
To appear in Proceedings of the ARPA Image Understanding Workshop (1994). Monterey, CA: Morgan Kaufmann.Learning Object Models From Visual Observationand Background Knowledge�Pat Langley (langley@cs.stanford.edu)Institute for the Study of Learning and Expertise2451 High Street, Palo Alto, CA 94301 USAThomas O. Binford (binford@cs.stanford.edu)Tod S. Levitt (levitt@flamingo.stanford.edu)Robotics Laboratory, Computer Science DepartmentStanford University, Stanford, CA 94305 USAAbstractThis research project aims to use machine learn-ing techniques to improve the performance of three-dimensional vision systems. Building on our earlierwork, our approach represents and organizes models ofobject classes in a hierarchy of probabilistic concepts,and it uses Bayesian inference methods to focus atten-tion, recognize objects in images, and make predictionsabout occluded parts. The learning process involves notonly updating of the probabilistic descriptions in the con-cept hierarchy but also involves changes in the structureof memory, including the creation of novel categories, themerging of similar classes, and the elimination of unnec-essary ones. An evaluation metric based on probabilitytheory guides decisions about such structural changes,and background knowledge about function and genericobject classes further constrains the learning process.We plan to carry out systematic experiments to deter-mine the ability of this approach to improve both classi-�cation accuracy and predictive ability on novel images.1. IntroductionThe ability to perceive surroundings and recognize fa-miliar objects is a basic capability of intelligent agents.In the past decade, research on vision has met with in-creasing success, but as in other areas of AI, the needfor domain-speci�c knowledge has become increasinglyapparent. In addition to knowledge of sensors, imageformation, and image processing, a robust vision systemrequires a repertoire of geometric and material modelsfor three-dimensional objects. Together with the physi-cal laws that govern image formation, such models canbe used to predict imaged features of objects, focus at-tention in the processing of images to recognize theseobjects, constrain the search for alternative interpreta-* This research was was supported by Grant No. N00014-94-1-0746 from the O�ce of Naval Research, with partialfunding from the Advanced Research Projects Agency.

tions of what objects are present in an image, and im-prove the ability to make inferences about occluded orobscured structures. However, the creation and tuningof object models is a painstaking and time-consumingprocess, making it a bottleneck in the implementation ofpractical AI vision systems.Another basic feature of intelligent agents is the abil-ity to learn { to transform experience into knowledgethat improves performance. In the past decade, researchon machine learning has also made signi�cant strides,with the emergence of new algorithms and new methodsfor evaluating those techniques. However, most AI workon learning remains focused on symbolic domains suchas medical diagnosis or abstract planning. Such machinelearning research usually assumes logical representationsof knowledge, rather than ones based on measurementsextracted from sensor data about the environment. Forexample, a typical machine learning system might de-scribe an object as `red', or diseased cells as `notchedovals', but these features are not directly available inthe world. Color is a multidimensional phenomenon, asrevealed when one measures the light frequencies overan object's surface, part of which may be in shadow.Similarly, shapes di�er considerably in their detail, andrecognizing a `notch' requires representing its physicalstructure, then matching this description against ob-served curves in the presence of signi�cant noise aroundboundaries. In contrast to purely symbolic AI systems,intelligent agents must represent information about thephysical world, often in terms of numeric and proba-bilistic descriptions. Machine learning researchers wouldbene�t from working in domains that force them to ad-dress issues of perceptual representation and processing.Research on both machine learning and computer vi-sion emphasizes structure, but the appropriate catego-rization for an object is often determined by its function.For example, chairs as a class have an enormous varia-tion in appearance, but humans can recognize them bythe functionality implied by their generic 3D structure.A chair must have a platform approximately parallel to



