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AbstractIn this paper, we examine the use of machine learning to improve a rooftop detection process,which is one step in a vision system that recognizes buildings in overhead imagery. We reviewthe problem of analyzing aerial images and describe an existing vision system that automates therecognition of buildings in such images. After this, we briey review two well-known learningalgorithms, representing di�erent inductive biases, that we selected to improve rooftop detection.An important aspect of this problem is that the data sets are highly skewed and the cost of mistakesdi�ers for the two classes, so we evaluate the algorithms under varying misclassi�cation costs usingROC analysis. We report three sets of experiments designed to illuminate facets of applying machinelearning to the image analysis task. One set of studies focuses on within-image learning, in whichboth training and testing data are derived from the same image. Another addresses between-imagelearning, in which training and testing sets come from di�erent images. A �nal set investigateslearning using all available image data in an e�ort to determine the best performing method.Experimental results demonstrate that useful generalization occurs when training and testing ondata derived from images that di�er in location and in aspect. Furthermore, they demonstratethat, under most conditions and across a range of misclassi�cation costs, a trained naive Bayesianclassi�er exceeded, by as much as a factor of two, the predictive accuracy of nearest neighbor anda handcrafted linear classi�er, the solution currently being used in the building detection system.Analysis of learning curves reveals that naive Bayes achieved superiority using as little as 6% ofthe available training data.



Rooftop Detection Through Machine Learning 11. IntroductionThe number of images available to image analysts is growing rapidly, and will soon outpace theirability to process them. Computational aids will be required to �lter this ood of images andfocus the analyst's attention on interesting events, but current image understanding systems arenot yet robust enough to support this process. Successful image understanding relies on knowledge,and despite theoretical progress, implemented vision systems still rely on heuristic methods andconsequently remain fragile. Handcrafted knowledge about when and how to use particular visionoperations can give acceptable results on some images but not others.In this paper, we explore the use of machine learning as a means for improving knowledge usedin the vision process, and thus for producing more robust software. Recent applications of machinelearning in business and industry (Langley & Simon 1995) hold useful lessons for applications inimage analysis. A key idea in applied machine learning involves building an advisory system thatrecommends actions but gives �nal control to a human user, with each decision generating a trainingcase, gathered in an unobtrusive way, for use in learning. This setting for knowledge acquisitionis similar to the scenario in which an image analyst interacts with a vision system, �nding somesystem analyses acceptable and others uninteresting or in error. The aim of our research programis to embed machine learning into this interactive process of image analysis.This adaptive approach to computer vision promises to greatly reduce the number of decisionsthat image analysts must make per picture, thus improving their ability to deal with a high owof images. Moreover, the resulting systems should adapt their knowledge to the preferences ofindividuals in response to feedback from those users. The overall e�ect should be a new classof systems for image analysis that reduces the workload on human analysts and give them morereliable results, thus speeding the image analysis process.In the sections that follow, we report progress on using machine learning to improve decisionmaking at one stage in an existing image understanding system. We begin by explaining the taskdomain|identifying buildings in aerial photographs|and then describe the vision system designedfor this task. Next, we review two well-known algorithms for supervised learning that hold potentialfor improving the reliability of image analysis in this domain. After this, we report the design ofexperiments to evaluate these methods and the results of those studies. In closing, we discussrelated and future work.2. Nature of the Image Analysis TaskThe image analyst interprets aerial images of ground sites with an eye to unusual activity orother interesting behavior. The images under scrutiny are usually complex, involving many objectsarranged in a variety of patterns. Overhead images of Fort Hood, Texas, collected as part of theRADIUS project (Firschein & Strat 1997), are typical of a military base and include buildingsin a range of sizes and shapes, major and minor roadways, sidewalks, parking lots, vehicles, andvegetation. A common task faced by the image analyst is to detect change at a site as reected indi�erences between two images, as in the number of buildings, roads, and vehicles. This in turnrequires the ability to recognize examples from each class of interest. In this paper, we focus onthe performance task of identifying buildings in satellite photographs.



Rooftop Detection Through Machine Learning 2Aerial images can vary across a number of dimensions. The most obvious factors concern viewingparameters, such as distance from the site (which a�ects size and resolution) and viewing angle(which a�ects perspective and visible surfaces). But other variables also inuence the nature ofthe image, including the time of day (which a�ects contrast and shadows), the time of year (whicha�ects foliage), and the site itself (which determines the shapes of viewed objects). Taken together,these factors introduce considerable variability into the images that confront the analyst.In turn, this variability can signi�cantly complicate the task of recognizing object classes. Al-though a building or vehicle will appear di�erent from alternative perspectives and distances, thee�ects of such transformations are reasonably well understood. But variations due to time of day,the season, and the site are more serious. Shadows and foliage can hide edges and obscure surfaces,and buildings at distinct sites may have quite di�erent structures and layouts. Such variations serveas mere distractions to the human image analyst, yet they provide serious challenges to existingcomputer vision systems.This suggests a natural task for machine learning: given aerial images as training data, acquireknowledge that improves the reliability of such an image analysis system. However, we cannotstudy this task in the abstract. We must explore the e�ect of speci�c induction algorithms onparticular vision software. In the next two sections, we briey review one such system for imageanalysis and two learning methods that might give it more robust behavior.3. An Architecture for Image AnalysisLin and Nevatia (1996) report a computer vision package, called the Buildings Detection andDescription System (Budds), for the analysis of ground sites in aerial images. Like many programsfor image understanding, their system operates in a series of processing stages. Each step involvesaggregating lower level features into higher level ones, eventually reaching hypotheses about thelocations and descriptions of buildings. We will consider these stages in the order that they occur.Starting at the pixel level, Budds uses an edge detector to group pixels into edgels, and theninvokes a line �nder to group edgels into lines. Junctions and parallel lines are identi�ed andcombined to form three-sided structures or \Us". The algorithm then groups selected Us andjunctions to form parallelograms. Each such parallelogram constitutes a hypothesis about theposition and orientation of the roof for some building, so we may call this step rooftop generation.After the system has completed the above aggregation process, a rooftop selection stage evaluateseach rooftop candidate to determine whether it has su�cient evidence to be retained. The aimof this process is to remove candidates that do not correspond to actual buildings. Ideally, thesystem will reject most spurious candidates at this point, although a �nal veri�cation step may stillcollapse duplicate or overlapping rooftops. This stage may also exclude candidates if there is noevidence of three-dimensional structure, such as shadows and walls.Analysis of the system's operation suggested that rooftop selection held the most promise forimprovement through machine learning, because this stage must deal with many spurious rooftopcandidates. This process takes into account both local and global criteria. Local support comesfrom features such as lines and corners that are close to a given parallelogram. Since these suggestwalls and shadows, they provide evidence that the candidate corresponds to an actual building.



