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Abstract

This research project aims to use machine learn-
ing techniques to improve the performance of three-
dimensional vision systems. Building on our earlier
work, our approach represents and organizes models of
object classes in a hierarchy of probabilistic concepts,
and 1t uses Bayesian inference methods to focus atten-
tion, recognize objects in images, and make predictions
about occluded parts. The learning process involves not
only updating of the probabilistic descriptions in the con-
cept hierarchy but also involves changes in the structure
of memory, including the creation of novel categories, the
merging of similar classes, and the elimination of unnec-
essary ones. An evaluation metric based on probability
theory guides decisions about such structural changes,
and background knowledge about function and generic
object classes further constrains the learning process.
We plan to carry out systematic experiments to deter-
mine the ability of this approach to improve both classi-
fication accuracy and predictive ability on novel images.

1. Introduction

The ability to perceive surroundings and recognize fa-
miliar objects is a basic capability of intelligent agents.
In the past decade, research on vision has met with in-
creasing success, but as in other areas of Al the need
for domain-specific knowledge has become increasingly
apparent. In addition to knowledge of sensors, image
formation, and image processing, a robust vision system
requires a repertoire of geometric and material models
for three-dimensional objects. Together with the physi-
cal laws that govern image formation, such models can
be used to predict imaged features of objects, focus at-
tention in the processing of images to recognize these
objects, constrain the search for alternative interpreta-
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tions of what objects are present in an image, and im-
prove the ability to make inferences about occluded or
obscured structures. However, the creation and tuning
of object models is a painstaking and time-consuming
process, making it a bottleneck in the implementation of
practical Al vision systems.

Another basic feature of intelligent agents is the abil-
ity to learn — to transform experience into knowledge
that improves performance. In the past decade, research
on machine learning has also made significant strides,
with the emergence of new algorithms and new methods
for evaluating those techniques. However, most Al work
on learning remains focused on symbolic domains such
as medical diagnosis or abstract planning. Such machine
learning research usually assumes logical representations
of knowledge, rather than ones based on measurements
extracted from sensor data about the environment. For
example, a typical machine learning system might de-
scribe an object as ‘red’; or diseased cells as ‘notched
ovals’, but these features are not directly available in
the world. Color is a multidimensional phenomenon, as
revealed when one measures the light frequencies over
an object’s surface, part of which may be in shadow.
Similarly, shapes differ considerably in their detail, and
recognizing a ‘notch’ requires representing its physical
structure, then matching this description against ob-
served curves in the presence of significant noise around
boundaries. In contrast to purely symbolic Al systems,
intelligent agents must represent information about the
physical world, often in terms of numeric and proba-
bilistic descriptions. Machine learning researchers would
benefit from working in domains that force them to ad-
dress issues of perceptual representation and processing.

Research on both machine learning and computer vi-
sion emphasizes structure, but the appropriate catego-
rization for an object is often determined by 1ts function.
For example, chairs as a class have an enormous varia-
tion in appearance, but humans can recognize them by
the functionality implied by their generic 3D structure.
A chair must have a platform approximately parallel to
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the ground with supporting structure below, at a height
convenient to most humans. It must also have a surface
elevated above the platform and approximately perpen-
dicular to that surface to form a back support, with arm
and foot rests being optional. Thus, function and struc-
ture constrain one another, often making it possible to
infer one from the other. An unconventionally shaped
door is recognizable as an articulated object between two
spaces even when the particular shape model 1s not rep-
resented in the knowledge base. Functional knowledge
plays an important role in both vision and learning.