Learning Object Models 2the ground with supporting structure below, at a heightconvenient to most humans. It must also have a surfaceelevated above the platform and approximately perpen-dicular to that surface to form a back support, with armand foot rests being optional. Thus, function and struc-ture constrain one another, often making it possible toinfer one from the other. An unconventionally shapeddoor is recognizable as an articulated object between twospaces even when the particular shape model is not rep-resented in the knowledge base. Functional knowledgeplays an important role in both vision and learning.In this paper we outline a research program that wehope will unify these aspects of intelligence. We planto use methods from machine learning to automaticallyre�ne object models for use in machine vision, startingwith knowledge of function. At the same time, we willuse vision as a challenging domain for the testing anddevelopment of methods for machine learning. We beginby reviewing our approach to representing experience,object models, and function, along with our scheme fororganizing this knowledge in long-term memory. Wethen turn to mechanisms for recognizing new cases ofobject classes in visual data, including techniques forprobabilistic inference and focus of attention. After thiswe discuss an incremental approach to learning objectmodels, drawing on both training instances and domainknowledge, then consider the contributions of this ap-proach to our understanding of vision and learning. Fi-nally, we present our plans for evaluating the resultingsystem in visual domains and discuss related work onvision and learning.2. Representation and Organization ofObject ModelsIn order to develop programs that can learn from visualobservations, we must �rst select some representationof physical objects. As in our previous work (Binford,Levitt, & Mann, 1989), we represent object models inlong-term memory at di�erent levels of part/subpart ag-gregation. The lower levels of these `part-of' hierarchiesinclude constructs such as edges and regions, edge/regionrelations, projections of volume primitives into 2D im-ages called ribbons, relations among ribbons, surfaces in3D space, and primitive volumes called generalized cylin-ders. The latter are the basic building blocks of three-dimensional object models; these models are described aslogical (and/or/not) combinations of generalized cylin-ders, spatial relations among local coordinate systems at-tached to model components, and relations among thesecombinations. Beliefs about objects in the world arerepresented using probabilistic distributions over eventsexpressed in the same hierarchical model representation.Object classes are also organized hierarchically in`type' or `is-a' hierarchies. This scheme reects the no-tion of object specialization and represents classes at dif-ferent levels of abstraction. For instance, most automo-biles have a hood, a trunk, a chassis, and four wheels,but they di�er in their relative sizes and locations. Thus,one can organize knowledge about classes of cars into an

is-a hierarchy that is partially ordered according to gen-erality. Concepts high in this hierarchy denote abstractclasses (sports cars, sedans), lower ones correspond toparticular makes (Jaguar XKE's and Mazda RX7's), andterminal nodes indicate speci�c cars (John's XKE). Onecan organize the components of cars (represented as gen-eralized cylinders) in a similar is-a hierarchy. Becausemore general categories cover a wider range of objects,their descriptions will typically have higher variances andthus provide fewer constraints on recognition and infer-ence than more speci�c ones. For instance, hypothesiz-ing that an object is a car makes less detailed predictionsthan hypothesizing it is a Jaguar XKE. We will returnto this issue later, when we discuss learning.The function of an object is directly related to theforces or motions that it exerts on other objects. In ourframework, functions are represented in terms of spatialrelationships among objects and sequential transforma-tions on those objects. Such sequences can be continu-ously indexed, as in the parametrized motion of a robotarm as a function of time. Other functions involve per-sistence over time, as in chair legs that support a seat.This view of function lets our framework represent, com-pute, and infer functions from 3D object structure, andto infer 3D object structure from knowledge of function.Because visual domains are inherently physical andperceptual, we represent all levels of aggregation, type,and function in terms of uncertain physical and geomet-ric constraints. Many of these constraints come fromgeneral physical and geometric knowledge combined withsensor models. For instance, we represent the probabilitythat certain types of edges and regions will be observed,given certain 3D object and sensor relations. Similarly,the occurrence of a certain generalized cylinder prob-abilistically `implies' the observation of certain ribbonrelations, and the occurrence of speci�c complex objectspredicts the observation of speci�c cylinders. Di�erentlevels of visual knowledge may assume di�erent proba-bility distributions, but all share a need to represent theuncertain relation between observations of the environ-ment and its actual state.There exists a simple and direct mapping from hier-archies of probabilistic concepts into Bayesian inferencenetworks (Lauritzen & Speigelhalter, 1988). Briey, eachobject