1989).
This framework assumes a set of nodes, representing at-
tributes or variables, connected by a set of directed links,
indicating causal relations among the attributes. Stored
at each node is a table that specifies the conditional prob-
ability distribution for the values of that attribute for
each combination of values of its parent attributes. An
absence of links between two attributes indicates that
they are conditionally independent given their parents.

Figure 3 shows the structure of the Bayesian network
we use to encode three-dimensional models of object
classes. The top node specifies the class of the composite
object, such as plane or rocket launcher. This node has
two general types of children. One type (the black cir-
cles) represents the classes of component objects, such as
wings and turret or fuselage and base. The other (black
squares) specifies spatial relations among these compo-
nents, such as the dot products and ratios described in
the previous section. These nodes differ from the com-
posite and component nodes in that they store Gaussian
distributions (in terms of means and variances) over nu-
meric attributes, rather than discrete probability distri-
butions over nominal variables.

The component nodes in turn each have three chil-
dren (shown as white circles). One of these represents
the possible cross sections, another the alternative scal-



(O composite objects

@ component objects [}

B spatial relations
function points

(O crosssections, axis functions,

and scaling functions

Figure 3: Structure of the Bayesian network used to encode knowledge of object classes at different levels of aggre-
gation. The top level describes classes of composite objects, the second level summarizes their components (black
circles) and the spatial relations among them (black squares), the third level (white circles) represents the cross
sections, axis functions, and scaling functions of generalized cylinders, and the lowest gives the points used in those
functions. Circles depict nodes for discrete variables, whereas squares stand for continuous variables.

ing functions, and another the possible axis functions
that can occur for component objects. For now, we have
chosen to treat these as nominal attributes, specifying a
small set of discrete alternatives in each case. Thus, for
axis functions we might have one class that corresponds
to a straight line (for the fuselage) and another that de-
notes a straight line with a downward turn at the end
(for wings). Similarly, for cross sections we might have a
circle, an ellipse with major axis twice the length of its
minor axis, and a rectangle with the same proportions.

The final level of the Bayesian network corresponds
directly to the numeric variables used to describe each
point in a cross section, axis function, or scaling function.
Again, the conditional probability table stored with each
node specifies a multivariate Gaussian distribution, de-
scribed in terms of means, variances, and covariances;
the latter are needed because there may exist correla-
tions among variables not covered by the parent node.

We should note that the structure in Figure 3 consti-
tutes a special form of Bayesian network, in that each
node has exactly one parent. This means that the prob-
ability distribution for each attribute is directly depen-
dent on only one other variable. As we will see in the
sections that follow, this assumption considerably sim-
plifies both learning and performance. In fact, each set of
nodes and their common parent have the form of a naive
Bayesian classifier (Langley, Iba, & Thompson, 1992),
a simple probabilistic representation that assumes a set
of predictor variables that are conditionally independent
given the class attribute. Because our organization for
visual knowledge combines a number of such entities' in
this hierarchical manner, we will refer to this structure
as a cascaded Bayesian classifier.

!The only minor exception is the lowest layer, in which we
include covariances to handle possible correlations between
pairs of variables.

4. Recognizing Classes of Objects

In previous sections we presented our formalism for de-
scribing objects in an image and our Bayesian network
representation for object classes. Now we can examine
the use of these descriptions in the processes of recog-
nition and reconstruction. Briefly, given output from
an early vision system in terms of generalized cylinders
and spatial relations among them, we want to use the
Bayesian network to classify the objects they describe
and to infer the shape, position, and orientation of any
occluded components.

