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1. Summary and Introduction 

The ISLE Transfer Learning project was a three year DARPA-funded research effort whose goal 
was to enable machines to acquire knowledge in one domain and use it to improve performance 
in another.   This capacity is a first step of a longer term vision that employs transfer to reduce 
the cost of developing intelligent software, hereby replacing the construction of multiple, one-off 
systems, with a methodology based on the automated transfer and augmentation of capabilities 
encoded in an initial source.    

The project emphasized machine learning and artificial intelligence (AI) techniques, and focused 
on the acquisition and transfer of behavioral knowledge (meaning strategies for how to act 
together with the supporting domain knowledge) from a source task to a target task drawn from a 
different domain. The work addressed three component problems within transfer: knowledge 
acquisition in a source task, knowledge transfer to a target task, and knowledge augmentation in 
the target domain given the transferred wisdom.   

ISLE acted as prime contractor in this effort, coordinating approximately a dozen institutions to 
complete three annual demonstrations.  A DARPA-appointed evaluation team controlled the 
subject of those demonstrations, the conduct of the annual experiments, and the analysis of the 
results with respect to predefined “go/no-go” targets.  The difficulty of the demonstrations also 
grew as the project matured: 

• In Year 1, the source and target tasks were problem-solving puzzles set within a single, 
real-time, 3D, 1st person shooter game.    

• The Year 2 demonstration addressed six classes of transfer problems, with source and 
target tasks drawn from the same, or different, 2D grid-world games set in a “General 
Game Playing” framework. 

• The Year 3 demonstration addressed transfer between families of tasks, and emphasized 
connection to real-world data.  The source task was to recognize plays from videos of 
Oregon State University football games, while the target task was to redesign and 
improve those plays in simulation. 

The project employed cognitive architectures as the primary research vehicle.  These are AI 
systems that offer a capacity for generalized intelligence, such as Icarus, Soar, and Companions.   
Versions of these three systems completed the Y1 and Y2 demonstrations, while Icarus alone 
performed the Y3 task.  Every system successfully completed its demonstration milestones.  

In order to accomplish these milestones, the project advanced and utilized a number of 
component technologies for transfer within cognitive architectures: explanation based learning, 
theory formation and refinement, analogical reasoning, and hierarchical task network planning, 
to name a few.   Some of the analogical reasoning technology was evaluated on Advanced 
Placement (AP) Physics problems outside of the year-end demonstrations. In addition, the 
project fostered independent research efforts that developed and evaluated approaches to transfer 
based on reinforcement learning methods, and on Markov Logic Networks (MLNs).   
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The project began with the broad conjecture that automated methods could utilize a small 
number of experiences to acquire and transfer significant structural knowledge between disparate 
source and target tasks.  Within that context, we claimed that our methods could: 

• acquire and transfer both relational and hierarchical knowledge, 
• compose learned knowledge to support transfer, and 
• support cumulative transfer, i.e., learn new structures in terms of one’s previously 

acquired. 

In addition, we claimed that logic-oriented frameworks would enable these capabilities, and that 
analogical mapping would be essential for transfer across disparate domains. 

The project developed methods that demonstrated each of these claims in a research setting.  
More broadly, the project arrived at these conclusions: 

• Explanation based learning techniques support relational and hierarchical knowledge 
acquisition across multiple logic-oriented domains. 

• Acquired knowledge can be automatically generalized and expressed in a form that 
natively supports near transfer, i.e., use within different tasks set in the same 
environment/problem domain. 

• Analogical representation mapping supports far transfer, i.e., reuse in disparate domains, 
providing the objects, descriptions, and/or solutions are structurally similar. 

• The capacity for, and benefit of transfer is roughly proportional to the similarity between 
the domains. 

This report summarizes the technology developed within ISLE’s Transfer Learning project, with 
emphasis on the capabilities realized at the end of Year 3.    Chapter 2 discusses work by ISLE 
on the Y1, Y2, and Y3 demonstrations, covering technical tasks accomplished, result, and 
conclusions on each task.  

The Appendices to this report describe work conducted by ISLE’s subcontractors. Appendices A 
and B examine components of the Y3 system in more detail; Appendix A discusses work on data 
collection and annotation of football plays via machine learning methods conducted by Oregon 
State University, while Appendix B discusses the belief maintenance component of Icarus 
developed at Arizona State University with application to football play recognition and skill 
learning.   Appendix C discusses the capabilities to learn hierarchical task networks and combine 
heuristic search techniques within Hierarchical Task Network (HTN) planning developed at the 
University of Maryland.  Appendices D through F discuss research conducted within the project 
but outside the demonstration objectives.  In particular, Appendix D summarizes work on 
transfer in a reinforcement learning setting conducted at the University of Texas, while 
Appendices E and F describe work on transfer within the framework of Markov Logic Networks, 
conducted at the University of Texas and the University of Washington, respectively. 
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2. Technical Tasks Accomplished: Transfer Learning in Icarus  
 

This chapter discusses integrated systems built by ISLE to address the Y1, Y2, and Y3 
demonstration milestones.   These systems utilized the Icarus cognitive architecture as a base 
while augmenting it with various additional capabilities.   We document the resulting technology 
for transfer in separate sections devoted to each demonstration milestone.  

2.1. Comparison of Human and Agent Transfer in the Urban Combat 
Domain 

The demonstration task in the first year of the project compared transfer produced by humans 
against transfer produced by machines, with experiments set in a first-person perspective video 
game called Urban Combat.    Our research focused on developing the capability for machine 
transfer of complex skills between tasks that involved action over time.  Here, transfer primarily 
involves the reuse of cognitive structures, where the amount of shared structure has proven to be 
a good predictor for the degree of transfer in both humans and machines.  
 
We share with many psychologists the idea that transfer is mainly a structural phenomenon, 
rather than a consequence of statistical summaries or value functions. This suggests that transfer 
is linked closely to how an agent represents knowledge in memory, how its performance 
methods use these structures, and how its learning elements acquire this knowledge.  In this light, 
the Icarus cognitive architecture provides commitments to relational, hierarchical, and compos 
able knowledge structures, and to mechanisms for using and acquiring them that provide it with 
basic support for effective transfer.  We made the unusual claim that the architecture needs no 
additional mechanisms to exhibit many forms of transfer, which we examined at length in Choi, 
et al. (2007). 
 
We phrased transfer tasks in the Urban Combat Testbed (UCT), a virtual 3-D environment that 
simulates an urban landscape, with real-time behavior and realistic dynamics. UCT contains one 
intelligent agent (controlled by Icarus) and no adversaries. The transfer tasks focus on navigation 
in the presence of physical and conceptual obstacles. 
 
Figure 1 illustrates one such transfer task. The source problem calls on the agent to find a goal 
and surmount obstacles encountered en route (here, to duck under and climb over obstacles it has 
never seen). The target problem offers the agent the opportunity to reuse its knowledge about 
obstacles in a different order, assuming it is acquired and represented in a modular form. In 
addition, the agent can reuse learned knowledge about the map.  The agent exhibits (positive) 
transfer if it improves its behavior in the target as a result of its exposure to the source, and zero 
or negative transfer if it does not.  
 