In this paper we outline a research program that we
hope will unify these aspects of intelligence. We plan
to use methods from machine learning to automatically
refine object models for use in machine vision, starting
with knowledge of function. At the same time, we will
use vision as a challenging domain for the testing and
development of methods for machine learning. We begin
by reviewing our approach to representing experience,
object models, and function, along with our scheme for
organizing this knowledge in long-term memory. We
then turn to mechanisms for recognizing new cases of
object classes in visual data, including techniques for
probabilistic inference and focus of attention. After this
we discuss an incremental approach to learning object
models, drawing on both training instances and domain
knowledge, then consider the contributions of this ap-
proach to our understanding of vision and learning. Fi-
nally, we present our plans for evaluating the resulting
system in visual domains and discuss related work on
vision and learning.

2. Representation and Organization of
Object Models

In order to develop programs that can learn from visual
observations, we must first select some representation
of physical objects. As in our previous work (Binford,
Levitt, & Mann, 1989), we represent object models in
long-term memory at different levels of part/subpart ag-
gregation. The lower levels of these ‘part-of” hierarchies
include constructs such as edges and regions, edge/region
relations, projections of volume primitives into 2D im-
ages called ribbons, relations among ribbons, surfaces in
3D space, and primitive volumes called generalized cylin-
ders. The latter are the basic building blocks of three-
dimensional object models; these models are described as
logical (and/or/not) combinations of generalized cylin-
ders, spatial relations amonglocal coordinate systems at-
tached to model components, and relations among these
combinations. Beliefs about objects in the world are
represented using probabilistic distributions over events
expressed in the same hierarchical model representation.

Object classes are also organized hierarchically in
‘type’ or ‘is-a’ hierarchies. This scheme reflects the no-
tion of object specialization and represents classes at dif-
ferent levels of abstraction. For instance, most automo-
biles have a hood, a trunk, a chassis, and four wheels,
but they differ in their relative sizes and locations. Thus,
one can organize knowledge about classes of cars into an

is-a hierarchy that is partially ordered according to gen-
erality. Concepts high in this hierarchy denote abstract
classes (sports cars, sedans), lower ones correspond to
particular makes (Jaguar XKE’s and Mazda RX7’s), and
terminal nodes indicate specific cars (John’s XKE). One
can organize the components of cars (represented as gen-
eralized cylinders) in a similar is-a hierarchy. Because
more general categories cover a wider range of objects,
their descriptions will typically have higher variances and
thus provide fewer constraints on recognition and infer-
ence than more specific ones. For instance, hypothesiz-
ing that an object is a car makes less detailed predictions
than hypothesizing it is a Jaguar XKE. We will return
to this issue later, when we discuss learning.

The function of an object is directly related to the
forces or motions that 1t exerts on other objects. In our
framework, functions are represented in terms of spatial
relationships among objects and sequential transforma-
tions on those objects. Such sequences can be continu-
ously indexed, as in the parametrized motion of a robot
arm as a function of time. Other functions involve per-
sistence over time, as in chair legs that support a seat.
This view of function lets our framework represent, com-
pute, and infer functions from 3D object structure, and
to infer 3D object structure from knowledge of function.

Because visual domains are inherently physical and
perceptual, we represent all levels of aggregation, type,
and function in terms of uncertain physical and geomet-
ric constraints. Many of these constraints come from
general physical and geometric knowledge combined with
sensor models. For instance, we represent the probability
that certain types of edges and regions will be observed,
given certain 3D object and sensor relations. Similarly,
the occurrence of a certain generalized cylinder prob-
abilistically ‘implies’ the observation of certain ribbon
relations, and the occurrence of specific complex objects
predicts the observation of specific cylinders. Different
levels of visual knowledge may assume different proba-
bility distributions, but all share a need to represent the
uncertain relation between observations of the environ-
ment and its actual state.

There exists a simple and direct mapping from hier-
archies of probabilistic concepts into Bayesian inference
networks (Lauritzen & Speigelhalter, 1988). Briefly, each
object class in an is-a hierarchy can correspond to a sin-
gle node in the Bayesian network. In addition, each
part-of component that occurs in the object hierarchy
can map onto a node in the Bayesian network. Infor-
mation about conditional probabilities, which is stored
with the concepts in the hierarchy, 1s stored on the in-
fluence links in the Bayesian network. Our approach to
visual recognition relies directly on this correspondence

(Binford, Levitt, & Mann, 1989).