Let us focus first on the classification process, review-
ing the behavior of naive Bayes, as it plays a central role
in the cascaded Bayesian classifier. The aim of the naive
Bayesian algorithm is to determine the most likely class
C given an observed test instance I. To this end, we ap-
ply Bayes’ theorem to determine the probability of each
class C; given the instance, giving:

_ p(CopUI]Cs)
p(I) ’

where p(Cy) is the prior probability of class C; and
p(I|C;) is the probability of the observed instance given
this class. However, since [ is a conjunction of j values,
we can expand this latter expression to:

_ _ p(Cp(AvilCi)
>k P(Crp(A i |Cy)

where the denominator sums over all classes and where
p(Av;|Ci) is the probability of the instance I given the
class C;. After calculating these probabilities for each
class, the naive Bayesian classifier assigns the instance
to the class with the highest overall probability.

p(CilD)

p(Cil \ vy)



In order to make the above expression operational, we
must still specify how to compute the term p(A v;|Cr).
Because naive Bayes assumes independence of the com-
ponents given the class, we can use the equality:

p(\ vilCr) = HP(UHCk) :

where the values p(v;|Cy) represent the conditional prob-
abilities stored with each attribute (node). This ap-
proach greatly simplifies the computation of class prob-
abilities for a given observation.

Now that we have reviewed naive Bayes, we can exam-
ine the extensions necessary to support the cascaded ver-
sion. We will first consider the top level of the Bayesian
network and work downward from there. We want to
compute P(O;| A\ C;), where O; is the class of the com-
posite object, and the ‘instance’ consists of the compo-
nent classes Cy through C),, along with the spatial re-
lations among them. For example, we might want to
distinguish between a plane and a rocket launcher, or
between different types of planes. Again, because we
assume that the component classes and orientations are
independent given the object class, we can simply take
the product of the various conditional probabilities when
determining the probability of the object class, using the
expressions given above.

However, we must modify the naive Bayesian scheme
somewhat because earlier stages of the object recognition
process do not provide the class of each component, but
rather a probability distribution across the classes. That
1s, we cannot tell for certain whether a component is a
fuselage or a turret, but we do have probabilities for
each such component class. In response, we use these
distributions to compute the probability p(A C}) of each
combination A C; of component classes, then compute:

Y o ACHPOINC)

which sums over all such combinations, to find the overall
probabilities of the composite object classes O;. Using
such a sum, weighted by probabilities, is the standard
Bayesian approach to dealing with uncertain situations.

We have shown the calculations needed to determine
the probabilities of each object class (and thus to se-
lect the most likely one), but they rely on probabilities
about the component classes and their relative spatial
orientations. As described in Section 2, the orientation
information can be computed directly from the descrip-
tions provided by the early vision system, in that we
can compute the dot products and ratios for each pair of
components, then determine the probability P(v;|0;) of
the resulting values according to the conditional Gaus-
sian distribution associated with each numeric attribute.
Thus, we can determine the extent to which two com-
ponents have the right orientations and sizes to serve as
the fuselage and wing of a plane.

We must still compute the probability distributions
for the component classes themselves, but we can apply
the modified naive Bayesian approach recursively, as the
structure of the hierarchy indicates that the cross sec-

tion, axis function, and scaling function are independent
given the component class. Thus, we have:

' __ p(C)p(X]C)p(AIC;)p(S]C5)
OGN A5) = S X CoP AIC)P(SICr)

where C} is the component class (e.g., fuselage or wing),
X is the cross section (e.g., circle or ellipse), A is the
axis function (e.g., straight or downturning), and S is
the scaling function (e.g., constant or shrinking). As be-
fore, we must modify this somewhat to compute a sum
weighted by the probability for each combination of val-
ues for the three generalized-cylinder functions.

The above calculations suppose a specific mapping be-
tween image components and model components. Given
the same number of components in the model and im-
age, for N components there are N! possible mappings.
Because N is typically small, we simply compute the pos-
terior distribution for each of these mappings, select the
mapping that produces the lowest mean-squared errors
for the axis functions, cross sections, and scaling func-
tions, and ignore the alternatives.? For example, given
the image of a plane with six components, this scheme
leads to 120 possible mappings, only one of which should
have a low error. Another approach would compute a
weighted combination of the probability distributions for
each mapping, but this would require some way to de-
termine the probability of each mapping, which we lack.