We supply the Icarus agent with minimal background knowledge to support transfer. On 
initialization, it has never encountered the specific objects or operators in the domain, and it has 
no prior knowledge of the map. However, it is initialized with useful concepts such as a category 
for obstacles in general and a relation for blocked paths, plus categories for region centers and 
gateways (the UCT environment is divided into convex regions with passable and non-passable 
boundaries). The agent understands the high-level goal (e.g., to find an item), and it possesses 
sub goals that organize search behavior. For example, it knows to overcome an obstacle to get a 
clear view of the destination, and to contain exploration within the region of the goal, once seen. 
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UCT is a challenging domain for both human and artificial agents. It is partially observable 
because the agent can only perceive nearby objects and regions, it involves uncertain action (e.g., 
the agent can attempt to jump over a wall but fall backwards into a ditch), and it is real time 
(imposing a strong constraint on agent decision making). This complexity demands a level of 
robustness in the mechanisms that produce transfer. 

2.1.1. Task Representation in Icarus  
The Icarus architecture captures task knowledge representations for two key structures; concepts 
and skills. Concepts describe aspects of the agent’s state, while skills are methods an agent can 
execute in the world to achieve goals under certain conditions. Both have a hierarchical structure, 
meaning that Icarus can employ multiple layers of abstraction in describing the current state and 
the procedures for manipulating that state, respectively. 
 
As shown in Table 1, concepts in Icarus resemble traditional Horn clauses in first-order logic 
with negations. Primitive concepts like in-region provide state descriptions at the lowest level of 
abstraction using symbolic and numeric information directly available from objects the agent 
perceives. Higher-level concepts, such as stopped-in-region and climbable-gateway, have their 
basis in other concepts as well as primitive facts.  The concept hierarchy provides relational, 
modular descriptions of the current state. It can also be used to represent a desired state, so 
concepts can express goals. 
 

                 Figure 1. A transfer task in the Urban Combat Testbed. 
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Icarus skills for a given domain are a specialized form of hierarchical task networks (Nau et al., 
1999). A skill’s head indexes it by the goal it achieves, and, since goals are naturally represented 
by desired concept instances, skills are linked to the concept hierarchy.  Some achieve low-level 
concepts, while others address broad objectives. Table 2 shows some examples of skills in 
Icarus. While primitive skills give simple methods using basic actions executable in the world, 
non-primitive skills describe higher-level, complex methods with multiple ordered sub goals.  
 

Table 1.  Primitive and non-primitive Icarus concepts. 
__________________________________________________________________________ 
 ((in-region ?self ?region) 
   :percepts (self ?self region ?region)) 
 
((climbable-gateway ?gateway ?object) 
   :percepts (gateway ?gateway) (object ?object) 
   :relations ((totally-blocked-gateway ?gateway ?object) 
                    (feature-of-object ?object CLIMBABLE))) 
__________________________________________________________________________ 
 
 

Table 2.  Primitive and non-primitive Icarus skills. 
__________________________________________________________________________ 
 ((clear ?gateway) 
   :percepts ((gateway ?gateway dist1 ?dist1 angle1 ?angle1 dist2 ?dist2 angle2 ?angle2)) 
   :start ((close-enough-to-jump-type ?gateway)) 
   :actions ((*jump-cmd (maximum ?dist1 ?dist2)) 
                  (mid-direction ?angle1 ?angle2))) 
 
((crossable-region ?regionB) 
   :percepts ((self ?self) (region ?regionB)) 
   :start ((connected-region ?regionB ?gateway)) 
   :subgoals ((clear ?gateway)) 
                     (in-region-able ?me ?regionA ?regionB) 
   :percepts ((self ?me) 
                    (region ?regionA) 
                    (region ?regionB)) 
   :start ((in-region ?me ?regionA)) 
   :subgoals ((crossable-region ?regionB))) 
 
((in-region me region3004) 
   :subgoals ((in-region-able me region3003 region3004) 
                     (in-region me region3004))) 
__________________________________________________________________________ 
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Icarus’ relational, hierarchical, and compos able representation of skills is crucial to its ability to 
transfer knowledge. In particular, the relational representation increases generality of the 
encoded skills, since they can apply in circumstances that are only qualitatively similar to the 
situations in which they were acquired. Moreover, a compos able representation lets a skill 
hierarchy apply as a whole in new circumstances, even if subsets of its skills are incorrect, 
inaccurate, or inapplicable. In these cases, failed knowledge can be patched with skills acquired 
from new experience or dynamically replaced with alternatives that achieve the same goal.  

2.1.2. Execution of Hierarchical Skills 
The Icarus architecture operates in cognitive cycles, spanning conceptual inference, skill 
selection, and physical execution (Figure 2). Icarus derives its beliefs via a bottom-up matching 
process, initiated by objects that arrive in the agent’s percepts. After it infers low-level concept 
instances based on these objects, inference for higher-level concepts follows to build a 
hierarchically organized belief structure for the time step. In contrast, Icarus performs skill 
selection in a top-down manner, starting with the current goal. On each cycle, it finds a path from 
this goal through the skill hierarchy; each skill along this path is applicable given the current 
beliefs, with the terminal node being a primitive skill that Icarus executes in the environment.  
This differs from traditional production systems, which require multiple cycles and use of 
working memory to traverse levels of an implicit goal hierarchy. Since the architecture repeats 
this procedure on each cycle, Icarus agents can react to their surroundings while pursuing goal-
driven behaviors.  
 

Icarus’ execution mechanism facilitates transfer by flexibly employing previously learned skills 
in three ways. First, it transfers learned skills to new problems by dynamically selecting and 
interleaving learned skills based on observed situations and achieved goals. Second, it combines 
skills learned from qualitatively different experiences when a novel situation has elements from 
these previous experiences. Finally, even if Icarus does not have sufficient knowledge to directly 
solve a problem, it can transfer partially applicable skills from previous solutions and patch the 
knowledge gap by falling back on its default search skills. 

Figure 2. A schematic of the Icarus Architecture. 
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2.1.3. Learning Hierarchical Skills 
Icarus acquires structured skills via an analytical learning mechanism that it invokes whenever 
the agent achieves a top-level goal. This mechanism inputs the goal plus a solution trace that 
achieves it, described as a sequence of observed states and selected actions. Icarus generates an 
explanation of how the goal was achieved by interpreting this solution trace in the context of 
conceptual knowledge and action models. It does so by recursively examining goals, either 
decomposing them into sub goals using conceptual knowledge or explaining them in terms of the 
effects of primitive skills. The architecture converts the resulting explanation structure into 
hierarchical skills and adds them to its skill memory.  We have described this process elsewhere 
(Nejati et al., 2006) in more detail. 
 
This learning mechanism facilitates transfer by associating a hierarchy of learned skills with the 
goals they achieve. As a result, the component skills can be used independent of the top-level 
goal that motivated their construction. For example, an Icarus agent tasked to enter a building 
may find a solution where it jumps over a fence and then enters the building, viewed as sequence 
of primitive skills. The analytical learner creates a new skill to climb over a fence, as well as a 
higher-level skill that uses it along with primitives to reach the goal from the start location. The 
system associates the low-level skill (for fence climbing) with the goal for reaching a 
parameterized location, and it considers the component whenever a fence blocks a local goal. 

2.1.4. Results on Transfer in Urban Combat 
We conducted two forms of evaluation to examine Icarus’ account of transfer.  The first 
measured time saved in solving a target problem given exposure to a source task, while the 
second compared transfer obtained with Icarus against transfer obtained by humans on the same 
problems. These experiments examined several classes of transfer tasks characterized by the 
relation between source and target problems: 

• Extrapolating requires the agent to reuse partial solutions from a common start state in 
source and target problems, despite differing goals. 