Rooftop Detection Through Machine Learning 3Global criteria consider containment, overlap, and duplication of candidates. Using these evalua-tion criteria, the set of rooftop candidates is reduced to a more manageable size. The individualconstraints applied in this process have a solid foundation in both theory and practice.The problem is that we have only heuristic knowledge about how to combine these constraints.Moreover, such rules of thumb are currently crafted by hand, and they do not fare well on imagesthat vary in their global characteristics, such as contrast and amount of shadow. However, methodsfrom machine learning, to which we now turn, may be able to induce better conditions for selectingor rejecting candidate rooftops. If these acquired heuristics are more accurate than the existinghandcrafted solutions, they will improve the reliability of the rooftop selection process.4. A Review of Three Learning TechniquesWe can formulate the task of acquiring rooftop selection heuristics in terms of supervised learning.In this process, training cases of some concept are labeled as to their class. In rooftop selection,only two classes exist|rooftop and non-rooftop|which we will refer to as positive and negativeexamples of the concept \rooftop". Each instance consists of a number of attributes and theirassociated values, along with a class label. These labeled instances constitute training data that areprovided as input to an inductive learning routine, which generates concept descriptions designedto distinguish the positive examples from the negative ones. These knowledge structures state theconditions under which the concept, in this case \rooftop", is satis�ed.In a previous study (Maloof et al. 1997), we evaluated a variety of machine learning methodsfor the rooftop detection task and selected the two that showed promise of achieving a balance be-tween the true positive and false positive rates: nearest neighbor, and naive Bayes. These methodsuse di�erent representations, performance schemes, and learning mechanisms for supervised con-cept learning, and exhibit di�erent inductive biases, meaning that each algorithm acquires certainconcepts more easily than others.The nearest-neighbor method (e.g., Aha, Kibler, & Albert 1991), uses an instance-based repre-sentation of knowledge that simply retains training cases in memory. This approach classi�es newinstances by �nding the \nearest" stored case, as measured by some distance metric, then predict-ing the class associated with that case. For numeric attributes, a common metric (which we use inour studies) is Euclidean distance. In this framework, learning involves nothing more than storingeach training instance, along with its associated class. Although this method is quite simple andhas known sensitivity to irrelevant attributes, in practice it performs well in many domains. Someversions select the k closest cases and predict the majority class; here we will focus on the \simple"nearest neighbor scheme, which uses only the nearest case for prediction.The naive Bayesian classi�er (e.g., Langley, Iba, & Thompson 1992) stores a probabilistic conceptdescription for each class. This description includes an estimate of the class probability and theestimated conditional probabilities of each attribute value given the class. The method classi�esnew instances by computing the posterior probability of each class using Bayes' rule, combining thestored probabilities by assuming that the attributes are independent given the class and predicting
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Figure 1. Visualization interface for labeling rooftop candidates. The system presents candidates to a userwho labels them by clicking either the `Roof' or `Non-Roof' button. It also incorporates a simplelearning algorithm to provide feedback to the user about the statistical properties of a candidatebased on previously labeled examples.the class with the highest posterior probability. Like nearest neighbor, naive Bayes has known lim-itations, such as sensitivity to attribute correlations and an inability to represent multiple decisionregions, but in practice it behaves well on many natural domains.Currently, Budds uses a handcrafted linear classi�er for rooftop detection (Lin & Nevatia 1996),which is equivalent to a perceptron classi�er (e.g., Zurada 1992). Although we did not train thismethod as we did naive Bayes and nearest neighbor, we included this method in our evaluation forthe purpose of comparison. This method represents concepts using a collection of weights w anda threshold �. To classify an instance, which we represent as a vector of n numbers x, we computethe output o of the classi�er using the formula:o = ( +1 if Pni=1 wixi > ��1 otherwiseFor our application, the classi�er predicts the positive class if the output is +1 and predicts thenegative class otherwise. There are a number of established methods for training perceptrons, butour preliminary studies suggested that they fared worse than the manually set weights, so we didnot use the learned perceptrons here. Henceforth, we will refer to the handcrafted linear classi�erused in Budds as the \Budds classi�er".