Finally, the recognition system must compute the
probabilities for each type of cross section, scaling func-
tion, and axis function from the output of the early vision
system, which produces an ordered set of points in 2D or
3D space for each function. We transform these obser-
vations into probabilities using a three-step procedure,
which maps the observed points onto the points stored
with each type:

e Calculate the distances between successive points
in each image function and divide the cumulative
distances by their sum to give fractions of arc length,
scaling the values of the points by the same amount;

e Interpolate points in each image function to ensure
the 1mage function contains the same number of
points, at the same fraction of arc length, as each
corresponding model function;

e Compute the least-squares equation relating the im-
age and model functions, weighted inversely by the
variance of each model point;® this process rotates
and translates the coordinate system of the image
function to give the best fit to the model function;

e Use the transformed points to give values for the
model variables, then use the naive Bayesian scheme
(augmented by covariances) to compute the proba-
bility of each function type.

“More efficient methods that avoid these combinatorics
are certainly possible, and we plan to incorporate one of them
into future versions of the system.

3For the cross section, we find the least-squares equation
using every possible image point as the mapping onto the first
point in the model function, then select the one that gives

the best fit.



This multistep process transforms the cross-section
points for each image component into a probability dis-
tribution over the possible cross sections, and produces
similar distributions for each axis and scaling function.
Combined with the stages discussed earlier, it grounds
the probability computations in a description of the im-
age, and thus lets the system classify the object that
appears in the image.

Clearly, the above scheme relies centrally on the ex-
traction of generalized cylinder descriptions for objects
and their components in the image. To this end, we
plan to invoke software described by Zerroug and Neva-
tia (1994), which produces cross sections, axis functions,
and scaling functions in the format we described earlier
(i.e., as sets of points). Although we have not yet con-
nected our recognition system directly to Zerroug and
Nevatia’s software, due partly to the technical difficulty
of grouping edgels and generating generalized-cylinder
descriptions, establishing this link has a high priority
within our research program.

One can also use the cascaded structure for recon-
struction rather than recognition. Suppose some image
components are occluded, so that the early vision sys-
tem produces descriptions for only some of them. One
can still use this partial set to determine the probabil-
ities for each composite object class, through the same
mechanisms described above. One can then use this in-
formation to infer the most likely identities for the miss-
ing components, along with their orientations relative to
the observed components. This inference process follows
somewhat different lines from the classification process,
but it can be carried out using standard algorithms for
Bayesian networks. We have not yet implemented this
reconstruction process, but we plan to incorporate it into
future versions of the system.

Our approach to image understanding borrows heav-
ily from Binford, Levitt, and Mann’s (1989) work, which
also combines a generalized cylinder representation for
objects with a Bayesian network for object recogni-
tion and reconstruction. However, their framework dif-
fers from ours in two important respects. First, their
Bayesian network deals with both early and late vi-
sual inference, extending from edgels in the input image,
through curves and ribbons (in which quasi-invariants
play a central role), to generalized cylinders and com-
plex objects. In contrast, we have focused on the last
few stages in order to simplify matters for learning. Sec-
ond, Binford et al.’s approach constructs the Bayesian
network dynamically, from the bottom up, on each step
selecting the most likely candidates to extend further.
This technique lets their system deal with quite com-
plex images in which many apparent edges play no part
in the final object description. By comparison, we have
assumed a fixed network structure that assumes gener-
alized cylinder descriptions are already available.

Liang, Christensen, and Jensen (1994) describe an-
other approach that relies on Bayesian networks for 3D
recognition and reconstruction, but that introduces as-
pect graphs or characteristic views as an intermediate
stage between 2D curves and full 3D descriptions (for
which they use geons rather than generalized cylinders).

As in Binford et al., their method can use the inference
network to perform bottom-up recognition from the im-
age, top-down reconstruction from the models, or a mix-
ture of these processes. The system also incorporates
a decision-theoretic utility function, similar to that re-
ported by Levitt, Binford, and Ettinger (1989), to di-
rect the inference process and focus attention. Rimey
and Brown (1994) also use this idea in their 2D system
for detecting the location of objects. Clearly, our own
work is most closely related to Binford et al.’s frame-
work, though it is somewhat simpler due to our concern
with learning issues.