class in an is-a hierarchy can correspond to a sin-gle node in the Bayesian network. In addition, eachpart-of component that occurs in the object hierarchycan map onto a node in the Bayesian network. Infor-mation about conditional probabilities, which is storedwith the concepts in the hierarchy, is stored on the in-uence links in the Bayesian network. Our approach tovisual recognition relies directly on this correspondence(Binford, Levitt, & Mann, 1989).3. Recognition of Object ClassesIn vision, one of the basic tasks is to recognize and inferthe structure of three-dimensional objects from obser-vational information that is present in imagery. Thistask requires processing at the multiple levels describedin the previous section, each of which introduces its own



Learning Object Models 3forms of uncertainty. In tackling the recognition problemwe will draw on the methods we have used in our ear-lier work (Binford et al., 1989), which incorporate bothbottom-up processing (from pixels to edges to ribbonsto cylinders to objects) and top-down processing. Ateach level, one maintains competing hypotheses aboutthe proper interpretation for portions of the image. Onemay believe with 0.95 probability that an inferred regionis associated with surface A and believe with 0.05 prob-ability it belongs with surface B. Similarly, one may be-lieve that an inferred generalized cylinder is a tire with0.8 probability, a boulder with 0.15 probability, and amanhole cover with 0.05 probability. These probabili-ties typically change over time, as additional evidenceemerges through further processing.In our previous vision research, we have used Bayesiannetworks to propagate evidence across di�erent levels ofthe part-of hierarchy. Conditional probabilities relatepart-of relations on the arcs of the hierarchy, whereasbelief in object components is represented at the nodesof the hierarchy. Leaves in the graph correspond toobserved measurements, whereas interior nodes specifyderived measurements. Inference is seeded by the out-put of edge operators that provide evidence for bound-aries in the imaged objects. Potential boundary seg-ments are grouped to match models of ribbons and pro-jected surfaces. Matches are instantiated as hypothesesfor instances of models occurring in the world supportedby the match evidence. Beliefs in the truth of modelmatches are represented as conditional probability dis-tributions over competing interpretations.Partial matches along the part-of hierarchy are com-pared against the object models to predict locations ofimagery features for other imaged object components.Decision-theoretic control algorithms order the actionswith the highest predicted payo� to gather additionalevidence in support or denial of hypothesized imageryinterpretations (Levitt, Binford, & Ettinger, 1990), thusdirecting attention to useful regions of the image. Theinstantiated network of matches forms a hierarchicalBayesian network in which nodes represent competing lo-cal interpretations and arcs represent hypothesized part-of relationships. As new nodes are instantiated frommatches, and as additional image processing of 2D/3Dgeometric and material evidence is attached to existingnodes, algorithms for updating Bayesian networks prop-agate beliefs over the entire network.By contrast, the recognition module we have usedin our work on machine learning (Gennari, Langley, &Fisher, 1989) starts with the most abstract concept inan is-hierarchy at a given level of aggregation, then es-timates the probability for each specialized child of thatconcept. Briey, recognition involves sorting an observedinstance downward through the probabilistic concept hi-erarchy, selecting the most probable alternative at eachis-a level. However, based on the mapping from a hi-erarchy of probabilistic concepts to a Bayesian network(described above), our future work will use the propa-gation techniques associated with the latter to classifyobjects instead. This approach should give the e�ects ofsorting through a hierarchy of probabilistic concepts but

provide both a cleaner semantics and consistency withour previous work on visual recognition. The schemealso provides a more coherent way to handle objects thathave part-of structure, which our previous learning work(Thompson & Langley, 1991) addressed in a somewhatad hoc manner.We will use the same probabilistic inference proce-dure to draw on functional knowledge during recogni-tion. The random variables at these nodes will specifytime-indexed parametric mappings among sets of ran-dom variables that represent objects. Bayesian networkssupport inference in both directions, from functions toobjects or vice versa. This uni�ed approach to represent-ing part-of, is-a, and functional knowledge will simplifythe processes of both visual recognition and learning.4. Re�ning Object Classes throughMachine LearningA central insight of machine learning is that backgroundknowledge can signi�cantly constrain the acquisition ofnew knowledge, and