• Restructuring requires the agent to use solutions to sub problems in different orders. 
• Extending requires repeated reuse of solutions to source sub problems in the target 

context. 
• Composing requires dynamic combination of source solutions in the target task. 
• Abstracting involves sharing hierarchical solution structure. 
• Generalizing requires reusing acquired skills, while applying different operators to novel 

objects found in the target. 
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Figure 3 summarizes the results of the experiments on transfer within Icarus.  It plots the 
problem solution time for the non-transfer condition against the time for the transfer condition, 
where each x and y value represents the average score over 20 runs of the Icarus agent, with 
different icons depicting the forms of source-target relationship.  Entries above the diagonal line 
indicate that positive transfer occurred, while entries below the line reflect negative transfer. The 
figure shows that Icarus generally exhibits positive transfer for most problems in each type of 
relationship. Moreover, this transfer occurs after experience with only five source problems, 
meaning that the rate of learning appears roughly comparable to that observed in humans. 
 

 
Figure 4 compares transfer obtained by Icarus against transfer obtained by humans on the same 
set of source-target pairs, here covering eight classes of tasks including those above. We report a 
ratio of agent/human transfer scores, and adopt the convention that a negative number means the 
agent improved its performance via transfer in situations where the human demonstrated 
negative transfer.   For example, human performance decreased as a result of transfer over the 
class of restructuring problems, while agent performance increased, and the magnitude of the 
effect in agents was 18.8 times the magnitude of the effect in people. 

Figure 3. Solution times in seconds for the transfer case plotted against those for non-transfer cases.  Axes are 
inverted so that higher scores indicate better performance. 
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2.2. Achieving Far Transfer via Goal-driven Analogical Mapping 
While work in the first year of the project demonstrated the ability to transfer knowledge among 
similar tasks (called near transfer), work in the second year developed the ability to support far 
transfer, that is, to communicate knowledge between source and target tasks that bear little 
surface similarity.  These tasks need not even be expressed in the same symbol set.  
 
As before, we focus on acquiring and transferring structural knowledge in the form hierarchical 
Icarus skills and concepts.  However, we introduce a new mechanism, called representation 
mapping, which can be thought of as a goal-driven form of analogy; it transfers skills and 
concepts associated with the subset of source goals that make sense in target terms.  Shapiro et 
al. (2010) provides details of this process. 
 
We employed the General Game Playing (GGP) framework (Genesereth et al., 2005) to structure 
this task.  GGP encodes tasks (typically games) in a relational logic language that employs 
separate theory elements to describe legal moves, state transitions, and the initial state associated 
with game instances. GGP also enforces a careful evaluation model by presenting game rules at 
the same time as game instances. This requires agents to employ broad/general mechanisms for 
performance and learning, while constraining the role of background knowledge. 
 

Figure 4. The ratio of agent to human transfer scores obtained on the same tasks.  Negative 
ratios describe cases where human performance degrades. 
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We examined three types of far transfer tasks within the GGP framework, characterized by the 
nature of the analogy within each source-target pair. Homeomorphic tasks admit a one-one 
correspondence between symbols denoting objects and/or relations, and allow elements in the 
source with no target corollary. Figure 5a gives an example drawn from a game called ‘Escape’, 
where the agent’s goal is to direct the explorer to an exit. The source task requires nailing 
together logs to create a bridge over the river, while the target requires tying barrels together 
with rope. The relations for nailing and tying differ from source to target, and while the logs 
correspond to the barrels, the hammer has no target corollary. Note that the problem instances 
are distinct even given the source-target mapping. This makes transfer difficult because the agent 
must discover the mapping and transfer problem-solving knowledge in general form.  
 
Reformulation scenarios consist of isomorphic problems created by systematically replacing all 
source symbols to obtain the target task. Figure 5b gives an example taken from ‘Wargame’, 
where the goal is to maneuver the soldier to the exit while avoiding/defeating enemies. The 
enemies actively seek the soldier and move twice as fast, but can become stuck by walls. Supply 
points contain weapons and ammunition. These scenarios are difficult because the agent must 
discover a deliberately obscured source-target relation. 
 
Finally, cross-domain scenarios draw the source and target problems from different games. 
Figure 5c gives an Escape to ‘mRogue’ example (after the ancient text game), where the agent 
gets points for exiting the playing field, gathering treasure, and defeating monsters. These 
scenarios do not deliberately support analogies. However, all games occur on 2D grids and 
involve reaching a goal after surmounting obstacles by collecting and employing appropriate 
tools. Problems in this class are difficult because the agent has to identify both the symbol 
mapping and the portions of the source solution that are preserved. 

 

 
Figure 5. Far transfer tasks set in three grid-based games. 
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2.2.1. Supporting Far Transfer via Representation Mapping 
Far transfer requires three steps: acquisition of knowledge in a source task, communication of 
that knowledge to a target task despite a representational divide, and reuse of that knowledge in 
the target context.  

The system begins by translating a GGP game specification into Icarus concepts and primitive 
skills, then invoking automatically generated exploration skills to search for a solution to the 
source problem. Upon finding one, the system acquires new hierarchical concepts and skills that 
generalize the solution, which become the object of communication/transfer to the target 
problem.  After communicating these concepts and skills, ICARUS employs them to act in the 
target domain, falling back on exploration when guidance from source knowledge is exhausted. 

We developed a mechanism, called representation mapping that addresses the communication 
step via a form of analogical reasoning.   This mechanism enables transfer between structurally 
similar settings that may involve different predicates.  Representation mapping adds a 
comparison of source and target domains to the execution and skill learning steps outlined above.  
It consists of two components. The representation mapper finds the correspondences between 
the source and target symbols, while the representation translator uses those correspondences to 
translate source skills and concepts into skills and concepts in the target domain.  The 
representation mapper is the more significant component, and we focus on it below. 

The intuition behind the representation mapper is that transfer is possible if we can explain the 
source solution in target terms. In overview, the algorithm analyzes how the source problem is 
solved using domain knowledge and replicates that same analysis from the perspective of the 
target domain. This process forges links between the source and target theories.  

In more detail, given a pair of source and target problems, the representation mapper takes as 
input the trace of a successful source problem solution, the source and target goals, and the 
source and target domain theories. The solution trace consists of an initial state, a sequence of 
actions and the corresponding states resulting from these actions. The goals are concept instances 
that trigger successful termination of the tasks, and the domain theories are descriptions of 
domain dynamics encoded as ICARUS primitive skills (action models, including effects and 
preconditions) and concept definitions for percepts and abstract features of state. After analyzing 
the source solution in the context of source and target theories, the representation mapper outputs 
correspondences between the source and target predicates (and constants).  

The first step of representation mapping is to analyze the source solution trace using the source 
domain theory to determine how the goal of the source problem is achieved. This process is 
similar to Nejati et al.'s (2006) analytical learning method, which explains a goal or sub goal 
either by decomposing its concept definition or by regressing it across a primitive skill that 
achieved it, producing new state descriptions that can be explained recursively. 
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Given an explanation of the source solution with source knowledge, the representation mapper 
constructs an explanation in the terminology of the target theory by asserting correspondences 
between the concept instances in the source explanation and target predicates as necessary to 
complete the derivation. The correspondence support set collects these assertions, and we check 
new assertions against this set for consistency. If no consistent correspondence exists, the search 
for an explanation backtracks to an earlier choice point. One correspondence often leads to 
another. For example, in bridging Escape and mRogue, (location explorer 1 2) ↔ (place hero? X ?Y), 
implies the correspondences {location↔ place,  explorer ↔ hero, 1↔?X, 2↔?Y}.  This mapping 
includes relational predicates.  
 