Rooftop Detection Through Machine Learning 5Table 1. Characteristics of the images and data sets. We began with a nadir and an oblique image of anarea of Fort Hood, Texas, and derived three subimages from each that contained concentrations ofbuildings. We then used Budds to extract rooftop candidates and labeled each as either a positiveor negative example of the concept \rooftop".Image Original Positive NegativeNumber Image Location Aspect Examples Examples1 FHOV1027 1 Nadir 197 9822 FHOV625 1 Oblique 238 19553 FHOV1027 2 Nadir 71 26454 FHOV625 2 Oblique 74 33495 FHOV1027 3 Nadir 87 37226 FHOV625 3 Oblique 114 43955. Generating, Representing, and Labeling Rooftop CandidatesWe were interested in how well the various induction algorithms could learn to classify rooftopcandidates in aerial images. This required three things: a set of images that contain buildings,some means to generate and represent plausible rooftops, and labels for each such candidate.As our �rst step, we selected two images, FHOV1027 and FHOV625, of Fort Hood, Texas, whichwere collected as part of the RADIUS program (Firschein & Strat 1997). These images cover thesame area but were taken from di�erent viewpoints, one from a nadir angle and the other from anoblique angle. We subdivided each image into three subimages, focusing on locations that containedconcentrations of buildings, to maximize the number of positive rooftop candidates. This gave usthree pairs of images, each pair covering the same area but viewed from di�erent aspects.Our aim was to improve Budds so we used this system to generate candidate rooftops for eachimage, producing six data sets. Following Lin and Nevatia (1996), the data sets described eachrooftop candidate in terms of nine continuous features that summarize the evidence gathered fromthe various levels of analysis. For example, positive indications for the existence of a rooftopincluded evidence for edges and corners, the degree to which a candidate's opposing lines areparallel, support for the existence of orthogonal trihedral vertices, and shadows near the cornersof the candidate. Negative evidence included the existence of lines that cross the candidate, L-junctions adjacent to the candidate, similarly adjacent T-junctions, gaps in the candidate's edges,and the degree to which enclosing lines failed to form a parallelogram.We should note that induction algorithms are often sensitive to the features one uses to describethe data, and we make no claims that these nine attributes are the best ones for recognizing rooftopsin aerial images. However, because our aim was to improve the robustness of Budds, we needed touse the same features as Lin and Nevatia's handcrafted classi�er. Moreover, it seemed unlikely thatwe could devise better features than the system's authors had developed during years of research.The third problem, labeling the generated rooftop candidates, proved the most challenging andthe most interesting. Budds itself classi�es each candidate, but since we were trying to improveon its ability, we could not use those labels. Thus, we tried an approach in which an expert



Rooftop Detection Through Machine Learning 6speci�ed the vertices of actual rooftops in the image, then we automatically labeled candidates aspositive or negative depending on the distance of their vertices from the nearest actual rooftop'scorners. We also tried a second scheme that used the number of candidate vertices that fell withina region surrounding the actual rooftop. Unfortunately, upon inspection neither approach gave ussatisfactory labeling results.Analysis revealed the di�culties with using such relations to actual rooftops in the labelingprocess. One is that they ignore information about the candidate's shape; a good rooftop shouldbe a parallelogram, yet nearness of vertices is neither su�cient or necessary for this form. Asecond drawback is that they ignore other information contained in the nine Budds attributes,such as shadows and crossing lines. The basic problem is that such methods deal only with thetwo-dimensional space that describes location within the image, rather than the nine-dimensionalspace that we want the vision system to use in classifying a candidate.Reluctantly, we concluded that manual labeling by a human was necessary, but this task wasdaunting, as each image produced thousands of candidate rooftops. To support the process, weimplemented an interactive labeling system in Java, shown in Figure 1, that successively displayseach extracted rooftop to the user. The system draws each candidate over the portion of the imagefrom which it was extracted, then lets the user click buttons for `Roof' or `Non-Roof' to label theexample.The visual interface itself incorporates a simple learning mechanism|nearest neighbor|designedto improve the labeling process. As the system obtains feedback from the user about positiveand negative examples, it divides unlabeled candidates into three classes: likely rooftops, unlikelyrooftops, and unknown. The interface displays likely rooftops using green rectangles, unlikelyrooftops as red rectangles, and unknown candidates as blue rectangles. The system includes asensitivity parameter1 that a�ects how certain the system must be before it proposes a label. Afterdisplaying a rooftop, the user either con�rms or contradicts the system's prediction by clickingeither the `Roof' or `Non-Roof' button. The simple learning mechanism then uses this informationto improve subsequent predictions of candidate labels.Our intent was that, as the interface gained experience with the user's labels, it would displayfewer and fewer candidates about which it was uncertain, and thus speed up the later stages ofinteraction. Informal studies suggested that the system achieves this aim: By the end of the labelingsession, the user typically con�rms nearly all of the interface's recommendations. However, becausewe were concerned that our use of nearest neighbor might bias the labeling process in favor of thisalgorithm during later studies, we generated the data used in Section 7 by the setting sensitivityparameter so that the system presented all candidates as uncertain. Even handicapped in thismanner, the interface required only about �ve hours to label the 17,829 roof candidates extractedfrom the six images. This comes to under one second per candidate, which still seems quite e�cient.In summary, what began as the simple task of labeling visual data led us to some of the morefascinating issues in our work. To incorporate supervised concept learning into vision systems,which can generate thousands of candidates per image, we must develop methods to reduce theburden of labeling these data. In future work, we intend to measure more carefully the ability ofour adaptive labeling system to speed this process. We also plan to explore extensions that use thelearned classi�er to order candidate rooftops (showing the least certain ones �rst) and even to �lter1. The user can set this parameter using the slider bar and number �eld in the bottom right corner of Figure 1.



Rooftop Detection Through Machine Learning 7candidates before they are passed on to the user (automatically labeling the most con�dent ones).Techniques such as selective sampling (e.g., Freund et al. 1997) and uncertainty sampling (Lewis& Catlett 1994) should prove useful toward these ends.6. Cost-Sensitive Learning and Skewed DataTwo aspects of the rooftop selection task inuenced our approach to implementation and evaluation.First, Budds works in a bottom-up manner, so if the system discards a rooftop, it cannot retrieve itlater. Consequently, errors on the rooftop class (false negatives) are more expensive than errors onthe non-rooftop class (false positives), so it is better to retain a false positive than to discard a falsenegative. The system has the potential for discarding false positives in later stages of processingwhen it can draw upon accumulated evidence, such as the existence of walls and shadows. However,since false negatives cannot be recovered, we need to minimize errors on the rooftop class.Second, we have a severely skewed data set, with training examples distributed non-uniformlyacross classes (781 rooftops vs. 17,048 non-rooftops). Given such skewed data, most inductionalgorithms have di�culty learning to predict the minority class. Moreover, we have established thaterrors on our minority class (rooftops) are most expensive, and the extreme skew only increasessuch errors. This interaction between skewed class distribution and unequal error costs occurs inmany computer vision applications, in which a vision system generates thousands of candidatesbut only a handful correspond to objects of interest. It also holds many other applications ofmachine learning, such as fraud detection (Fawcett & Provost 1997), discourse analysis (Soderland& Lehnert 1994), and telecommunications risk management (Ezawa, Singh, & Norton 1996).These issues raise two challenges. First, they suggest the need for modi�ed learning algorithmsthat can achieve high accuracy on the minority class. Second, they require an experimental method-ology that lets us compare di�erent methods on domains like rooftop detection, in which the classesare skewed and errors have di�erent costs. In the remainder of this section, we further clarify the na-ture of the problem, after which we propose some cost-sensitive learning methods and an approachto experimental evaluation.6.1 Favoritism Toward the Majority ClassIn a previous study (Maloof et al. 1997), we evaluated several algorithms without taking intoaccount the cost of classi�cation errors and got confusing experimental results. Some methods, likethe standard error-driven algorithm for revising perceptron weights (e.g., Zurada 1992), learned toalways predict the majority class. The naive Bayesian classi�er found a more comfortable trade-o�between the true positive and false positive rates, but still favored the majority class.2 For datasets that are skewed, an inductive method that learns to predict the majority class will often have ahigher overall accuracy than a method that �nds a balance between true positive and false positiverates. Indeed, always predicting the majority class for our problem yields a hit rate of 95 percent,which makes it a misleading measure of performance.This bias toward the majority class only causes di�culty when we care more about errors on theminority class. For the rooftop domain, if the error costs for the two classes were the same, then we2. Covering algorithms, like AQ15 (Michalski et al. 1986) or CN2 (Clark & Niblett 1989), may be less susceptibleto skewed data sets, but this is highly dependent on their rule selection criteria.