5. Learning Models of Object Classes

As described by Langley et al. (1992) and others, learn-
ing in the naive Bayesian framework involves the simple
process of incrementing a count each time the system en-
counters a new instance, along with a separate count for
a class each time it observes an instance of that class. To-
gether with the prior probabilities discussed below, these
counts let the classifier estimate p(C}) for each class C.
In addition, for each instance of a class that has a given
nominal value, the algorithm updates a count for that
class-value pair. Together with the second count, this
lets the classifier estimate p(v;|Cy). For each numeric
attribute, the method retains and revises two quantities,
the sum and the sum of squares, which let 1t compute the
mean and variance for a normal curve that it uses to find
p(v;|Cy); a similar calculation lets it update the quan-
tities needed to compute the covariance matrix (Suppes
& Liang, 1995) if deemed necessary. Because some in-
stances may have missing attributes, the system must
include a fourth count for each class-attribute pair.

The hierarchical structure of the cascaded Bayesian
classifier requires some extensions to this learning
method. The most obvious is that it must update counts
for conditional probabilities at every level of the struc-
ture. One response relies on the teacher to provide class
labels not only for the composite object, but also for
its components and their functions. This supervised ap-
proach effectively transforms the induction task of cas-
caded Bayes into a set of relatively independent naive
Bayes tasks. This method requires more user attention
than we would prefer, but it provides a good baseline.

We have also explored two semi-supervised techniques
that only assume class labels for composite objects and
numeric values that describe each generalized-cylinder
function. One scheme takes a competitive approach that
simply selects the most likely value for each node in the
hierarchy, given the data, and updates its count by one.
The other approach uses a proportional method that up-
dates the count for each value by a fraction equal to the
inferred probability for that value. The first technique 1s
similar to methods for competitive learning in neural net-
works; the second relies on the more ‘proper’ Bayesian
idea of operating directly on probability distributions.
Analogous methods are possible for numeric attributes,
but in the current system these are all ‘observed’, in that
they are computed directly from the output of the early
vision module.



Table 1: Components and functions for object classes used in experimental study.

COMPOSITE (COMPONENT CRrROSS SECTION AXis FuNcTION ScALING FUNCTION
PLANE FUSELAGE CIRCULAR STRAIGHT UP-LEVEL-DOWN
LEFT-MAIN-WING ELviPTICAL DOWN-TURNING DECREASING
RIGHT-MAIN-WING ELviPTICAL DOWN-TURNING DECREASING
LEFT-TAIL-WING ELviPTICAL DOWN-TURNING DECREASING
LEFT-TAIL-WING ELviPTICAL DOWN-TURNING DECREASING
TAIL ELviPTICAL DOWN-TURNING DECREASING
TANK TANK-BASE ELviPTICAL STRAIGHT CONSTANT
TURRET CIRCULAR STRAIGHT UP-LEVEL-DOWN
CANNON CIRCULAR STRAIGHT CONSTANT
BuiLDING BUILDING-BASE RECTANGULAR STRAIGHT CONSTANT
BUILDING-ROOF RECTANGULAR STRAIGHT CONSTANT

Both the competitive and proportional methods lack
one desirable feature of naive Bayes — its independence
of training order (Langley, 1995). Because early revi-
sions can influence the probabilities generated for later
training cases, the order of presentation can affect the
probability estimates stored with each node. To offset
this tendency, one can run the training data through the
learning algorithm repeatedly, as in some neural network
methods, until no significant changes occur in the result-
ing probabilistic descriptions.

We have not yet explained how to transform the stored
counts into probabilities; for use during classification.
The most straightforward scheme for estimating p(C'),
p(v]|C), and related terms simply computes these proba-
bilities as ratios of the counts; for example, p(C') would
be the number of instances with class C' divided by the
total number of instances. However, this approach can
lead to zero probabilities that can overwhelm other terms
in the products computed during classification. Clark
and Niblett (1989) describe one response to this prob-
lem; when no instances of a value have been observed,
they replace the zero probability with p(C)/N, where N
is the number of training cases.

Another way to avoid this problem is to specify prior
knowledge about each probability distribution. One
common scheme makes use of ‘uninformed priors’, which
assign equal probabilities to each possible class and to
the possible values of each attribute.* However, one
must also specify how much weight to give these priors
relative to the training data. For example, Anderson and
Matessa (1992) use a Dirichlet distribution to initialize
probabilities and give these priors the same influence as
a single training instance, and we have used the same
scheme in our implementation. Following their lead, we
use an analogous technique to initialize the distributions
for numeric variables.