Table 3.  A skill mapped from Escape to mRogue. 
__________________________________________________________________________ 
/* Source skill (learned) */ 
((combining ?item1 ?item2 ?combo)   
    :start          ((property ?item3 hammer) 
             (property ?glue  doesnail) 
             (property ?item1 nailable) 
             (property ?item2 nailable)) 
    :subgoals  ((holding ?item2) 
             (holding ?glue) 
             (holding ?item3) 
             (holding ?item1) 
             (do-combine ?item1 ?item2 ?glue ?combo))) 
/* Correspondences */  
        doesnail↔doestie, nailable↔tieable, 
        (property ?item3 hammer) ↔nil 
/* Target skill (output of mapping) */ 
((combining ?item1 ?item2 ?item3)    
    :start          ((property ?item3 doestie) 
            (property ?item1 tieable) 
            (property ?item2 tieable) 
            (newsymbol ?combo)) 
   :subgoals  ((holding ?item2) 
           (holding ?item3) 
           (holding ?item1) 
           (do-combine ?item1 ?item2 ?item3 ?combo))) 
__________________________________________________________________________ 

Like other algorithms that find analogies, our representation mapping method is guided by 
several constraints and heuristics. These fall into three groups described by Holyoak and Thagard 
(1989) as structural, semantic and pragmatic constraints. Pragmatic constraints concern the 
purpose of analogy and occupy a central role in our algorithm. Because the mapper is guided by 
the explanation of how the source goal is achieved, it only considers concepts relevant for the 
source solution and automatically abstracts away the rest. As a result, the system addresses 
homeomorphic tasks by removing unmapped preconditions and sub goals for source skills 
(implementing a form of task abstraction). Second, our algorithm uses a structural hard 
constraint that assumes a one-to-one mapping among predicates and constants found in source 
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and target concepts. This constraint ensures that correspondence sets such as “1 ↔ ?X, 2↔?X” are 
disallowed. This assumption has been employed in previous systems (Falkenhainer et al., 1989; 
Holyoak & Thagard 1989) and has been suggested as a constraint in human analogical reasoning 
(Krawczyk et al., 2005). Finally, our algorithm is guided by a semantic constraint that prefers 
mapping between similar concepts predicates. For a given support set C, we measure the degree 
of match between two predicates by comparing their definitions recursively, counting the shared 
symbols between the source and target and already constructed maps in C. Given multiple 
representation maps, the algorithm selects the one with the overall highest heuristic score. 

As an illustration, consider the homeomorphic transfer scenario shown in Figure 5b. As part of 
skill learning, the architecture acquires the component skill for Escape shown at the top of Table 
3. Next, representation mapping considers the target theory for mRogue to extract 
correspondences that relate properties of objects in the two domains. The representation 
translator completes the process by translating the source skill into target terms, as shown.  

2.2.2. Results on Far Transfer 
The capacity for far transfer lets the modified Icarus solve a qualitatively new class of problems. 
We support that using a lesion study that determines the quantity of transfer due to (a) reuse of 
generalized skills without representation mapping (the lesion case) and (b) transfer of 
generalized skills with representation mapping (the non-lesion case). We measure transfer as the 
difference in agent performance on a given target problem with and without exposure to the 
corresponding source (normalized to facilitate comparison).  We hypothesize that the ability to 
map skills across problem representations will qualitatively improve transfer in the non-lesion 
case relative to the lesion case. 

In the experimental protocol, the non-transfer case (NTC) agent sees the target problem alone 
and must solve it by a base set of exploration skills.  In contrast, the transfer case (TC) agent has 
the opportunity to solve the source problem, acquire knowledge from that experience, and make 
it available for transfer.  The TC protocol involves several steps (consistent with the General 
Game Playing format):  

1. download the source game definition and initial state 
2. solve the source task via exploration, 
3. learn hierarchical skills and concepts from the solution, 
4. download the target game definition, 
5. compute the best representation map, 
6. instantiate the mapped skills and concepts in the target, 
7. download initial state data for the target problem, and 
8. solve the target problem using the mapped knowledge. 
 
Only steps 7 and 8 above are timed and reflected in the TC agent’s performance score (though 
steps 4-6 were short by comparison).  The TC and NTC agents both had access to the same 
exploration skills and supporting background knowledge to solve the target task.  They act as a 
fallback for the TC agent if mapped knowledge does not suffice.  
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The lesion study examines transfer in 11 scenarios drawn from the problem classes discussed 
earlier and designed by an independent agency.  The first three are homeomorphic tasks (H), the 
next four are reformulation examples (R), and the last four are cross-domain transfer tasks. 
Figure 6 presents the results of the lesion study. Each data point averages across ten trials of the 
given target problem for both the TC agent and the NTC agent. Values above zero indicate 
positive transfer (the transfer case solution is faster than the non-transfer case), values near zero 
indicate no transfer, and values below zero indicate negative transfer.  

 
The results show that representation mapping (the non-lesion condition) produces positive 
transfer in 9 of 11 cases. The data contains some instances of very positive transfer. For example, 
the 0.93 score in CrossDomain-4 indicates that the agent solved the problem more than 10 times 
faster with transferred knowledge. The negative transfer in Wargame-R-1 is due to an incorrect 
representation map (found in 8 of 10 TC trials) applied to correct skills, while the effect in 
CrossDomain-1 is due to a partial map that creates actionable but misleading skills. 
 
The results show that the architecture without representation mapping (the lesion condition) 
produces a net zero transfer in 9 of 11 cases. This effect is easy to understand. Absent a 
representation map, the system has no mechanism for relating source skills to target needs, so the 
TC and NTC agents both rely on exploratory behavior. This produces no net transfer. The main 
exception is Wargame H-2, where the terms that differed between source and target were bound 
to variables in ICARUS skills. This made source skills directly applicable for the TC agent, 
leading to positive transfer. 
 
More broadly, we can draw two conclusions from the lesion study. First, representation mapping 
generates virtually all of the positive transfer observed in the 11 scenarios. More exactly, it 
provides the architecture with the capacity to exploit learned knowledge given the 
representational divide characteristic of far transfer tasks. Second, this effect appears robust 
across problem classes, as it explains all but one case of positive transfer. 
 

Figure  6. A lesion study showing the impact of representation mapping on transfer 
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Finally, we note that the scenarios were designed to afford positive transfer. This is least true in 
the cross-domain cases where the source-target relationship is unconstrained. However, the 
homeomorphic and reformulation scenarios obey what might be called a constant content 
assumption: solutions for the source can solve the target task, given the correct mapping among 
symbols. (This is evident in the reformulation case, while the transformations defining the 
homeomorphic class admit no new information in the target, implying source solutions are 
preserved). Experiments with even more disparate source and target tasks would clarify the 
limits of the representation mapping algorithm. 
 
In summary, this work developed and demonstrated a capability for far transfer in the context of 
the Icarus architecture. The underlying representation mapping algorithm operates by explaining 
solutions found in one domain using the vocabulary native to another.  With it, we are able to 
communicate knowledge between distinct problem domains and across a representational divide, 
where the symbols describing the domains need not be shared.  

2.3. Transfer from Recognition into Play Improvement in American 
Football 

While the Year 1 and Year 2 demonstration tasks intentionally used controlled settings to foster 
the development of transfer technology, the Year 3 task required the solution methods to make 
contact with real world data.  This demonstration also bridged families of tasks, as it was to 
recognize American football plays from video and improve their performance in simulation. 