Rooftop Detection Through Machine Learning 8would not care on which class we made errors, provided we minimized the total number of mistakes.Nor would there be any problem if mistakes on the majority class were more expensive, since mostlearning methods are biased toward minimizing such errors anyway. On the other hand, if theclass distribution runs counter to the relative cost of mistakes, as in our domain, then we must dosomething to compensate, both in the learning algorithm itself and in measuring its performance.Breiman et al. (1984) note the close relation between the distribution of classes and the relativecost of errors. In particular, they point out that one can mitigate the bias against the minorityclass by duplicating examples of that class in the training data. This also helps explain why mostinduction methods give more weight to accuracy on the majority class, since skewed training dataimplicitly places more weight on errors for that class. In response, several researchers have exploredapproaches that alter the distribution of training data in various ways, including use of weightsto bias the performance element (Cardie & Howe 1997), removing unimportant examples from themajority class (Kubat & Matwin 1997), and `boosting' the examples in the under-represented class(Freund & Schapire 1996). However, as we will see shortly, one can also modify the algorithmsthemselves to more directly respond to error costs.6.2 Cost-Sensitive Learning MethodsEmpirical comparisons among machine learning algorithms seldom focus on the cost of classi�cationerrors, possibly because most learning methods do not provide ways to take such costs into account.Happily, some researchers have explored variations on standard algorithms that e�ectively bias themethod in favor of one class over others. For example, Lewis and Catlett (1994) introduced a lossratio into C4.5 (Quinlan 1993) to bias it toward under-represented classes. Pazzani et al. (1994)have also done some preliminary work along these lines, which they describe as addressing the costsof di�erent error types. Their method �nds the minimum-cost classi�er for a variety of problemsusing a set of hypothetical error costs. Turney (1995) presents results from an empirical evaluationof algorithms that take into account both the cost of tests to measure attributes and the cost ofclassi�cation error.When implementing cost-sensitive learning methods, the basic idea is to change the way thealgorithm treats instances from the more expensive class relative to the other instances, eitherduring the learning process or at the time of testing. In essence, we want to incorporate a costheuristic into the algorithms so we can bias them toward making mistakes on the less costly classrather than on the more expensive class.To accomplish this, we de�ned a cost for each class on the range [0:0; 1:0] that indicates therelative cost of making a mistake on one class versus another. Zero indicates that errors costnothing, whereas one means that errors are maximally expensive. To incorporate a cost heuristicinto the algorithms, we chose to modify the performance element of the algorithms, rather than thelearning element, by using the cost heuristic to adjust the decision boundary at which the algorithmselects one class versus the other.Recall that naive Bayes predicts the class with the highest posterior probability as computedusing Bayes' rule, so we want the cost heuristic to bias prediction in favor of the more expensiveclass. For a cost parameter cj 2 [0:0; 1:0], we computed the expected cost �j for the class !j usingthe formula:



Rooftop Detection Through Machine Learning 9�j = P (!j jx) + cj(1� P (!jjx))where x is the query, and P (!jjx) is the posterior probability of the jth class given the query. Thecost-sensitive version of naive Bayes predicts the class !j with the least expected cost �j .Nearest neighbor, as normally used, predicts the class of the example that is closest to the query.Therefore, the cost heuristic should have the e�ect of moving the query point closer to the closestexample of the more expensive class. The magnitude of this change should be proportional to themagnitude of the cost parameter. Therefore, we computed the expected cost �j for the class !jusing the formula:�j = dE(x;xj)� cjdE(x;xj)where xj is the closest neighbor from class !j to the query point, and dE(x; y) is the Euclideandistance function. The cost-sensitive version of nearest neighbor predicts the class with the leastexpected cost. This modi�cation also works for k nearest neighbor, which considers the k closestneighbors when classifying unknown instances.Finally, because our modi�cations focused on the performance elements rather than on the learn-ing algorithms, we can make similar changes to the Budds classi�er. Since this classi�er uses alinear discriminant function, we want the cost heuristic to adjust the threshold so the hyperplaneof discrimination is farther from the hypothetical region of examples of the more expensive class,thus enlarging the decision region of that class. The degree to which the algorithm adjusts thethreshold is again dependent on the magnitude of the cost parameter. The adjusted threshold �0is computed by:�0 = � � 2Xj=1 sgn(!j)cj�jwhere � is the original threshold for the linear discriminant function, sgn(!j) returns positive forthe positive class and negative for the negative class, and �j is the maximum value the weightedsum can take for the jth class. The cost-sensitive version of the Budds classi�er predicts thepositive class if the weighted sum of an instance's attributes surpasses the adjusted threshold �0;otherwise, it predicts the negative class.6.3 ROC Analysis for Evaluating PerformanceOur second challenge was to identify an experimental methodology that would let us comparethe behavior of our cost-sensitive learning methods on the rooftop data. We have already seenthat comparisons based on overall accuracy are not su�cient for domains that involve non-uniformcosts or skewed distributions. Rather, we must separately measure accuracy on both classes, interms of false positives and false negatives. Given information about the relative costs of errors,say from conversations with domain experts or from a domain analysis, we could then computea weighted accuracy for each algorithm that takes cost into account (e.g., Pazzani et al. 1994;Fawcett & Provost 1997).However, in this case, we had no access to image analysts or enough information about theresults of their interpretations to determine the actual costs for the domain. In such situations,rather than aiming for a single performance measure, as typically done in machine learning ex-