3. Recognition of Object Classes

In vision, one of the basic tasks is to recognize and infer
the structure of three-dimensional objects from obser-
vational information that is present in imagery. This
task requires processing at the multiple levels described
in the previous section, each of which introduces 1ts own
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forms of uncertainty. In tackling the recognition problem
we will draw on the methods we have used in our ear-
lier work (Binford et al., 1989), which incorporate both
bottom-up processing (from pixels to edges to ribbons
to cylinders to objects) and top-down processing. At
each level, one maintains competing hypotheses about
the proper interpretation for portions of the image. One
may believe with 0.95 probability that an inferred region
1s associated with surface A and believe with 0.05 prob-
ability 1t belongs with surface B. Similarly, one may be-
lieve that an inferred generalized cylinder is a tire with
0.8 probability, a boulder with 0.15 probability, and a
manhole cover with 0.05 probability. These probabili-
ties typically change over time, as additional evidence
emerges through further processing.

In our previous vision research, we have used Bayesian
networks to propagate evidence across different levels of
the part-of hierarchy. Conditional probabilities relate
part-of relations on the arcs of the hierarchy, whereas
belief in object components is represented at the nodes
of the hierarchy. Leaves in the graph correspond to
observed measurements, whereas interior nodes specify
derived measurements. Inference is seeded by the out-
put of edge operators that provide evidence for bound-
aries in the imaged objects. Potential boundary seg-
ments are grouped to match models of ribbons and pro-
jected surfaces. Matches are instantiated as hypotheses
for instances of models occurring in the world supported
by the match evidence. Beliefs in the truth of model
matches are represented as conditional probability dis-
tributions over competing interpretations.

Partial matches along the part-of hierarchy are com-
pared against the object models to predict locations of
imagery features for other imaged object components.
Decision-theoretic control algorithms order the actions
with the highest predicted payoff to gather additional
evidence in support or denial of hypothesized imagery
interpretations (Levitt, Binford, & Ettinger, 1990), thus
directing attention to useful regions of the image. The
instantiated network of matches forms a hierarchical
Bayesian network in which nodes represent competing lo-
cal interpretations and arcs represent hypothesized part-
of relationships. As new nodes are instantiated from
matches; and as additional image processing of 2D/3D
geometric and material evidence is attached to existing
nodes, algorithms for updating Bayesian networks prop-
agate beliefs over the entire network.

By contrast, the recognition module we have used
in our work on machine learning (Gennari, Langley, &
Fisher, 1989) starts with the most abstract concept in
an is-hierarchy at a given level of aggregation, then es-
timates the probability for each specialized child of that
concept. Briefly, recognition involves sorting an observed
instance downward through the probabilistic concept hi-
erarchy, selecting the most probable alternative at each
is-a level. However, based on the mapping from a hi-
erarchy of probabilistic concepts to a Bayesian network
(described above), our future work will use the propa-
gation techniques associated with the latter to classify
objects instead. This approach should give the effects of
sorting through a hierarchy of probabilistic concepts but

provide both a cleaner semantics and consistency with
our previous work on visual recognition. The scheme
also provides a more coherent way to handle objects that
have part-of structure, which our previous learning work
(Thompson & Langley, 1991) addressed in a somewhat
ad hoc manner.

We will use the same probabilistic inference proce-
dure to draw on functional knowledge during recogni-
tion. The random variables at these nodes will specify
time-indexed parametric mappings among sets of ran-
dom variables that represent objects. Bayesian networks
support inference in both directions, from functions to
objects or vice versa. This unified approach to represent-
ing part-of, is-a, and functional knowledge will simplify
the processes of both visual recognition and learning.