We apply the Icarus cognitive architecture to this problem in the context of a larger processing 
pipeline.  The net system takes in discrete perceptual traces generated from video footage of 
college football games, analyzes the traces with provided background knowledge, learns 
complex behaviors for individual players from that data, and employs those behaviors to drive 
agents in a simulated football game in conjunction with an optimization method to improve play 
performance. The acquired knowledge is compos able, which lets Icarus generate team behaviors 
not observed in the video, and is encoded, in a human interpretable format, which allows 
subsequent analysis and modification by human programmers.  We discuss the key elements of 
this pipeline below. 

2.3.1. The College Football Video 
The raw videos used in our experiments depict individual plays as executed by the Oregon State 
University football team. The video was shot via a panning and zooming camera that is fixed at 
the top of the stadium. The video corresponds to that used by coaches, and the camera operator 
attempts to keep as much of the action in view as possible.  A typical shot from our video is 
shown in Figure 7. 
 
Icarus does not possess any specialized mechanisms for handling visual data. We therefore 
convert preprocessed versions of the videos into a sequence of Icarus perceptions for the 
architecture to observe. Specifically, the perceptual representation includes: (1) the 2D field 
coordinates of each player at each video frame, (2) player labels describing the functional role of 
each player (e.g. quarterback, and running back), and (3) activity labels describing the low-level 
activity (such as running or blocking) of each player throughout the play. We used the activity 
labels and player labels generated by Hess, et al. (2007) to produce the perception sequence for 
the play. 
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2.3.2. The Rush Football Simulator 
We employed the Rush 2008 simulator1 as the environment for improving football plays with 
transferred knowledge.  This version of Rush simulates an eight-player variant of American 
football, which typically has eleven players per team.  Figure 8 shows a typical starting 
formation for the simulated plays. The rules and objectives in Rush are similar to those in 
American football. Each player is assigned a role, such as quarterback (QB) or running back 
(RB), and can be controlled by a set of instructions.  Players are assigned a high-level goal such 
as pass route cross out at yard 15 (which instructs a receiver to run 15 yards down-field, make a 
hard right turn, and then keep running to try to catch a pass), or assigned specific instructions 
such as stride forward on each clock tick.  The hand-coded plays in our experiments use the 
former types of instructions to take advantage of the expertise built in to the simulator, while 
Icarus uses the latter form to demonstrate the architecture's ability to construct such knowledge 
on its own. 
 
We instrumented Rush so that Icarus can perceive all players and objects on the field and control 
the actions of each offensive player on a tick-by-tick basis. Each offensive player shares 
perception and knowledge with the other offensive players, and carries out actions selected by 
Icarus. Example actions include (throwTo <receiver>), which instructs the QB to pass to a 
specific teammate, and (stride <direction>), which tells a player to run in one of eight directions 
for one clock tick. Defensive players are controlled by the simulator, which randomly selects one 
of several available strategies for each play. 
 

                                                        
1 http://rush2005.sourceforge.net/ 

Figure 7. A typical frame from the football video. 

http://rush2005.sourceforge.net/
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2.3.3. Icarus Concepts and Skills for Football 

We represent the background knowledge required to recognize football plays as Icarus concepts, 
and we use explanation based learning methods to transform that knowledge into executable 
Icarus skills.   
 
Table 4 gives an example of Icarus concepts for football.  Here, the relations field specifies the 
sub concepts a concept depends upon along with their associated time stamps, which correspond 
to the time stamps on beliefs. The constraints field describes the temporal relations among the 
sub concepts using these time stamps. For example, the concept possession aggregates and stores 
perceptual information about the ball carrier into belief memory (symbols preceded by a question 
mark denote variables). Similarly, the constraints field of drop-back-completed states that?passer 
must have possession of ?ball until he has finished dropping back.  Note that concepts can only 
describe properties of states. They do not contain information about how to make these 
properties true. 
 
Like concepts, Icarus skills are hierarchically organized.  They are also indexed by concepts 
defined in the conceptual knowledge base.  Each skill consists of a head, which specifies the goal 
the agent achieves after carrying out the skill, a set of start conditions that must be satisfied to 
initiate the skill, and a body, which states the steps the agent should follow to achieve the goal. 
For example, Table 5 shows the method for completing a cross-pattern, which requires the agent 
to first run downfield (north) for ?dist, then turn in ?dir (east or west) and run until the ball is 
caught.  Cross-reception-completed builds on this by having the agent run north with the ball 
until it is tackled. 
 

Figure 8. A Rush 2008 starting formation for the offensive (bottom) and defensive (top) 
teams, with player/position annotations. 
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Table  4. Sample concepts for the football domain. 
__________________________________________________________________________ 
; Indicates that ?agent carried ?ball in the current time step 
((possession ?agent ?ball) 
   :percepts ((ball ?ball carriedby ?agent))) 
 
; ?passer dropped back ?n-steps after receiving the snap 
((dropped-back ?passer ?n-steps) 
   :relations (((snap-completed ?passer ?ball) ?snap-start NOW) 
                        ((possession ?passer ?ball) ?poss-start ?poss-end) 
                        ((moved-distance ?passer ?n-steps S) ?mov-start ?mov-end)) 
   :constraints ((<= ?snap-start ?poss-start) 
                             (<= ?mov-end ?poss-end) 
                             (= ?mov-end NOW))) 
 
 
 
 

Table  5.Sample skills for the football domain. 
__________________________________________________________________________ 
; skill for running downfield ?dist yards, then turning and 
; running in ?dir until the ball is caught (by any agent) 
((cross-pattern-completed ?agent ?dist ?dir) 
   :start ((sccross-pattern-completed-c2 ?agent ?dir)) 
   :subgoals ((moved-distance-in-general-direction ?agent ?dist N) 
                       (moved-until-ball-caught ?agent ?dir))) 
 
; skill for running a cross pattern, then catching and running with the ball 
((cross-reception-completed ?agent ?dist ?dir) 
   :subgoals ((cross-pattern-completed ?agent ?dist ?dir) 
                       (ran-with-ball-until-tackled ?agent ?ball))) 
__________________________________________________________________________ 
 

2.3.4. Learning Skills from Video 
Our method for acquiring hierarchical Icarus skills from video employs an explanation-based 
approach. Li et al. (2009) provides details, but, in overview, the method inputs a goal, a set of 
concepts sufficient for interpreting the observed agent's behavior, a set of low-level methods 
available in the environment, and a sequence of observed perceptual states. Optionally, any 
known or previously acquired methods may be included. 
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The algorithm runs in three steps. First, the system observes the video of the game and infers 
beliefs about each state, storing the results in belief memory as described above. Next, the agent 
explains how the goal was achieved using both existing conceptual and procedural knowledge. 
The agent first tries to explain the trace with known skills that both achieve the goal and are 
consistent with the observations. It then selects one of the candidate skills and parses the 
observation trace into sub traces based on the times when the start conditions and sub goals were 
achieved. 
If the agent fails to explain the trace with procedural knowledge, it then attempts to use concepts. 
First, it retrieves from memory the belief associated with the goal, including the lower-level 
beliefs that support the goal belief. Then it parses the observation sequence based on the times 
when these sub beliefs became true. This explanation process continues recursively until the 
agent builds explanations that show what sequence of events and/or known behaviors led the 
agent to achieve its goal. These form the basis for learning new behaviors. Note that new skills 
are constructed on top of existing skills based on the derived explanations.  
 