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False Positive RateFigure 2. An idealized Receiver Operating Characteristic (ROC) curve.periments, a natural solution is to evaluate each learning method over a range of cost settings.ROC (Receiver Operating Characteristic) analysis (Swets 1988) provides a framework for carry-ing out such comparisons. The basic idea is to systematically vary some aspect of the situation,such as the cost ratio or the class distribution, and to plot the false positive rate against the falsenegative rate for each situation. Although researchers have used such ROC curves in signal de-tection and psychophysics for decades (e.g., Green & Swets 1974; Egan 1975), this technique hasonly recently begun to �lter into machine learning research (e.g., Ezawa, Singh, & Norton 1996;Maloof et al. 1997; Provost & Fawcett 1997).Figure 2 shows an idealized ROC curve generated by varying the cost parameter of a cost-sensitivelearning algorithm. The lower left corner of the �gure represents the situation in which mistakeson the negative class are maximally expensive (i.e., c+ = 0:0 and c� = 1:0). Conversely, the upperright corner of the ROC graph represents the situation in which mistakes on the positive class aremaximally expensive (i.e., c+ = 1:0 and c� = 0:0). By varying over the range of cost parametersand plotting the classi�er's true positive and false positive rates, we produce a series of points thatrepresents the algorithm's accuracy trade-o�. The point (0, 1) is where classi�cation is perfect,with a false positive rate of zero and a true positive rate of one, so we want ROC curves that \push"toward this corner.Traditional ROC analysis uses area under the curve as the preferred measure of performance,with curves that cover larger areas generally being viewed as better (Hanley & McNeil 1982; Swets1988). Given the skewed nature of the rooftop data, and the di�erent but imprecise costs of errorson the two classes, we decided to use area under the ROC curve as the dependent variable in ourexperimental studies. This measure raises problems when two curves have similar areas but aredissimilar and asymmetric, and thus occupy di�erent regions of the ROC space. In such cases,other types of analysis are more useful (e.g., Provost & Fawcett 1997), but area under the curveappears to be most appropriate when curves have similar shapes and when one is nested within theother. As we will see, this relation typically holds for our cost-sensitive algorithms in the rooftopdetection domain.
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Budds ClassifierFigure 3. ROC curves for Images 1 and 2. We ran each method by training and testing using data derivedfrom the same image over a range of misclassi�cation costs. We conducted ten such runs andplotted the average true positive and false positive rates. These images are of the same locationbut di�erent aspects: Image 1 is a nadir view, while Image 2 is an oblique.7. Experimental StudiesTo investigate the use of machine learning for the task of rooftop detection, we conducted experi-ments using the cost-sensitive versions of naive Bayes, nearest neighbor, and the Budds classi�er.As typically done in such studies, in each experiment we trained the induction methods on data(rooftop candidates) separate from those used to test the learned classi�ers. As we will see, theexperiments di�ered in whether the training and test cases came from the same or distinct images,which let us examine di�erent forms of generalization beyond the training data.7.1 Within-Image LearningOur �rst experimental study examined how the various methods behaved given within-image learn-ing, that is, when generalizing to test cases taken from the same image on which we trained them.Our research hypothesis was that the learned classi�ers would be more accurate, over a range ofmisclassi�cation costs, than the handcrafted linear classi�er. Because our measure of performancewas area under the ROC curve, this translates into a prediction that the ROC curves of the learnedrooftop classi�ers would have larger areas than those of the Budds classi�er.For each image and method, we varied the error costs and measured the resulting true positiveand false positive rates for ten runs. Since costs are relative (i.e., c+ = 0:0 and c� = 0:5 is equivalentto c+ = 0:25 and c� = 0:75) and our domain involved only two classes, we varied the cost parameterfor only one class at a time and �xed the other at zero. Each run involved partitioning the data setrandomly into training (60%) and test (40%) sets, running the learning algorithms on the instancesin the training set, and evaluating the resulting concept descriptions using the data in the testset. Because the Budds classi�er was hand-con�gured, it had no training phase, so we applied itdirectly to the instances in the test set. For each cost setting and each classi�er, we plotted theaverage false positive rate against the average true positive rate over the ten runs.Figure 3 presents the ROC curves for Images 1 and 2. Naive Bayes and nearest neighbor givesimilar results, but both fare better than the Budds classi�er. Rather than present the curves



Rooftop Detection Through Machine Learning 12Table 2. Results for within-image experiments. For each image, we generated ROC curves by training andtesting each method over a range of costs. We used the approximate area under the curve as themeasure of performance, which appear with 95% con�dence intervals. Naive Bayes performed bestoverall, with the Budds classi�er outperforming nearest neighbor on three of the six images.Approximate Area under ROC CurveClassi�er Image 1 Image 2 Image 3 Image 4 Image 5 Image 6Naive Bayes 0.870�0.008 0.812�0.017 0.962�0.013 0.908�0.025 0.869�0.016 0.835�0.025Budds Classi�er 0.717�0.009 0.773�0.004 0.899�0.015 0.901�0.007 0.833�0.021 0.849�0.010Nearest Neighbor 0.823�0.019 0.833�0.016 0.911�0.010 0.801�0.028 0.819�0.027 0.739�0.017for the remaining four images, we follow Swets (1988) and report, in Table 2, the area undereach ROC curve, which we approximated by summing the areas of the trapezoids de�ned by eachpair of adjacent points in the ROC curve. For all images except for Image 6, naive Bayes producedcurves with areas greater than those for the Budds classi�er, thus generally supporting our researchhypothesis. On Images 4, 5, and 6, nearest neighbor did worse than the handcrafted method, whichruns counter to our prediction.7.2 Between-Image LearningWe geared our next set of experiments more toward the goals of image analysis. Recall thatour motivating problem is the large number of images that the analyst must process. In order toalleviate this burden, we want to apply knowledge learned from some images to many other images.But we have already noted that several dimensions of variation pose problems to transferring suchlearned knowledge to new images. For example, one viewpoint of a given site can di�er from otherviewpoints of the same site in orientation or in angle from the perpendicular. Images taken atdi�erent times and images of di�erent areas present similar issues.We designed experiments to let us understand better how the knowledge learned from one imagegeneralizes to other images that di�er along such dimensions. Our hypothesis here was a re�nedversion of the previous one: classi�ers learned from one set of images would be more accurate onunseen images than handcrafted classi�ers. However, we also expected that between-image learningwould give lower accuracy than the within-image situation, since di�erences across images wouldmake generalization more di�cult.One experiment focused on how the methods generalize over aspect. Recall from Table 1 that wehad images from two aspects (i.e., nadir and oblique) and from three locations. This let us trainthe learning algorithms on an image from one aspect and test on an image from another aspect butfrom the same location. As an example, for the nadir aspect, we chose Image 1 and then testedon Image 2, which is an oblique image of the same location. We ran the algorithms in this mannerusing the images from each location, while varying their cost parameters and measuring their truepositive and false positive rates. We then averaged these measures across the three locations andplotted the results as ROC curves, as shown in Figure 4. The areas under these curves and their95% con�dence intervals appear in Table 3.