4. Refining Object Classes through
Machine Learning

A central insight of machine learning is that background
knowledge can significantly constrain the acquisition of
new knowledge, and we are taking advantage of this idea
in our work on learning in visual domains. In particular,
we assume the system already has accurate probabilistic
knowledge about lower levels of aggregation, from edges
to generalized cylinders. Processing at this level involves
specialized optimal estimation problems that have been
addressed elsewhere; thus, we are not dealing with learn-
ing at these levels. Moreover, we assume the system
already has an initial set of generic object models, in-
cluding the generic pieces of which they are composed.
For instance, in the domain of vehicles, we would assume
initial knowledge of sedans, sports cars, station wagons,
vans, and trucks, as well as knowledge of tires, hoods,
doors, trunks, and the like.

The specific learning task we will examine can be
stated in terms of 1ts inputs and outputs:

e Given a set of generic object models and knowledge
of their function;

e Given a set of images for instances of those object
classes;

e Acquire specializations of the object classes that im-
prove accuracy of future object recognition.

For instance, given generic models for various vehicle
types and images of particular vehicles, acquire object
models for specific makes of sedans and vans, as well as
models for individual vehicles. Similarly, given generic
models for vehicle components and images of particular
components, acquire models for specific types of tires
and doors, as well as models of individual components.

To address this problem of learning specialized mod-
els, we are borrowing directly from our previous work
on incremental, unsupervised concept learning (Gennari,
Langley, & Fisher, 1989). One can view generic object
models as nodes at the top (most general) level of an is-a
hierarchy. In this view, the learning process involves the
gradual addition of specialized concepts lower in this hi-
erarchy, each making finer distinctions than its parent,
and thus containing more information that the system
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can use to direct its attention and evaluate competing
hypotheses. This is the sense in which learning should
gradually improve the visual recognition of object mod-
els as the system gains experience in a domain.

However, before one can specialize an existing generic
object model, it is necessary to first decide that an image
contains an instance of that object class and hypothesize
a specific three-dimensional description of that instance,
including sub-parts, attributes, and specializing features.
This is where background knowledge plays an essential
role. We believe that the initial knowledge about generic
object models, combined with knowledge about the lower
levels of aggregation, is sufficient to produce reasonably
accurate descriptions of instances that occur in images.
Functional knowledge also plays an important role in this
process, constraining both the types and parts of train-
ing objects. The resulting descriptions are then passed to
the learning module, which uses them to modify knowl-
edge in the is-a hierarchy. This specialized knowledge in
turn constrains future recognition and learning.

Given a mechanism for assigning training instances to
object classes, and thus sorting the instance through an
is-a hierarchy, learning can occur in a number of ways.
The simplest mechanisms merely update the probabilis-
tic descriptions for each model to which the instance 1s
assigned, but others actually modify the structure of the
hierarchy. Figure 1 illustrates the four learning operators
that can lead to such changes:

e extending downward, which occurs when a training
case reaches a terminal node in memory; under these
circumstances, the learner creates a new node N that
is a probabilistic summary of the case and the termi-
nal node, making both children of N;

e creating a sitbling, which occurs if a training case is
sufficiently different from all children of a node N; in
this situation, the learner creates a new child of N
based on the case;

e merging two concepts, which occurs if a case is similar
enough to two children of node N that the learner
judges all three should be combined into a single child;

e splitting a concept, which occurs when a case is differ-
ent enough from a child C' of node N that the learner
decides €' should be removed and its children moved
up to become children of V.

The last three of these actions are considered at each
level of the hierarchy, as the system sorts the new train-
ing instance downward through memory. If none of these
are deemed appropriate, the induction algorithm simply
averages the case into the probabilistic structural de-
scription for the best-matching category, then recurses
to the next level.