The algorithm for acquiring skills is not equivalent to compiling information already contained 
in the provided concept hierarchy into an operational form.  The learning mechanism must 
recognize which parts of a concept definition are start conditions and which are sub goals. If we 
simply consider all sub concepts in a definition to be sub goals, then Icarus will believe that the 
learned behaviors apply in many situations that they do not. The agent would take many fruitless 
actions as a result.  
 
As a result of applying this algorithm, Icarus was able to recognize a variety of offensive football 
plays and acquire skills for controlling its individual players in simulation.  Figure 9 gives one 
such example, here a passing play called “play 18”. 

Figure  9. Diagram of play 18 with annotations for actions taken by individual players. 



   

  20

2.3.5. Mapping Recognized Plays into Rush 
As noted, a team in Rush consists of eight players while the teams from the video have eleven 
players.  To compensate, the system must map the eleven-player skills learned from the video 
into skills for the eight Rush players. It accomplishes this simply by dropping the goals 
associated with three of the players. 
 
This process is straightforward.  Rush plays typically include three offensive linemen (LG, C, 
and RG) along with some combination of four running backs and receivers.  However, the 
college play shown in Figure 9 has five linemen and five backs/receivers. To map this play into 
Rush, the system dropped two linemen (LT and RT) and one running back (RB), all of which 
had top-level goals of pass-blocking for the duration of the play. Icarus used the goals for the 
eight remaining players to guide execution in Rush. 

2.3.6. Parametric Adaptation of Football Plays 
We employ a parametric learner to improve the plays recognized from video in simulation. This 
learner is implemented externally to Icarus.  It inputs Icarus skills with certain constant values 
marked as parameters, plus a reward function, and then executes the skills using different 
parameter values to observe the reward they return.  It updates the skill parameter values to 
increase predicted future rewards.  
 
In our transfer framework, the arguments occur in the top level goal of each player agent. The 
reward function is the yardage gained at the end of each play.  The system differentiates between 
ordinal and nominal parameters that have ordered and categorical values, respectively.  For 
example the parameterized top level goal of the quarterback (pass-completed QB *receiver 
*qbDropSteps) can be achieved by searching over values for the nominal parameter *receiver 
(the recipient of the pass), and the ordinal parameter *qbDropSteps (the number of steps the 
quarterback runs back once he receives the ball). Our implementation assumes a method for 
specifying the legal range and step size for ordinal parameters and legal values for nominal 
parameters.  
 
The optimization begins with parameter values initialized from a recognized source play.  It 
proceeds by perturbing one parameter at a time, where that parameter is selected with a 
probability proportional to its expected reward improvement (specifically, the average reward 
improvement historically observed when perturbing that parameter). Given a vector of parameter 
settings, the system executes the skills a preset number of times to perform the task and measure 
an average reward.   

Assuming the system has selected a parameter, it applies a perturbation in a random direction 
(increasing/decreasing) with a default step-size.  If this change substantially improves reward, it 
selects the same parameter on the next iteration, with the same perturbation direction and step 
size.  However, the parameter learner also maintains a record of the highest reward that it has 
ever received, along with the parameter vector that produced that reward. The longer the system 
has gone without setting a new personal best, the greater the perturbation it will apply to the 
current parameter value. Thus, the system searches further and wider until it sets a new personal 
best, or until it reaches the minimum or maximum limit of the parameter, in which case it 
resumes the search with the initial step size.  The algorithm can be terminated at any time, at 
which point it returns the best parameter vector found. 
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2.3.7. Results on Transfer from Recognition into Play Improvement 
The Year 3 demonstration task measured transfer from recognition to play improvement across a 
corpus of 20 videos of football passing plays.  The object was to compare the benefit for play 
design of having seen and analyzed actual plays against the prospects for play design having 
seen none.   As a result, the demonstration compared yardage improvement over the play design 
task in two conditions: 
 

• Transfer Agent (TA): inputs to play improvement were obtained from video data. 
• Non-transfer Agent (NTA): input to play improvement was specified by hand, encoding a 

naïve play where all eligible receivers run downfield to receive a pass. 
  
Note that the experiments measured learning on the design task, not the impact on initial 
performance from exposure to the source plays.   In more detail, we compared learning curves 
obtained from parameter adaption that measured average yardage gain as a function of 
experience for both the TA and NTA conditions. The protocol in the TA condition spanned 
presentation of the source video, meaning that any failure in the video processing, recognition, 
and transfer chain would result in a zero reward signal for that example.  
 
Figure 10 illustrates the results of the Year 3 demonstration, which were collected by an 
independent evaluation team.  The TA curve measures play improvement obtained over all 20 
source videos, while the curve labeled TA on Holdout shows improvement on 6 of the 20 videos 
that were never made available to ISLE.  The results demonstrate substantial improvements in 
learning via transfer.  The magnitude of the effect can be measured by the regret score, which 
computes the area between two curves divided by the bounding box (it is a unit-less number 
between -100 and 100 percent).   Here, regret for the TA vs. NTA agents is 61.7 with a pvalue of 
0.0004, and regret for the TA on Holdout vs. NTA agents is 55.6 with a pvalue of 0.0002.  
 
Because these results spanned all phases of video processing, recognition, skill acquisition, 
mapping, and play adaption, they do not clarify the source of power for the transfer effect except 
in very aggregate terms.  We conducted a number of more specific studies to provide that 
clarification, which are available in separate publications (Straccuzi et al. 2009; Könik et al. 
2010).  The summary is that system’s ability to acquire and transfer structured knowledge in the 
form of hierarchical Icarus concepts and skills is key to that benefit, as it provides an organizing 
framework for all future adaptation.  
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Figure 10. Average performance results when learning to improve American football plays, with and 
without knowledge transfer from play recognition. 
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3. Conclusions 

The Transfer Learning project was a basic research effort whose goal was to enable machines to 
acquire knowledge in one domain and use it to improve performance in another.  In the course of 
this effort, ISLE developed technology for both near and far transfer, which can be distinguished 
by the conceptual and representational distance between the source and target tasks.   Our 
research focused on methods that could utilize a small number of experiences to acquire and 
transfer significant structural knowledge among tasks set in a logic-oriented framework.  We 
developed techniques that acquired hierarchical relational knowledge using explanation based 
learning techniques, and that transferred that knowledge using analogical representation 
mapping. 

More broadly, our research produced several key conclusions:  

• Explanation based learning techniques support relational and hierarchical knowledge 
acquisition across multiple logic-oriented domains. 

• Acquired knowledge can be automatically generalized and expressed in a form that 
natively supports near transfer, i.e., use within different tasks set in the same 
environment/problem domain. 

• Analogical representation mapping supports far transfer, i.e., reuse in disparate domains, 
providing the objects, descriptions, and/or solutions are structurally similar. 

• The capacity for, and benefit of transfer is roughly proportional to the similarity between 
the domains. 

As the state of the art advances, we can expect transfer learning technology to address larger 
distances between source and target tasks, support transfer between new families of tasks and 
among solution methods, bridge greater representational divides, and discover and exploit deeper 
similarities that link source and target domains (among other developments).  While the field is 
in its early stages, the transfer learning program has played a major role in establishing and 
popularizing this area of research, while laying the groundwork that will support a wide variety 
of future advances. 