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Budds ClassifierFigure 4. ROC curves for experiments that tested generalization over aspect. Left: For each location, wetrained each method on the oblique image and tested the resulting concept descriptions on thenadir image. We plotted the average true positive and false positive rates. Right: We followed asimilar methodology, except that we trained the methods on the nadir images and tested on theoblique images.One obvious conclusion is that the nadir images appear to pose an easier problem than theoblique images, since the curves for testing on nadir candidates are generally higher than thosefor testing on data from oblique images. For example, Table 3 shows that naive Bayes generatesa curve with an area of 0.878 for the nadir images, but produces a curve with an area of 0.842for the oblique images. The other two methods show a similar degradation in performance whengeneralizing from nadir to oblique images rather than from oblique to nadir images.Upon comparing the behavior of di�erent methods, we �nd that, for oblique to nadir generaliza-tion, naive Bayes (with an area under the ROC curve of 0.878) performs better than the Buddsclassi�er, with an area of 0.837, which in turn did better than nearest neighbor (0.795). For nadirto oblique generalization, naive Bayes performs slightly better than the Budds classi�er, whichproduce areas of 0.842 and 0.831, respectively. Nearest neighbor's curve in this situation covers anarea of 0.785, which is considerably smaller.A second experiment examined generalization over location. To this end, we trained the learningmethods on pairs of images from one aspect and tested on the third image from the same aspect.As an example, for the nadir images, one of the three learning runs involved training on rooftopcandidates from Images 1 and 3, then testing on candidates from Image 5. We then ran each of thealgorithms across a range of costs, measuring the false positive and true positive rates. We plottedthe averages of these measures across all three learning runs for one aspect in an ROC curve, asshown in Figure 5.In this context, we again see evidence that the oblique images presented a more di�cult recog-nition task than the nadir aspect, since the oblique areas are less than those for the nadir images.Comparing the behavior of the various methods, Table 3 shows that, for the nadir aspect, naiveBayes performs slightly better than the Budds classi�er, which give areas of 0.901 and 0.837.As before, both did better than nearest neighbor, which yielded an area of 0.819 under its ROCcurve. When generalizing over location on the oblique images, naive Bayes and the Budds classi-�er produced ROC curves with equal areas of 0.831. These were considerably better than nearestneighbor's, which had an area of 0.697.
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Budds ClassifierFigure 5. ROC curves for experiment that tested generalization over location. Left: For each pair of imagesfor the nadir aspect, we trained the methods on that pair and tested the resulting concept descrip-tions on the third image. We then plotted the average true positive and false positive rates. Right:We applied the same methodology using the images for the oblique aspect.Thus, the results with the naive Bayesian classi�er support our main hypothesis. In all exper-imental conditions this method fared better than or equal to the Budds linear classi�er. On theother hand, the behavior of nearest neighbor typically gave worse results than the handcraftedrooftop detector, which went against our original expectations.Recall that we also anticipated that generalizing across images would give lower accuracies thangeneralizing within images. To test this hypothesis, we must compare the results from these exper-iments with those from the within-image experiments (see Table 3). Simple calculation shows that,for the within-image condition (Table 2), naive Bayes produced an average ROC area of 0.9 for thenadir images and 0.851 for the oblique images. Similarly, nearest neighbor averaged 0.851 for thenadir images and 0.791 for the oblique images. Most of these these areas are substantially higherthan the analogous areas that resulted when these methods generalized across location and aspect.The one exception is that naive Bayes actually did equally well when generalizing over location forthe nadir image, but the results generally support our prediction.Also note that naive Bayes' performance degraded less than that of nearest neighbor when gen-eralizing to unseen images. This can be seen by comparing the di�erences between each method'sperformance in the within-image condition and in the between-image conditions. For example,naive Bayes' average degradation in performance over all experimental conditions was 0.013, whilenearest neighbor's was 0.47. This constitutes further evidence that naive Bayes is better suited forthis domain, at least when operating over the nine features used in our experiments.7.3 Learning from All Available ImagesOur next study used all of the rooftop candidates generated from the six Fort Hood images, sincewe wanted to replicate our previous results in a situation similar to that we envision being used inpractice, which would draw on training cases from all images. Based on the earlier experiments, weanticipated that the naive Bayesian classi�er would yield an ROC curve of greater area than thoseof the other methods.