*These priors concern the distribution of probabilities to
be estimated during learning, and it is important not to con-
fuse them with the priors used during the classification pro-
cess, which themselves result from learning.

6. Experimental Studies of the Approach

We have posited two important characteristics of our ap-
proach to learning object models: that the induction pro-
cess can improve the recognition of object classes based
on experience and that this process can be aided by back-
ground knowledge stated in terms of generalized cylin-
ders and Bayesian networks. However, these claims are
actually hypotheses that, ultimately, can only be evalu-
ated empirically. In this section we present two studies
designed for this purpose.

Experiments in visual learning, as in other areas, in-
volve some dependent variable that measures behavior
along a dimension of interest and one or more indepen-
dent variables that, when varied, might affect that be-
havior (Kibler & Langley, 1988). In this case, our depen-
dent measure is the recognition or classification accuracy
of the visual system; that is, the percentage of objects
correctly assigned to their proper class. The indepen-
dent variables include the number of training objects (to
test the hypothesis that accuracy improves with experi-
ence) and the amount of background knowledge (to test
the claim that this knowledge aids learning). Another
independent variable of interest concerns the amount of
noise in the domain, as reflected by the variation of ob-
jects within each class.

Because we had not yet interfaced with Zerroug and
Nevatia’s software, which will provide us with general-
ized cylinder descriptions of the objects in an image, we
constructed a generator that produces synthetic data in
the same format. Given a set of 3D ‘target’ models for
different object classes, this generator can create random
instances of each object class. Each instance is described
as a set of components with associated cross sections,
axis functions, and scaling functions (described in turn
as sets of points), along with spatial relations among
the components. Numeric values are sampled randomly
from the Gaussian distribution specified in the target
model, whereas nominal values are sampled randomly
from discrete distributions. The generated object’s ab-
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Figure 4: Learning curves on synthetic 3D image descriptions (a) with uninformed priors and (b) with background
knowledge about the domain. The error bars represent 95% confidence intervals.

solute position and orientation in space are determined
by randomly selecting a point in space from which the
object 1s viewed, sampled from a region that lies greater
than one distance from the object and less than another.

For the present studies, we handcrafted target mod-
els for three object classes: planes, tanks, and buildings,
each with between two and six components. Table 1
presents the generalized cylinder components for these
classes and the functions that describe them. The nu-
meric variables (not shown in the table) are specified
as the means and standard deviations for a conditional
Gaussian. We used these target models to generate ran-
domly ten sets of 20 training cases each and another 50
cases as a separate test set.

Our first experiment systematically varied the num-
ber of training objects available during learning. More
specifically, we ran the supervised algorithm on the first
five cases in each of the ten training sets, then over the
first ten cases, and so forth. For each situation, we mea-
sured the accuracy of the learned Bayesian network on
the 50 test cases, averaging the results across the differ-
ent training sets. In each run, we initialized the cascaded
Bayesian classifier with uninformed priors over all the
classes that occurred in the target categories, to mini-
mize knowledge of the domain.

Figure 4 (a) presents the resulting learning curve,
which shows the mean accuracies and 95% confidence in-
tervals for each experience level. The curve shows clearly
that cascaded Bayes does improve its ability to recognize
objects as it gains experience, at least in this synthetic
domain. This result is not especially surprising, but the
machine learning literature does contain cases in which
performance actually degrades with increasing experi-
ence, so this basic experiment was necessary to counter
that possibility.

Our second experiment was designed to show that
background knowledge, in the form of a cascaded
Bayesian classifier that encodes information about gen-

eralized cylinders, can aid the learning process. The
motivation for this study comes from the notion that
a developer may be able to enter models into an object
library, but that only the gross model characteristics are
likely to be accurate. The learning system should not
only be able to use training data to revise the models,
but should use this approximate knowledge to give more
accurate recognition than a system that lacks it.