   

  24

4. References 
 

1. Choi, D., Könik, T.,  Nejati, N, Park, C., & Langley, P., Structural Transfer of Cognitive 
Skills. (2007). In Proceedings of the Eighth International Conference on Cognitive Modeling, 
pp. 115 – 120. Oxford, UK: Taylor & Fransis/Psychology Press. 

2. Falkenhainer, B., Forbus, K. D., and Gentner, D.  (1989).  The Structure-mapping Engine: 
Algorithm and Examples.  Artificial Intelligence 41(1): 1-63. 

3. Genesereth, M. R., Love, N., and Pell, B. (2005). General Game Playing: Overview of the 
AAAI Competition. AI Magazine 26(2): 62-72. 

4. Hess, R., Fern, A., and Mortenson, E. (2007). Mixture-of-parts pictorial structures for 
objects with variable partsets. In Proceedings of the Eleventh IEEE International Conference 
on Computer Vision. Rio de Janeiro, Brazil: IEEE Press. 

5. Holyoak, K. J., and Thagard, P. (1989). Analogical Mapping by Constraint Satisfaction. 
Cognitive Science 13: 295-355. 

6. Könik, T., Ali, K., Stracuzzi, D.J., Li, N., Shapiro, D. (2010). Improving structural 
knowledge transfer with parametric adaptation. The 23rd Florida Artificial Intelligence 
Research Society (FLAIRS) Conference. Daytona Beach, FL: AAAI Press. 

7. Krawczyk, D. C., Holyoak, K. J., and Hummel. J. E. (2005). The One-to-one Constraint in 
Analogical Mapping and Inference. Cognitive Science 29: 29-38. 

8. Li, N., Stracuzzi, D. J., Langley, P., and Nejati, N. (2009). Learning hierarchical skills from 
problem solutions using means-ends analysis. In Proceedings of the 31st Annual Meeting of 
the Cognitive Science Society, Amsterdam, Netherlands. 

9. Nau, D., Cao, Y., Lotem, A., and Munoz-Avila, H. (1999). SHOP: Simple hierarchical 
ordered planner. Proceedings of the Sixteenth International Joint Conference on Artificial 
Intelligence (pp. 968–973). Stockholm: Morgan Kaufmann. 

10. Nejati, N., Langley, P., and Könik, T. (2006). Learning hierarchical task networks by 
observation. Proceedings of the Twenty-third International Conference on Machine Learning 
(pp. 665–672). New York: ACM Press. 

11. Shapiro D., Könik T., & O'Rorke P. (2008). Achieving far transfer in an integrated cognitive 
architecture. Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence 
(pp. 1325 – 1330). Menlo Park, California: AAAI Press. 

12. Stracuzzi, D. J., Cleveland, G., Könik, T., Shapiro, D., Molineaux, M., Aha, D., and Ali, K. 
(2009). Constructing Game Agents from Video of Human Behavior.  In Proceedings of the 
Fifth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment 
(AIIDE), Stanford, CA. 



   

  25

5. List of Acronyms 
 

AI   Artificial Intelligence 

AP  Advanced Placement 

GGP General Game Playing  

HTN Hierarchical Task Network 

NTC non-transfer case 

TC  transfer case 

UCT Urban Combat Testbed 

 
 

 



   

  26

Appendix A:  Learning to Annotate Video of American Football 
Plays 
Alan Fern 

Oregon State University 
 

  A.1.  Introduction 
Oregon State University joined the ISLE team in year 3 of the transfer learning program and was 
responsible for the source learning task. This task involved learning to form semantic 
descriptions of football plays from raw video. The work involved two primary phases. The focus 
of the first phase was on data collection, data format specification, and the development of tools 
for manual annotation of video. The focus of the second phase was to develop learning 
algorithms for learning to automate the annotation process from raw video. Below we summarize 
the work in these phases and our key scientific advances.  

 

A.2.  Data Collection 
In collaboration with the Oregon State University football team game video was obtained for 
three home football games. Each game included videos of about 50 offensive plays of the OSU 
team. From these plays the Oregon State team selected videos of twenty plays to serve as the 
source data for the transfer learning program. The plays were constrained to be successful 
passing plays and were selected to depict a variety of different formations, passing patterns, and 
results. Figure A‐1 shows a typical frame from one of the videos. Note that this video is the same 
video used by coaches and is representative of what most college and professional teams use for 
analysis. 

 
Figure A-1. Frame from the initial moments from one of the source football videos. 
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A.3.  Data Format 
In collaboration with the ISLE team, Oregon State defined file formats for describing football 
plays. Each play was associated with 5 files.  

1. Raw Video File: the original video of the play. 
2. Track File: contained data about the x-y field locations of each of the 22 players (11 

offensive and 11 defensive) in each frame of the video.  
3. Player Types File: contained a mapping from numeric player id’s, which are used in all 

data files, to the player position type of the player. The types considered in the source 
data includes: quarterback, center, right/left tackles, right/left guards, right/left tight ends, 
right/left wide receivers, right/left wingbacks, fullbacks, tailbacks. 

4. Ball File: this file provided information about the position of the ball in each frame of the 
video. The ball could be tagged as one of the following: being in the position of a 
particular player, being in the air, neither (generally on the ground). 

5. Activity Label File: this file provided a description of the activities that each player 
conducted during the video. For each of the offensive players the file specifies a 
segmentation of the video frames with a semantic activity tag assigned to each segment. 
A detailed description of the possible activity labels is available with the full source data 
distribution.   

A.4.  Manual Data Set Construction 
The above data files were manually constructed for the 20 selected plays by Oregon State 
University. The purpose of providing the manual data was to provide the ISLE team with initial 
data to work with and to provide training data for the Oregon State University learning work. 
The most difficult part of the data construction was to provide tracking data, which requires 
specifying the field location of each player in each video frame, where a typical play can contain 
200 to 300 frames. To make this process possible Oregon State developed a key-point tracking 
tool that allowed for semi-automatic creation of the trajectory data. The tool used video 
registration techniques developed in prior work by OSU [1] to maintain a mapping between 
screen coordinates and football field coordinates. A human is then able to scroll through the 
video and place key points for the location of each player. The system then interpolates between 
the key points using polynomial regression and displays the track to the user, who can enter more 
key points if the interpolation is not accurate enough. Using this system it was possible to track 
the 22 players in approximation 1.5 to 2 hours per play. A screen capture of the tracking tool is 
shown in Figure A‐2. 



   

  28

 
Figure A-2. Screen shot of the key-point player tracking tool. 

 
A.5.  Automated Annotation of Raw Football Video 

The second phase of the project involved developing a system that could learn to automatically 
create the annotation data for football plays from raw video. This included producing all of the 
data files above automatically, with the exception of the ball file. It was determined before the 
beginning of Y3 that requiring automated tracking of the ball would have a high risk of failure 
and thus it was decided to provide the ball information manually.  

Figure A‐3 shows a block diagram of the automated video annotation system. Raw video is fed 
into the video registration algorithm [1] and then the registered video is used by the mixture-of-
parts model to infer the initial types and locations of each player. The player type and initial 
position information is then used to initialize the player tracker, which then attempts to track all 
22 players throughout the video. The result is a set of player tracks, giving the x-y field locations 
of the players at each point in the play. These tracks are fed to the activity labeler, which assigns 
activity labels to each segment of the player tracks. The source learning task included learning to 
track the players and label the activities as indicated in the figure. Below we overview the 
components of the system that follow video registration.  
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Figure A-3. Diagram of the main components and steps in the automated video annotation system. 