Rooftop Detection Through Machine Learning 15Table 3. Results for between-image experiments. We again used the approximate area under the ROCcurve as the measure of performance, along with 95% con�dence intervals. Naive Bayes performedthe best, while the Budds classi�er generally outperformed nearest neighbor. The labels `Nadir'and `Oblique' indicate the testing condition. We derived analogous results for the within-imageexperiments by averaging the results for each condition. Approximate areas appear with 95%con�dence intervals.Aspect Experiment Location Experiment Within ImageClassi�er Nadir Oblique Nadir Oblique Nadir ObliqueNaive Bayes 0.878�0.042 0.842�0.063 0.901�0.079 0.831�0.067 0.900�0.012 0.851�0.022Budds Classi�er 0.837�0.085 0.831�0.068 0.837�0.085 0.831�0.068 0.837�0.085 0.831�0.068Nearest Neighbor 0.795�0.035 0.785�0.053 0.819�0.058 0.697�0.027 0.851�0.019 0.791�0.020Combining the rooftop candidates from all six images gave us 17,829 instances, 781 labeledpositive and 17,048 labeled negative. We ran each algorithm ten times over a range of costs. Foreach run and set of cost parameters, we randomly split the data into training (60%) and testing(40%) sets, then averaged the results for each cost level over its ten runs.Figure 6 shows the resulting ROC curves, which plot the true positive and false positive rates,whereas Table 4 gives the approximate area under these curves. As anticipated, naive Bayesperformed the best overall, producing a curve with area 0.85. Nearest neighbor fared slightlybetter than the Budds classi�er, yielding an area of 0.801, compared to 0.787 for the latter.In practice, image analysts will not evaluate a classi�ers performance using area under the ROCcurve but, rather, will have speci�c error costs in mind, even if they cannot state them formally.We have used ROC curves because we do not know these costs in advance, but we can inspectbehavior of the various classi�ers at di�erent points on these curves to give further insight into howmuch the learned classi�ers are likely to aid analysts during actual use.For example, consider the behavior of the naive Bayesian classi�er when it achieves a true positiverate of 0.84 and a false positive rate of 0.27, the third diamond from the right in Figure 6. To obtainthe same true positive rate, the Budds classi�er produced a 0.62 false positive rate. This meansthat, for a given true positive rate, naive Bayes reduced the false positive rate by more than halfover the handcrafted classi�er. Hence, for the images we considered, the naive Bayesian classi�erwould have rejected 5,969 more non-rooftops than Budds _Similarly, by �xing the false positive rate,naive Bayes improved the true positive rate by 0.12 over the Budds classi�er. In this case, theBayesian classi�er would have found 86 more rooftops than Budds would have detected.7.4 Rates of LearningWe were also interested in the behavior of the learning methods as they processed increasingamounts of training data. Our long-term goal is to embed the learned classi�er in an interactivesystem that supports an image analyst. For this reason, we would prefer a learning algorithm thatachieves high accuracy from relatively few training cases, since this should reduce the load on thehuman analyst.
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Figure 6. ROC curve for the experiment using all available image data. We ran each method over a range ofcosts using a training set (60%) and a testing set (40%) and averaged the true positive and falsepositive rates over ten runs. Naive Bayes produced the curve with the largest area, but nearestneighbor also yielded a curve larger in area than that for the Budds classi�er.To this end, we carried out a �nal experiment in which we systematically varied the numberof training cases available to the learning method. We again used all of the available rooftopcandidates, splitting the data into training (60%) and test (40%) sets, but further dividing thetraining set randomly into ten subsets (10%, 20%, : : :, 100%). We ran the learning algorithms oneach of the training subsets and evaluated the acquired concept descriptions on the reserved testingdata, averaging our results over 25 separate training/test splits.Figure 7 shows the resulting learning curves, each point of which corresponds to the average areaunder the ROC curves for a given number of training cases. As expected, the learning curve forthe the Budds classi�er is at, since it involves no training and we simply applied it to the sametest set for each number of training cases. However, nearest neighbor produces a curve that startsbelow that of the Budds classi�er and then surpasses it after seeing 70% of the training data. NaiveBayes shows similar improvement with increasing amounts of training data, but its performancewas better than the Budds classi�er from the start, after observing only 10% of the training data.This equates to roughly 6% of the available data and is less than the amount of data derived fromone image. Not only was naive Bayes the best performing method, but also it was able to achievethis performance using very little of the available training data.7.5 SummaryFrom the within-learning experiments, in which we trained and tested the learning methods usingdata derived from the same image, it was apparent that at least one machine learning method,naive Bayes, showed promise of improving the rooftop detection task over the handcrafted linearclassi�er. The results from this experiment also established baseline performance conditions for themethods because they controlled for di�erences in aspect and location.In an e�ort to test the learning methods for their ability to generalize to unseen images, we foundthat rooftop detection for oblique images posed a more di�cult problem than for nadir images. Thiscould be because Budds was initially developed using nadir images and then extended to handle



Rooftop Detection Through Machine Learning 17
Table 4. Results for the experiment using all of the image data. We split the data into training (60%) andtest (40%) sets and ran each method over a range of costs. We then computed the average areaunder the ROC curve and 95% con�dence intervals over ten runs.Classi�er Approximate AreaNaive Bayes 0.850�0.008Nearest Neighbor 0.801�0.008Budds Classi�er 0.787�0.008oblique images. Thus, the features may be biased toward nadir-view rooftops. A more likelyexplanation is that oblique images are simply harder than nadir images. Nevertheless, under allcircumstances, the performance of naive Bayes was equal to or better than that of the handcraftedlinear classi�er. Finally, we also discovered that the performance of the methods degraded whengeneralizing to unseen images, but that the performance of naive Bayes degraded less than that ofnearest neighbor.Our �nal experiment used all of the available image data for learning and demonstrated thatnaive Bayes and nearest neighbor outperformed the Budds classi�er. Further analysis of speci�cpoints on the ROC curves revealed that naive Bayes improved upon the false positive rate ofthe handcrafted solution by more than a factor of two for true positive rates of 0.84 and higher.Learning curves demonstrated that naive Bayes achieved superior performance using very little ofthe available training data.8. Related WorkResearch on learning in computer vision has become increasingly common in recent years. Somework in visual learning takes an image-based approach (e.g., Beymer & Poggio 1996), in which theimages themselves, usually normalized or transformed in some way, are used as input to a learningprocess, which is responsible for forming the intermediate