To test this idea, we repeated the conditions of the
first study but, rather than using uninformed priors to
initialize the Bayesian network, we used probability dis-
tributions based on the target models. In particular,
we entered the accurate probability distributions for all
discrete variables, but we left the numeric variables as
in the previous study. Figure 4 (b) shows the learn-
ing curve that results when such background knowledge
is present. Although accuracy is slightly better early
in learning, the general behavior is surprisingly similar
to that without background knowledge, presumably be-
cause the availabity of class information about all levels
of the object is enough to constrain the learning process.
We hypothesize that informed priors will provide more
benefit to the semi-supervised methods, but testing that
prediction must await future research.

7. Related Work on Visual Learning

Our approach to object recognition and visual learning
has similarities to earlier work in this area but also some
important differences. Here we briefly consider these
other efforts, in each case discussing the representation
and organization of knowledge, the performance element
that uses that knowledge, and the method for acquir-
ing it. We will see that most researchers have relied on
clustering rather than supervised learning methods and
that, although probabilistic descriptions have been com-
mon, they are typically organized by means other than



Bayesian networks.

For example, Sengupta and Boyer (1993) have (like
us) taken an approach that represents objects models
as probabilistic summaries at different levels of aggrega-
tion. However, they further organize these models in an
is-a hierarchy, through which the recognition procedure
sorts new descriptions. This sorting process leads to up-
dates in the probabilistic summaries through which the
description passes, and creates a new subclass upon find-
ing children with class summaries that are sufficiently
different from the new description. This incremental,
unsupervised scheme is very similar to our earlier work
on unsupervised concept formation (Gennari, Langley, &
Fisher, 1989), differing primarily in its evaluation metric
and its reliance on beam search for sorting rather than
a greedy method. Sengupta and Boyer have tested their
approach using descriptions taken from a CAD library
of 3D objects.

Conklin (1993) describes another approach to learning
visual categories that organizes memory in terms of an
is-a hierarchy, but in which each nonterminal node con-
tains not a probabilistic summary of training cases but
logical conjunctions of features held in common by all of
its children. These logical descriptions are designed to be
transformation invariant, in that they remain true from
different perspectives and distances. Conklin’s system
uses these invariant descriptions primarily as indices dur-
ing retrieval of individual training cases, but also to help
parse images as they are sorted through the hierarchy.
Asin Sengupta and Boyer’s work, learning is incremental
and interleaved with the sorting process, with training
cases being stored as new terminal nodes but also lead-
ing to more general descriptions along the paths they
traverse. Conklin has used his approach in the analysis
of molecular scenes described as electron density maps.

Segen (1993) presents an alternative approach to vi-
sual learning which comes closer to our own, in that it
uses probabilistic summaries for object models at differ-
ent levels of part-of aggregation but only one is-a level.
He describes each object class as a ‘stochastic graph’,
which consists of a set of components, each specified with
a discrete probability distribution over a set of nodes
that are themselves stochastic graphs. The recognition
process assigns an image to the most likely top-level
graph, and the learning algorithm either incrementally
updates the probabilistic summaries for the selected class
or creates a new class if the image is different enough
from existing ones. Segen’s recursive stochastic graphs
bear a strong similarity to our cascaded Bayesian classi-
fier, though his unsupervised learning algorithm, which
incorporates notions of minimum description length, dif-
fers from our semi-supervised techniques, which use a
maximume-likelihood approach. Moreover, his represen-
tation for objects is two-dimensional rather than three-
dimensional, as in our framework. Segen has tested his
approach in the domain of gesture recognition.

Additional work on learning object models through
clustering, reported by Gros (1993), takes a nonincre-
mental, agglomerative approach. As in Segen’s method,
the basic representation is two-dimensional, in this case
describing each class of objects as a set of characteris-

tic views. Each view is summarized as a set of features,
such as line segments and their points of intersection,
that occur at a single level of aggregation. Gros does
not describe a performance element, but one might use
a variant on the nearest neighbor algorithm to to assign
images to the characteristic view with which it shares the
most features, and thus to an object class. The learning
system relies on an unsupervised clustering algorithm
that successively merges the two clusters of images that
are nearest in the feature space, followed by postprocess-
ing that uses a threshold to determine top-level classes.