we are taking advantage of this ideain our work on learning in visual domains. In particular,we assume the system already has accurate probabilisticknowledge about lower levels of aggregation, from edgesto generalized cylinders. Processing at this level involvesspecialized optimal estimation problems that have beenaddressed elsewhere; thus, we are not dealing with learn-ing at these levels. Moreover, we assume the systemalready has an initial set of generic object models, in-cluding the generic pieces of which they are composed.For instance, in the domain of vehicles, we would assumeinitial knowledge of sedans, sports cars, station wagons,vans, and trucks, as well as knowledge of tires, hoods,doors, trunks, and the like.The speci�c learning task we will examine can bestated in terms of its inputs and outputs:� Given a set of generic object models and knowledgeof their function;� Given a set of images for instances of those objectclasses;� Acquire specializations of the object classes that im-prove accuracy of future object recognition.For instance, given generic models for various vehicletypes and images of particular vehicles, acquire objectmodels for speci�c makes of sedans and vans, as well asmodels for individual vehicles. Similarly, given genericmodels for vehicle components and images of particularcomponents, acquire models for speci�c types of tiresand doors, as well as models of individual components.To address this problem of learning specialized mod-els, we are borrowing directly from our previous workon incremental, unsupervised concept learning (Gennari,Langley, & Fisher, 1989). One can view generic objectmodels as nodes at the top (most general) level of an is-ahierarchy. In this view, the learning process involves thegradual addition of specialized concepts lower in this hi-erarchy, each making �ner distinctions than its parent,and thus containing more information that the system



Learning Object Models 4can use to direct its attention and evaluate competinghypotheses. This is the sense in which learning shouldgradually improve the visual recognition of object mod-els as the system gains experience in a domain.However, before one can specialize an existing genericobject model, it is necessary to �rst decide that an imagecontains an instance of that object class and hypothesizea speci�c three-dimensional description of that instance,including sub-parts, attributes, and specializing features.This is where background knowledge plays an essentialrole. We believe that the initial knowledge about genericobject models, combined with knowledge about the lowerlevels of aggregation, is su�cient to produce reasonablyaccurate descriptions of instances that occur in images.Functional knowledge also plays an important role in thisprocess, constraining both the types and parts of train-ing objects. The resulting descriptions are then passed tothe learning module, which uses them to modify knowl-edge in the is-a hierarchy. This specialized knowledge inturn constrains future recognition and learning.Given a mechanism for assigning training instances toobject classes, and thus sorting the instance through anis-a hierarchy, learning can occur in a number of ways.The simplest mechanisms merely update the probabilis-tic descriptions for each model to which the instance isassigned, but others actually modify the structure of thehierarchy. Figure 1 illustrates the four learning operatorsthat can lead to such changes:� extending downward , which occurs when a trainingcase reaches a terminal node in memory; under thesecircumstances, the learner creates a new node N thatis a probabilistic summary of the case and the termi-nal node, making both children of N ;� creating a sibling , which occurs if a training case issu�ciently di�erent from all children of a node N ; inthis situation, the learner creates a new child of Nbased on the case;� merging two concepts, which occurs if a case is similarenough to two children of node N that the learnerjudges all three should be combined into a single child;� splitting a concept , which occurs when a case is di�er-ent enough from a child C of node N that the learnerdecides C should be removed and its children movedup to become children of N .The last three of these actions are considered at eachlevel of the hierarchy, as the system sorts the new train-ing instance downward through memory. If none of theseare deemed appropriate, the induction algorithm simplyaverages the case into the probabilistic structural de-scription for the best-matching category, then recursesto the next level.The most important issue here involves decidingwhether, at a given level in the hierarchy, the instanceshould be incorporated into one of the existing sub-classes, or whether it is su�ciently di�erent from themto justify creation of an entirely new subclass. Gen-nari, Langley, and Fisher (1989) describe an evaluationfunction based on information theory that can be used