representations necessary to transformthe pixels into a decision or classi�cation. Researchers have used this approach extensively for faceand gesture recognition (e.g., Chan, Nasrabadi, & Mirelli 1996; Gutta et al. 1996; Osuna, Freund, &Girosi 1997; Segen 1994), although it has seen other applications as well (e.g., Nayar & Poggio 1996;Pomerleau 1996; Viola 1993).A slightly di�erent approach relies on handcrafted vision routines to extract relevant imagefeatures, based on intensity or shape properties, then learns to recognize desired objects usingthese machine-produced classi�ers. Shepherd (1983) used decision-tree induction to classify shapesof chocolates for an industrial vision application. Cromwell and Kak (1991) took a similar approachfor recognizing electrical components, such as transistors, resistors, and capacitors. Maloof andMichalski (1997) examined various methods of learning shape characteristics for detecting blastingcaps in X-ray images, whereas additional work (Maloof et al. 1996) discussed learning in a multi-step vision system for the same detection problem.Several researchers have also investigated learning for three-dimensional vision systems. Papersby Conklin (1993), Connell and Brady (1987), Cook et al. (1993), Provan, Langley, and Binford
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Budds ClassifierFigure 7. Learning curves for area under the ROC curve using all available image data. We ran each methodon increasing amounts of training data and evaluated the resulting concept descriptions on reservedtesting data. Each point is an average of ten runs.(1996), and Sengupta and Boyer (1993) all describe inductive approaches aimed at improving objectrecognition. The aim here is to learn the three-dimensional structure that characterizes an object orobject class, rather than its appearance. Another line of research, which falls midway between thisapproach and image-based schemes, instead attempts to learn a small set of characteristic views,each of which can be used to recognize an object from a di�erent perspective (e.g., Gros 1993;Pope & Lowe 1996).Most work on visual learning ignores the importance of misclassi�cation costs, but our work alongthese lines has some precedents. In particular, Draper, Brodley, and Utgo� (1994) incorporate thecost of errors into their algorithm for constructing and pruning multivariate decision trees. Theytested this approach on the task of labeling pixels from outdoor images for use by a road-followingvehicle. They determined that, in this context, labeling a road pixel as non-road was more costlythan the reverse, and showed experimentally that their method could reduce such errors on noveltest pixels. Woods, Bowyer, and Kegelmeyer (1996), as well as Rowley, Baluja, and Kanade (1996),report similar work that takes into account the cost of errors.Much of the research on visual learning uses images of scenes or objects viewed at eye level (e.g.,Draper 1997; Teller & Veloso 1997). One exception is Connell and Brady's (1987) work on learningstructural descriptions of airplanes from aerial views. Their method converted training imagesinto semantic networks that it then generalized by comparing to descriptions of other instances.However, the authors do not appear to have tested experimentally their algorithm's ability toaccurately classify objects in new images. Another example is the SKICAT system (Fayyad et al.1996), which catalogs celestial objects, such as galaxies and stars, using images from the SecondPalomar Observatory Sky Survey.A related system, JARTool (Fayyad et al. 1996), also analyzes aerial images, in this case todetect Venusian volcanos, using synthetic aperture radar on the Magellan spacecraft. Asker andMaclin (1997) extend JARTool by using an ensemble of 48 neural networks to improve performance.Using ROC curves, they demonstrate that the ensemble achieved better performance than eitherthe individual learned classi�ers or the one used originally in JARTool. They also document some



Rooftop Detection Through Machine Learning 19of the di�culties associated with applying machine learning techniques to real-world problems, suchas feature selection and instance labeling, which were similar to problems we encountered.Finally, Draper (1996) reports a careful study of learning in the context of analyzing aerial images.His approach adapts methods for reinforcement learning to assign credit in multi-stage recognitionprocedure (for software similar to Budds), then uses an induction method (backpropagation inneural networks) to learn conditions on operator selection. He presents initial results on a RADIUStask that also involves the detection of roofs. Our framework shares some features with Draper'sapproach, but assumes that learning is directed by feedback from a human expert. We predictthat our supervised method will be more computationally tractable than his use of reinforcementlearning, which is well known for its high complexity. Our approach does require more interactionwith users, but we believe this interaction will be unobtrusive if cast within the context of anadvisory system for image analysis.9. Concluding RemarksAlthough this study has provided some insight into the role of machine learning in image analysis,much still remains to be done. For example, we may want to consider other measures of performancethat take into account the presence of multiple valid candidates for a given rooftop. Classifyingone of these candidates correctly is su�cient for the purpose of image analysis.In addition, although the rooftop selection stage was a natural place to start in applying ourmethods, we intend to work at both earlier and later levels of the building detection process. Thegoal here is not only to increase classi�cation accuracy, which could be handled entirely by candidateselection, but also to reduce the complexity of processing by removing poor candidates before theyare aggregated into larger structures. With this aim in mind, we plan to extend our work to alllevels of the image understanding process. We must address a number of issues before we can makeprogress on these other stages. One involves identifying the cost of di�erent errors at each level,and taking this into account in our modi�ed induction algorithms. Another concerns whether weshould use the same induction algorithm at each level or use di�erent methods at each stage.As we mentioned earlier, in order to automate the collection of training data for learning, we alsohope to integrate learning routines into Budds. This system was not designed initially to be inter-active, but we intend to modify it so that the image analyst can accept or reject recommendationsmade by the image understanding system, generating training data in the process. At intervalsthe system would invoke its learning algorithms, producing revised knowledge that would alter thesystem's behavior in the future and, hopefully, reduce the user's need to make corrections. Theinteractive labeling system described in Section 5 could serve as an initial model for this interface.In conclusion, our studies suggest that machine learning has an important role to play in improv-ing the accuracy, and thus the robustness, of image analysis systems. However, we need additionalexperiments to give better understanding of the factors a�ecting between-image generalization andwe need to extend learning to additional levels of the image understanding process. Also, before wecan build a system that truly aids the human image analyst, we must further develop unobtrusiveways to collect training data to support learning.
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