Pope and Lowe’s (1993) approach is similar to Segen’s,
in that they represent objects as sets of 2D characteris-
tic views, each described as a set of features at multiple
levels of aggregation. Associated with each feature is a
probability of occurrence and a probability distribution
for its numeric attributes. Recognition of new images
involves using Bayes’ rule to compute the probability of
each view given the features found in the image, then
selecting the most likely one. The learning scheme in-
crementally assigns each image description to the most
likely view and updates the probability distributions for
that view, but creates new characteristic views for suffi-
ciently novel instances.® Although superficially different
from our approach in that it operates on clusters rather
than on a Bayesian network, the basic induction method
1s very similar to our own, except that it does not take
advantage of class labels on training cases. However,
the representational differences are more profound, with
Pope and Lowe relying on 2D characteristic views rather
than the 3D generalized cylinders that are central to our
own work.

The importance of background knowledge to our ap-
proach distinguishes it from most work on vision and
learning, but Cook, Hall, Stark, and Bowyer (1993) de-
scribe another method that builds on these ideas. They
present their learning system with initial models for
object classes and a set of inference rules for predict-
ing the degree to which an object in an image satisfies
some ‘function’. Training cases have functionality scores,
which the learning algorithm uses to revise the condi-
tions on its inference rules, using a method similar to
backpropagation in neural networks. Background knowl-
edge lets the system infer 3D descriptions from images
and also constrains the learning process. Their approach
differs from ours in the use of inference rules to deter-
mine the degree to which a class is satisfied, as opposed
to our Bayesian inference scheme, but the general style
of encoding background knowledge, and its role in bias-
ing the induction process, are very similar. Cook et al.’s
approach also bears a close relation to earlier work by
Winston, Binford, Katz, and Lowry (1983) on learning
recognition rules from functional knowledge.

In summary, the recent literature reports a number
of research efforts that address issues similar to those
with which we are concerned. Many of these employ
probabilistic representations to handle the uncertainty

°In related work, Beis and Lowe (1993) have focused on
creating is-a hierarchies and indexing object models, which
comes closer to the approaches taken by Conklin and by Sen-
gupta and Boyer.



inherent in vision, and some describe complex objects
at multiple levels of aggregation. However, none of
these projects have used generalized cylinders to rep-
resent three-dimensional object models, nor have they
taken advantage of Bayesian networks to structure this
knowledge and constrain the learning process.

8. Conclusions

In this paper we described an approach to visual learning
that draws on earlier work in both image understanding
and machine induction. Our system characterizes ob-
jects in images in terms of generalized cylinder parts and
relations among them, while it stores long-term knowl-
edge about object classes in a Bayesian network. The
recognition process relies on early vision software, de-
veloped by Zerroug and Nevatia (1994), to infer general-
ized cylinder descriptions from images, followed by prob-
abilistic inference over the Bayesian network to deter-
mine the most likely cross sections, axis functions, scal-
ing functions, component classes, and composite classes.
The structure of the Bayesian network, which assumes
independence of variables given their parents at each
level, simplifies the learning process, which consists of
updating counts for the most likely candidate at each
level.

We reported preliminary results with this approach
to learning object models, using synthetic but realistic
data to show that the system improves its recognition
accuracy with experience and that it can take advan-
tage of partial background knowledge. However, more
work clearly remains to be done. In future research,
we plan to test the system on output from Zerroug and
Nevatia’s software to measure robustness on actual im-
ages. We will also carry out experiments with additional
synthetic data that involve greater within-class varia-
tion, thus testing our probabilistic inference and learn-
ing mechanisms under more challenging conditions. We
also intend to compare experimentally the behavior of
the competitive, proportional, and supervised methods
for learning. Finally, we should evaluate our approach
on recognition tasks involving hundreds of object classes,
to test our claim that automated acquisition of model li-
braries is possible in such situations. Although our stud-
ies will undoubtedly reveal problems with the system,
they should also suggest improvements, and we have
high hopes that the basic framework will prove useful
for a variety of image-understanding domains.
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