The most important issue here involves deciding
whether, at a given level in the hierarchy, the instance
should be incorporated into one of the existing sub-
classes, or whether it is sufficiently different from them
to justify creation of an entirely new subclass. Gen-
nari, Langley, and Fisher (1989) describe an evaluation
function based on information theory that can be used

to make these decisions. However, experimental studies
with this method have revealed significant sensitivity to
the ordering of training instances. The merge and split
operators mitigate this effect, but much of the problem
seems due to overcommitment to an unfavorable hierar-
chy structure early in the learning process. Fortunately,
McKusick and Langley (1991) have shown that prim-
ing the concept hierarchy with reasonable top-level cat-
egories reduces order effects, producing more rapid im-
provement in predictive accuracy and giving more un-
derstandable concept hierarchies. Although their results
focused on attribute-value formalisms, they should also
hold for more complex representations and thus further
recommend our introduction of background knowledge
in the form of generic object models.

Like all induction algorithms, Gennari et al.’s learn-
ing method is negatively affected by the presence of ir-
relevant attributes in the instance descriptions, and we
expect this issue will be exacerbated in visual domains,
where complex objects can involve hundreds of features.
Our response to this problem relies on knowledge of ob-
jects” functions, embodied in a wutility metric (Edwards,
1993) that influences the application of the four learning
operators. The basic probabilities passed to this utility
metric would still come from the reconstruction of 3D
object parts and their spatial relations, and if we based
learning decisions on this factor alone, we would obtain
classes and subclasses based entirely on similarities of
3D structure. However, the utility metric can encode
task-specific knowledge about the relative importance of
different factors, whether these involve the structure of
parts and their configuration, their surface appearance,
or their overall function.

For example, in some domains one may care more
about the orientation of an object’s parts than the sweep-
ing function used to describe them. Thus, chairs with
round seats and backs (which provide vertical and lat-
eral support) would be more similar chairs with square
seats and backs (which provide the same support) than
they would to objects with round components oriented in
different ways (and thus provide no support). Likewise,
some differences in surface appearance (e.g., a country
designator on an aircraft) may be more important in
some contexts than others that are equally large (e.g.,
mud on an aircraft). Even though door knobs and door
handles have very different 3D structures, they serve the
same purpose, which is reflected in their similar heights
on doors and their graspability by the human hand.

We can encode knowledge about the relative impor-
tance of such factors — whether they involve structure,
appearance, or function — in the utility metric. In this
scheme, one multiplies the importance values by the
probabilities inferred during 3D reconstruction, thus bi-
asing decisions made during the selection of learning op-
erators. The incorporation of task-oriented knowledge
about utility leads to a much richer theoretical frame-
work for learning than one that deals only with differ-
ences in 2D or 3D structure, and we predict that it will
significantly speed the rate of learning by reducing the
influence of irrelevant features.
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Figure 1: Learning operators used to modify the structure of a hierarchy of probabilistic concepts: (a) extending
the hierarchy downward; (b) creating a new sibling at the current level; (¢) merging two existing concept; and (d)
splitting an existing concept. Newly created nodes are shown in gray.

5. Contributions of the Research

Although the proposed research will build on our pre-
vious work on computer vision (Binford et al., 1989)
and machine learning (Gennari at al., 1989), it will ad-
dress issues that go beyond the simple merging of these
two traditionally separate paradigms. Our earlier efforts
shared some basic assumptions, such as the importance
of handling uncertainty and a reliance on probabilistic
methods, but the full integration of the two approaches
still requires some important advances. In particular, we
must:

e Identify robust methods for unsupervised learning
over structural descriptions and multiple levels of
aggregation. Previous work on structural induc-
tion, including our own (Thompson & Langley, 1991)
has used impoverished representations, and Bin-
ford et al.’s (1989) formalism for representing phys-
ical objects provides a much richer description lan-
guage but also a greater challenge than addressed in
previous learning research.