to make these decisions. However, experimental studieswith this method have revealed signi�cant sensitivity tothe ordering of training instances. The merge and splitoperators mitigate this e�ect, but much of the problemseems due to overcommitment to an unfavorable hierar-chy structure early in the learning process. Fortunately,McKusick and Langley (1991) have shown that prim-ing the concept hierarchy with reasonable top-level cat-egories reduces order e�ects, producing more rapid im-provement in predictive accuracy and giving more un-derstandable concept hierarchies. Although their resultsfocused on attribute-value formalisms, they should alsohold for more complex representations and thus furtherrecommend our introduction of background knowledgein the form of generic object models.Like all induction algorithms, Gennari et al.'s learn-ing method is negatively a�ected by the presence of ir-relevant attributes in the instance descriptions, and weexpect this issue will be exacerbated in visual domains,where complex objects can involve hundreds of features.Our response to this problem relies on knowledge of ob-jects' functions, embodied in a utility metric (Edwards,1993) that inuences the application of the four learningoperators. The basic probabilities passed to this utilitymetric would still come from the reconstruction of 3Dobject parts and their spatial relations, and if we basedlearning decisions on this factor alone, we would obtainclasses and subclasses based entirely on similarities of3D structure. However, the utility metric can encodetask-speci�c knowledge about the relative importance ofdi�erent factors, whether these involve the structure ofparts and their con�guration, their surface appearance,or their overall function.For example, in some domains one may care moreabout the orientation of an object's parts than the sweep-ing function used to describe them. Thus, chairs withround seats and backs (which provide vertical and lat-eral support) would be more similar chairs with squareseats and backs (which provide the same support) thanthey would to objects with round components oriented indi�erent ways (and thus provide no support). Likewise,some di�erences in surface appearance (e.g., a countrydesignator on an aircraft) may be more important insome contexts than others that are equally large (e.g.,mud on an aircraft). Even though door knobs and doorhandles have very di�erent 3D structures, they serve thesame purpose, which is reected in their similar heightson doors and their graspability by the human hand.We can encode knowledge about the relative impor-tance of such factors { whether they involve structure,appearance, or function { in the utility metric. In thisscheme, one multiplies the importance values by theprobabilities inferred during 3D reconstruction, thus bi-asing decisions made during the selection of learning op-erators. The incorporation of task-oriented knowledgeabout utility leads to a much richer theoretical frame-work for learning than one that deals only with di�er-ences in 2D or 3D structure, and we predict that it willsigni�cantly speed the rate of learning by reducing theinuence of irrelevant features.
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(a) (b)

(c) (d)Figure 1: Learning operators used to modify the structure of a hierarchy of probabilistic concepts: (a) extendingthe hierarchy downward; (b) creating a new sibling at the current level; (c) merging two existing concept; and (d)splitting an existing concept. Newly created nodes are shown in gray.5. Contributions of the ResearchAlthough the proposed research will build on our pre-vious work on computer vision (Binford et al., 1989)and machine learning (Gennari at al., 1989), it will ad-dress issues that go beyond the simple merging of thesetwo traditionally separate paradigms. Our earlier e�ortsshared some basic assumptions, such as the importanceof handling uncertainty and a reliance on probabilisticmethods, but the full integration of the two approachesstill requires some important advances. In particular, wemust:� Identify robust methods for unsupervised learningover structural descriptions and multiple levels ofaggregation. Previous work on structural induc-tion, including our own (Thompson & Langley, 1991)has used impoverished representations, and Bin-ford et al.'s (1989) formalism for representing phys-ical objects provides a much richer description lan-guage but also a greater challenge than addressed inprevious learning research.� Explore the use of background knowledge, includ-ing functional information, to constrain the learningprocess. Most research on learning in the presenceof functional knowledge has used representations de-signed for logical reasoning (e.g., Horn clauses), ratherthan formalisms that support recognition in uncertaindomains like vision. Our goal of storing backgroundknowledge in the same hierarchy as learned knowl-edge, and our scheme for mapping function onto phys-ical structure, provides a more coherent frameworkbut also takes us into unexplored waters.