e Explore the use of background knowledge, includ-
ing functional information, to constrain the learning
process. Most research on learning in the presence
of functional knowledge has used representations de-
signed for logical reasoning (e.g., Horn clauses), rather
than formalisms that support recognition in uncertain
domains like vision. Our goal of storing background
knowledge in the same hierarchy as learned knowl-
edge, and our scheme for mapping function onto phys-
ical structure, provides a more coherent framework
but also takes us into unexplored waters.

e Clarify the relation between probabilistic concept hi-
erarchies and Bayesian inference networks. Most re-
cent work on probabilistic induction has used concept
hierarchies, but Bayesian networks, which have played
a central role in our vision work, have drawn consider-
able attention in other circles. Our mapping between
these approaches to organizing, using, and learning
probabilistic knowledge should help both communi-
ties understand the contributions of the other.

In addition, we must also find ways to evaluate the learn-
ing ability of the system we are developing. Although
the field of machine learning has a reputation for care-
ful experimental studies, it has focused on simple learn-
ing tasks involving attribute-value representations, it has
seldom addressed the role of background knowledge, and
it has avoided complex tasks like 3D vision. In con-
trast, the computer vision community typically works
with quite complex images, but sometimes lacks care-
ful empirical studies involving many test cases and well-
defined metrics. The empirical studies of our learning
algorithm, to which we now turn, must take the best
from both of these worlds.

6. Plans for Experimental Evaluation

In evaluating our system’s ability to learn, we will draw
upon experimental methods that are now commonly
used within the machine learning community (Kibler &
Langley, 1988). In this framework, the goal of learn-
ing is to improve performance on some task, in this case
the recognition and description of objects in images. We
will divide images into training and test cases, present
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the training images to the learning system sequentially,
and measure 1ts performance on the test instances after
every N training instances. We will average the resulting
learning curves over many runs based on different ran-
dom orders of the training cases. We will also compare
these curves against the performance of a nonlearning
system that uses only generic object models.

We will use three main measures of performance,
which will serve as the dependent variables in our ex-
periments. The first is simply the accuracy of classifi-
cation, i.e., the percentage of instances correctly labeled
by object class. Although our learning algorithm will be
unsupervised, one can provide the system with class in-
formation in the training data, provided it is not used in
learning, and then ask the system to predict the class on
test instances. This provides a reasonable measure of the
learning algorithm’s ability to acquire classes that were
present in the data. A more difficult task involves pre-
dicting the three-dimensional structure of objects in test
images: given an image of an object, the system must use
its acquired knowledge to generate a three-dimensional
description of the object. Here the performance measure
is the average difference between the actual and inferred
structure. A third metric involves the time required for
recognition, measured both in CPU seconds and in terms
of basic inference steps taken by the performance system.

We are considering a number of domains for use in our
experimental studies. One such domain involves ten ma-
chined parts that make up a benchmark suite developed
by researchers at the University of Utah. Five parts are
cover plates and five are steering arms; one of each type
1s correctly machined, whereas others are defective parts
that have missing, extra, or misplaced features. These
images would let us avoid some issues, such as figure-
ground separation, but the object shapes are sufficiently
complex to challenge our representation, performance
method, and learning algorithm. For this domain, we
would provide background knowledge about the shape
of correct objects and their function, and we expect that
our induction method would acquire subclasses that cor-
respond to different types of defective parts.

A second domain we are considering involves the in-
terpretation of aerial images for the purpose of surveil-
lance or inventory. In this case, the objects of interest
are buildings, roads, vehicles, and related cultural arti-
facts such as fences and parking lots. The aim here goes
beyond the recognition of individual objects to the de-
tection of significant object configurations. For example,
an important distinction in this domain is between air-
fields that are preparing to launch attacks and ones that
are not. Such concerns relate directly to our ideas about
the importance of function in recognition and learning,
and they suggest obvious forms of background knowledge
to give the system. The availability of high-resolution
aerial images (10,000 x 10,000 pixels), through the RA-
DIUS program’s Fort Hood data set, would aid testing
in this domain.

Our approach to learning object models suggests a
number of explicit hypotheses that we plan to test in
our experiments. The most obvious of these is that, as
the system encounters more training images, both its

recognition and prediction accuracy should improve on
novel test images. However, we also expect that recogni-
tion time will decrease, due to an improved ability to fo-
cus attention on objects of particular subclasses. Given
limited recognition time, we naturally expect a trade-
off between speed and accuracy, but we also predict this
tradeoff will become flatter with experience, so that (af-
ter enough learning) the vision system will recognize ob-
jects very rapidly with little loss in accuracy.

We will also use our experiments to assign credit to
different components of the learning system. For exam-
ple, we will compare the full algorithm, which refines
the initial concept hierarchy by creating new subclasses,
with a lesioned version that only alters the probability
distributions associated with the original object models.
We hypothesize that the refinement process will lead,
asymptotically, to higher accuracy and faster recogni-
tion in domains where subclasses exist. We also ex-
pect that background knowledge, whether in the form
of generic object models or a function-motivated utility
metric, will reduce the number of training cases needed
to reach asymptotic performance, minimize the effects of
training order, and mitigate the influence of irrelevant
features. However, all of these predictions are subject to
experimental tests, and we must know the results before
drawing conclusions about the usefulness of the various
facets of our approach.

7. Related Work on Vision and Learning

Recently, a number of other researchers have also ex-
plored techniques for inducing object models from train-
ing images, and we should briefly compare their ap-
proaches to our own. In each case, we discuss the repre-
sentation and organization of learned knowledge, along
with the performance and learning components that use
and acquire that knowledge.

For example, Pope and Lowe (1993) represent a par-
ticular object as a set of characteristic views, each de-
scribed as a set of features at multiple levels of aggre-
gation. Associated with each feature is a probability of
occurrence and a probability distribution for its numeric
attributes. These descriptions are exclusively 2D, which
contrasts with our emphasis on 3D models. Recogni-
tion of new images involves using Bayes’ rule to compute
the probability of each view given the features found in
the image, then selecting the most likely one. Pope and
Lowe’s learning scheme incrementally assigns each im-
age description to the most likely view and updates the
probability distributions for that view, but creates new
characteristic views for sufficiently novel instances. This
method is very similar to our induction algorithm, ex-
cept that 1t creates only one level of clusters and uses
a different evaluation metric. In related work, Beis and
Lowe (1993) have focused on creating concept hierarchies
and indexing object models, which comes closer to our
hierarchical approach.

Sengupta and Boyer (1993) have taken a similar ap-
proach that also represents objects models as probabilis-
tic summaries at different levels of aggregation. Their
work emphasizes the organization of models in an is-a hi-
erarchy, through which they sort new descriptions during
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Figure 2: Overview of the framework for combining computer vision and machine learning. The vision process uses a
hierarchy of generic models to transform a training image into a 3D description of objects in the image. The learning
process then uses this description to modify the hierarchy, using a utility metric to bias its decisions.

recognition. This sorting process leads to updates in the
probabilistic summaries through which the description
passes, and it produces a new subclass when it reaches a
level at which the description is sufficiently different from
existing class summaries. Thus, the scheme is very simi-
lar to our earlier work on unsupervised concept learning,
differing primarily in its evaluation metric and its use of
beam search for sorting rather than a greedy method.
Sengupta and Boyer have tested their approach using 3D
object descriptions, but have taken their training cases
from a CAD library rather than actual images.

Segen (1993) has also used probabilistic summaries, at
different levels of aggregation, to represent object mod-
els. He describes each class of objects as a ‘stochastic
graph’, which consists of a set of components, each de-
scribed using a discrete probability distribution over a
set of nodes that are themselves stochastic graphs. The
recognition process assigns an image to the most likely
top-level graph, and the incremental learning algorithm
either updates the probabilistic summaries for the se-
lected class or creates a new class if the image is different
enough from existing ones. The evaluation metric used
in both recognition and learning is closely related to no-
tions of minimum description length. Segen has tested
this approach in the domain of gesture recognition.