� Clarify the relation between probabilistic concept hi-erarchies and Bayesian inference networks. Most re-cent work on probabilistic induction has used concepthierarchies, but Bayesian networks, which have playeda central role in our vision work, have drawn consider-able attention in other circles. Our mapping betweenthese approaches to organizing, using, and learningprobabilistic knowledge should help both communi-ties understand the contributions of the other.In addition, we must also �nd ways to evaluate the learn-ing ability of the system we are developing. Althoughthe �eld of machine learning has a reputation for care-ful experimental studies, it has focused on simple learn-ing tasks involving attribute-value representations, it hasseldom addressed the role of background knowledge, andit has avoided complex tasks like 3D vision. In con-trast, the computer vision community typically workswith quite complex images, but sometimes lacks care-ful empirical studies involving many test cases and well-de�ned metrics. The empirical studies of our learningalgorithm, to which we now turn, must take the bestfrom both of these worlds.6. Plans for Experimental EvaluationIn evaluating our system's ability to learn, we will drawupon experimental methods that are now commonlyused within the machine learning community (Kibler &Langley, 1988). In this framework, the goal of learn-ing is to improve performance on some task, in this casethe recognition and description of objects in images. Wewill divide images into training and test cases, present



Learning Object Models 6the training images to the learning system sequentially,and measure its performance on the test instances afterevery N training instances. We will average the resultinglearning curves over many runs based on di�erent ran-dom orders of the training cases. We will also comparethese curves against the performance of a nonlearningsystem that uses only generic object models.We will use three main measures of performance,which will serve as the dependent variables in our ex-periments. The �rst is simply the accuracy of classi�-cation, i.e., the percentage of instances correctly labeledby object class. Although our learning algorithm will beunsupervised, one can provide the system with class in-formation in the training data, provided it is not used inlearning, and then ask the system to predict the class ontest instances. This provides a reasonable measure of thelearning algorithm's ability to acquire classes that werepresent in the data. A more di�cult task involves pre-dicting the three-dimensional structure of objects in testimages: given an image of an object, the system must useits acquired knowledge to generate a three-dimensionaldescription of the object. Here the performance measureis the average di�erence between the actual and inferredstructure. A third metric involves the time required forrecognition, measured both in CPU seconds and in termsof basic inference steps taken by the performance system.We are considering a number of domains for use in ourexperimental studies. One such domain involves ten ma-chined parts that make up a benchmark suite developedby researchers at the University of Utah. Five parts arecover plates and �ve are steering arms; one of each typeis correctly machined, whereas others are defective partsthat have missing, extra, or misplaced features. Theseimages would let us avoid some issues, such as �gure-ground separation, but the object shapes are su�cientlycomplex to challenge our representation, performancemethod, and learning algorithm. For this domain, wewould provide background knowledge about the shapeof correct objects and their function, and we expect thatour induction method would acquire subclasses that cor-respond to di�erent types of defective parts.A second domain we are considering involves the in-terpretation of aerial images for the purpose of surveil-lance or inventory. In this case, the objects of interestare buildings, roads, vehicles, and related cultural arti-facts such as fences and parking lots. The aim here goesbeyond the recognition of individual objects to the de-tection of signi�cant object con�gurations. For example,an important distinction in this domain is between air-�elds that are preparing to launch attacks and ones thatare not. Such concerns relate directly to our ideas aboutthe importance of function in recognition and learning,and they suggest obvious forms of background knowledgeto give the system. The availability of high-resolutionaerial images (10,000 � 10,000 pixels), through the RA-DIUS program's Fort Hood data set, would aid testingin this domain.Our approach to learning object models suggests anumber of explicit hypotheses that we plan to test inour experiments. The most obvious of these is that, asthe system encounters more training images, both its

recognition and prediction accuracy should improve onnovel test images. However, we also expect that recogni-tion time will decrease, due to an improved ability to fo-cus attention on objects of particular subclasses. Givenlimited recognition time, we naturally expect a trade-o� between speed and accuracy, but we also predict thistradeo� will become atter with experience, so that (af-ter enough learning) the vision system will recognize ob-jects very rapidly with little loss in accuracy.We will also use our experiments to assign credit todi�erent components of the learning system. For exam-ple, we will compare the full algorithm, which re�nesthe initial concept hierarchy by creating new subclasses,with a lesioned version that only alters the probabilitydistributions associated with the original object models.We hypothesize that the re�nement process will lead,asymptotically, to higher accuracy and faster recogni-tion in domains where subclasses exist. We also ex-pect that background knowledge, whether in the formof generic object models or a function-motivated utilitymetric, will reduce the number of training cases neededto reach asymptotic performance, minimize the e�ects oftraining order, and mitigate the inuence of irrelevantfeatures. However, all of these predictions are subject toexperimental tests, and we must know the results beforedrawing conclusions about the usefulness of the variousfacets of our approach.7. Related Work on Vision and LearningRecently, a number of other researchers have also ex-plored techniques for inducing object models from train-ing images, and we should briey compare their ap-proaches to our own. In each case, we discuss the repre-sentation and organization of learned knowledge, alongwith the performance and learning components that useand acquire that knowledge.For example, Pope and Lowe (1993) represent a par-ticular object as a set of characteristic views, each de-scribed as a set of features at multiple levels of aggre-gation. Associated with each feature is a probability ofoccurrence and a probability distribution for its numericattributes. These descriptions are exclusively 2D, whichcontrasts with our emphasis on 3D models. Recogni-tion of new images involves using Bayes' rule to computethe probability of each view given the features found inthe image, then selecting the most likely one. Pope andLowe's learning scheme incrementally assigns each im-age description to the most likely view and updates theprobability distributions for that view, but creates newcharacteristic views for su�ciently novel instances. Thismethod is very similar to our induction algorithm, ex-cept that it creates only one level of clusters and usesa di�erent evaluation metric. In related work, Beis andLowe (1993) have focused on creating concept hierarchiesand indexing object models, which comes closer to ourhierarchical approach.Sengupta and Boyer (1993) have taken a similar ap-proach that also represents objects models as probabilis-tic summaries at di�erent levels of aggregation. Theirwork emphasizes the organization of models in an is-a hi-erarchy, through which they sort new descriptions during
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Figure 2: Overview of the framework for combining computer vision and machine learning. The vision process uses ahierarchy of generic models to transform a training image into a 3D description of objects in the image. The learningprocess then uses this description to modify the hierarchy, using a utility metric to bias its decisions.recognition. This sorting process leads to updates in theprobabilistic summaries through which the descriptionpasses, and it produces a new subclass when it reaches alevel at which the description is su�ciently di�erent fromexisting class summaries. Thus, the scheme is very simi-lar to our earlier work on unsupervised concept learning,di�ering primarily in its evaluation metric and its use ofbeam search for sorting rather than a greedy method.Sengupta and Boyer have tested their approach using 3Dobject descriptions, but have taken their training casesfrom a CAD library rather than actual images.Segen (1993) has also used probabilistic summaries, atdi�erent levels of aggregation, to represent object mod-els. He describes each class of objects as a `stochasticgraph', which consists of a set of components, each de-scribed using a discrete probability distribution over aset of nodes that are themselves stochastic graphs. Therecognition process assigns an image to the most likelytop-level graph, and the incremental learning algorithmeither updates the probabilistic summaries for the se-lected class or creates a new class if the image is di�erentenough from existing ones. The evaluation metric usedin both recognition and learning is closely related to no-tions of minimum description length. Segen has testedthis approach in the domain of gesture recognition.Conklin (1993) has taken a di�erent approach to rep-resentation that relies on logical descriptions. His sys-tem organizes memory into an is-a hierarchy, but eachnonterminal node contains not a complete summary oftraining cases but conjunctions of features held in com-mon by all of its children. These descriptions, whichare transformation invariant, serve primarily as indicesfor retrieving individual training cases, but also aid in