Conklin (1993) has taken a different approach to rep-
resentation that relies on logical descriptions. His sys-
tem organizes memory into an is-a hierarchy, but each
nonterminal node contains not a complete summary of
training cases but conjunctions of features held in com-
mon by all of its children. These descriptions, which
are transformation invariant, serve primarily as indices
for retrieving individual training cases, but also aid in

parsing 1mages as they are sorted through the hierarchy.
As in our earlier work, learning is incremental and inter-
leaved with the sorting process, with training cases being
stored as new terminal nodes but also leading to more
general descriptions along the paths they traverse. Con-
klin has tested his approach on molecular scene analysis
given electron density maps.

Gros (1993) has taken a nonincremental clustering ap-
proach to the induction of 2D object models. His ap-
proach represents a model as a set of characteristic views,
each having a set of logical features, such as line segments
and their points of intersection, all occurring at a single
level of aggregation. Although Gros does not describe a
performance component, one might use such descriptions
for object recognition to assign images to the character-
istic view with the most matched features, using some
version of a nearest neighbor algorithm. The learning
stage draws on a nonincremental agglomerative cluster-
ing algorithm, which successively merges the two clusters
of images that are nearest in the feature space, then em-
ploys a threshold to determine the top-level classes.

Our emphasis on the role of background knowledge
and function distinguishes our framework from most re-
search on vision and learning, but Cook, Hall, Stark,
and Bowyer (1993) describe an alternative method that
also incorporates these ideas. They provide their learn-
ing system with models for an object class (e.g., chairs)
and a set of ‘fuzzy’ inference rules for predicting the de-
gree to which an object satisfies its function. A tutor
provides training images with associated functionality
scores, on which the learning algorithm bases its revi-
sion of the inference rules’ conditions, using a technique
similar to backpropagation. Background knowledge lets
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the system infer a 3D description from the image, and
it also constrains the functional learning process. This
approach differs from ours in its use of fuzzy inference
rather than probabilistic reasoning, and in its empha-
sis on predicting functionality rather than on recogni-
tion. The earlier work of Winston, Binford, Katz, and
Lowry (1983) on learning recognition rules from func-
tional knowledge comes closer to our approach, but here
the learned process generated logical descriptions.

As we have seen, the recent literature includes a num-
ber of research efforts that address many of the same is-
sues as our ongoing work. Some deal with the incremen-
tal, unsupervised induction of object models, others in-
corporates probabilistic representations and recognition
mechanisms, a few focus on the organization of knowl-
edge in long-term memory and the importance of ab-
stract object classes, and one draws on functional back-
ground knowledge. However, none have attempted to
combine all of these ideas into a coherent framework.

8. Concluding Remarks

In summary, we are developing a theoretical framework
that unifies our previous work on computer vision and
machine learning. As Figure 2 depicts, this framework
assumes that the vision system uses background knowl-
edge, in the form of generic models of object classes, to
reconstruct three-dimensional descriptions of objects in a
training image. The learning system then uses uses these
descriptions, along with functional knowledge encoded
in a utility metric, to revise the background knowledge
by forming more specialized descriptions of the objects’
classes, which the vision system uses in turn on the next
image. Techniques for handling uncertainty are central
to both the vision and learning modules.

Although our project remains in its early stages, we
are confident that the basic approach will increase our
understanding of both computer vision and machine
learning. We have not yet integrated the two compo-
nents of our system, but we have decided on a common
representation language that will let them communicate,
we have examined the domain of machined parts in some
detail, and we have designed specific experiments to test
our hypotheses about the impact of learning and back-
ground knowledge on the speed and accuracy of the vi-
sion process. Whether these hypotheses are borne out,
or whether we must modify our system design to achieve
the desired effects, is the central question that we hope
to answer in our future research.
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