parsing images as they are sorted through the hierarchy.As in our earlier work, learning is incremental and inter-leaved with the sorting process, with training cases beingstored as new terminal nodes but also leading to moregeneral descriptions along the paths they traverse. Con-klin has tested his approach on molecular scene analysisgiven electron density maps.Gros (1993) has taken a nonincremental clustering ap-proach to the induction of 2D object models. His ap-proach represents a model as a set of characteristic views,each having a set of logical features, such as line segmentsand their points of intersection, all occurring at a singlelevel of aggregation. Although Gros does not describe aperformance component, one might use such descriptionsfor object recognition to assign images to the character-istic view with the most matched features, using someversion of a nearest neighbor algorithm. The learningstage draws on a nonincremental agglomerative cluster-ing algorithm,which successively merges the two clustersof images that are nearest in the feature space, then em-ploys a threshold to determine the top-level classes.Our emphasis on the role of background knowledgeand function distinguishes our framework from most re-search on vision and learning, but Cook, Hall, Stark,and Bowyer (1993) describe an alternative method thatalso incorporates these ideas. They provide their learn-ing system with models for an object class (e.g., chairs)and a set of `fuzzy' inference rules for predicting the de-gree to which an object satis�es its function. A tutorprovides training images with associated functionalityscores, on which the learning algorithm bases its revi-sion of the inference rules' conditions, using a techniquesimilar to backpropagation. Background knowledge lets



Learning Object Models 8the system infer a 3D description from the image, andit also constrains the functional learning process. Thisapproach di�ers from ours in its use of fuzzy inferencerather than probabilistic reasoning, and in its empha-sis on predicting functionality rather than on recogni-tion. The earlier work of Winston, Binford, Katz, andLowry (1983) on learning recognition rules from func-tional knowledge comes closer to our approach, but herethe learned process generated logical descriptions.As we have seen, the recent literature includes a num-ber of research e�orts that address many of the same is-sues as our ongoing work. Some deal with the incremen-tal, unsupervised induction of object models, others in-corporates probabilistic representations and recognitionmechanisms, a few focus on the organization of knowl-edge in long-term memory and the importance of ab-stract object classes, and one draws on functional back-ground knowledge. However, none have attempted tocombine all of these ideas into a coherent framework.8. Concluding RemarksIn summary, we are developing a theoretical frameworkthat uni�es our previous work on computer vision andmachine learning. As Figure 2 depicts, this frameworkassumes that the vision system uses background knowl-edge, in the form of generic models of object classes, toreconstruct three-dimensional descriptions of objects in atraining image. The learning system then uses uses thesedescriptions, along with functional knowledge encodedin a utility metric, to revise the background knowledgeby forming more specialized descriptions of the objects'classes, which the vision system uses in turn on the nextimage. Techniques for handling uncertainty are centralto both the vision and learning modules.Although our project remains in its early stages, weare con�dent that the basic approach will increase ourunderstanding of both computer vision and machinelearning. We have not yet integrated the two compo-nents of our system, but we have decided on a commonrepresentation language that will let them communicate,we have examined the domain of machined parts in somedetail, and we have designed speci�c experiments to testour hypotheses about the impact of learning and back-ground knowledge on the speed and accuracy of the vi-sion process. Whether these hypotheses are borne out,or whether we must modify our system design to achievethe desired e�ects, is the central question that we hopeto answer in our future research.ReferencesBeis, J. S., & Lowe, D. G. (1993). Learning in-dexing functions for 3D model-based object recogni-tion. Working Notes of the AAAI Fall Symposium onMachine Learning in Computer Vision (pp. 50{54).Raleigh, NC: AAAI Press.Binford, T. O., Levitt, T. S., & Mann, W. B. (1989).Bayesian inference in model-based machine vision. InL. N. Kanal, T. S. Levitt, & J. F. Lemmer (Eds.),Uncertainty in arti�cial intelligence (Vol. 3). NorthHolland.
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