 
A.6.  Initial Formation Inference 

In order to produce the player type files and to provide an initialization seed for automated player 
tracking we used an algorithm developed in work prior to the program. In particular, Oregon 
State used their model called the mixture-of-parts pictorial structures and associated inference 
algorithms [2]. The complicated aspect of this problem is that player type and initial position 
information are highly dependent on one another, which requires solving a difficult joint 
modeling and inference problem. The mixture-of-parts model provides an efficient mechanism 
for representing these dependencies and for performing the inference. The model is very accurate 
and performed nearly perfectly for the 20 plays that were selected for the transfer learning 
project.  
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A.7. Learning to Track Players 
Tracking football players was the most challenging aspect of the Y3 work. This problem 
encompasses some of the most challenging aspects of multi-object visual tracking. The players 
being tracked in the football domain move very erratically and the characteristics of a player’s 
motion changes substantially depending on the player’s type and the time stage of the video. In 
the first several seconds of each video, for example, nearly all of the players stand virtually still, 
while perhaps one or two move only gradually. However, after the ball is snapped (a one-time 
event that occurs in every football play) all of the players begin to move very quickly, and the 
tracker must be able to adapt accordingly.  In addition, football players interact in complex ways, 
frequently in very large groups. For example, in every play, a group of five linemen on the 
offense stand shoulder to shoulder in a line and attempt to block a group of about three to five 
defensive players who, in turn, attempt to break through the offensive line. Many other 
complicated interactions take place between smaller groups of players throughout the course of a 
play. Our initial attempts at implementing and applying state-of-the-art multi-object trackers to 
this problem resulted in dismal performance.  

To solve the tracking problem Oregon State took a supervised learning approach, where a tracker 
was trained based on training data depicting ground truth tracks for a number of videos. The 
tracker architecture was based on pseudo-independent particle filters, where each player was 
associated with a particle filter that tracked the player’s location. The trackers were independent 
with the exception that they were allowed to use information about the state estimates of nearby 
players in the previous frame when making inferences about the current frame. In this sense the 
trackers were only pseudo-independent, rather than fully independent.  

The key idea behind the approach was to parameterize the particle filters by log-linear 
probability models that were used to rank particles proposed by a fixed proposal distribution. 
This framework represents a strict generalization of the standard Bayesian filter paradigm, but 
offers the advantage of allowing for discriminative training of the model and for incorporating 
complex features into the model. The key problem is to learn the weighting coefficients of the 
log-linear filter models with the primary goal to successfully track all the players. For this 
purpose, Oregon State introduced a novel error-driven training approach which was tightly 
integrated with the filtering process. In particular, learning proceeds by actually running the 
filters until a filter is determined to be in error (too far away from the ground truth). When a filter 
is in error its parameters are updated in a way that attempts to prevent a similar error in the 
future. The filter is then reset to the ground truth and tracking continues.  

The full model and learning algorithm are described in a recent paper [3], which is included in 
the appendix. The empirical results were a huge improvement over the prior state-of-the-art 
systems, reducing the tracking failure rate by a factor of approximately 0.5 and reducing the 
localization error by approximately a factor of 2/3.  
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A.8. Learning to Label Activities 
Given player tracks Oregon State developed an instance-based learning algorithm for segmenting 
the track of each offensive player and labeling the segments by the appropriate label. The outline 
of the approach for labeling a given query track is quite simple: 1) Find the “most similar” track 
in labeled data set to the query track, 2) Find the best segmentation of the query track that best 
matches the segmentation of the most similar track, 3) Return the query track with the segments 
computed in step 2 labeled by the activities in the most similar track.  

The key aspect of the approach that must be specified is how to judge the similarity of tracks and 
how to perform the best segmentation. For this purpose, Oregon State used the well known 
dynamic time warping (DTW) algorithm as both a segmentation and similarity computation. The 
DTW algorithm is intended to find correspondences between numeric time-series where the time 
scales may be warped relative to one another, perhaps not uniformly. Such warpings are often 
observed in football trajectories since players move at different speeds and for different amounts 
of time during each activity, however, the general characteristics of the trajectories are often 
similar for similar activities. DTW between two football trajectories can be computed via 
dynamic programming and is very efficient. The key step in getting good results was to design 
the similarity measure for individual time points, which is used by DTW to judge the goodness 
of a warping between two signals. For this purpose we defined a number of feature functions that 
operated on pairs of points and weighted those features through a trial an error process on a 
validation set to maximize performance. Given this function we then applied DTW between a 
query and all trajectories in our data base to find the best match and then used the segmentation 
computed by DTW in order to assign labels to the segments of the query. Figure A‐4 shows 
some examples of queries and the corresponding best matches found by DTW for trajectories 
corresponding to passing patterns.  

The system performed perfectly for lineman due to the uniformity of their activity. For receivers 
and backs the performance was more varied. Generally, the segmentation boundaries were quite 
accurate, though rarely matching the training data exactly. However, there were pairs of segment 
labels that would frequently be confused due to the qualitative similarity between them. For 
example passing patterns such as slant and cross can often look quite similar, and are even 
difficult for human labelers to agree upon in many cases. Most errors were of this near miss 
variety, with fewer errors being more serious, e.g. classifying a passing pattern as a pass 
blocking activity. The final results, however, represent the first end-to-end system for labeling 
football plays at any level of accuracy and were sufficiently accurate to serve as good source data 
for the ISLE team.  
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Figure A-4. Some example query trajectories (left column) corresponding to individual passing patters and 

the best matches returned by the DTW algorithm (right column). 
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Appendix B:  Skill Learning and Activity Recognition for Transfer 

David J. Stracuzzi  
Arizona State University  

 
B.1.  Background and Motivation 

The primary role of Arizona State University in the transfer learning project has been to support 
ISLE in expanding the ICARUS architecture to meet performance goals. More specifically, ASU 
has focused on expanding ICARUS’ representational and inference capabilities to support 
temporal reasoning, and on improving the architecture's existing skill learning mechanisms to 
support the new representational capabilities. In the context of the American football domain, 
this means that ASU's work focused almost exclusively on the dual source tasks of interpreting 
the plays depicted in the video footage, and acquiring skills to execute the plays based on those 
interpretations.  
 
The following report provides an overview of the play recognition and skill learning tasks, along 
with a summary of the key ideas employed by ASU's approach to them. The related tasks of 
mapping the learned plays into the Rush simulator (target domain) and adapting those plays to 
improve performance were performed by ISLE and are described elsewhere. We begin with a 
brief review of the source and target environments. We then discuss the play recognition task in 
detail, including temporal extensions to ICARUS, provided background knowledge, and our 
approach to parsing the play videos. Next, we describe our approach to skill learning, which is 
relies heavily on the results from the play recognition methods. We also illustrate both the 
recognition and learning tasks with a specific example drawn from one of the videos. Finally, we 
discuss the implications of our approach for transfer of learning along with relationships to other 
work, and conclude remarks on possible next steps.  

B.2.  American Football 
The specific transfer task considered by the ISLE team was to first observe video of twenty 
college football plays, learning to recognize and execute the plays, and then to execute and adapt 
those plays in a simulated football environment. ASU's role in the transfer task fit between those 
of Oregon State University and ISLE.  OSU focused on low-level aspects of play recognition, 
such as determining the role, location and direction of each player in each frame. ASU used these 
results to generate a symbolic description of each play on a frame-by-frame basis. This symbolic 
description then served as the perceptual input to ICARUS, which in turn parsed the observed 
frames into high-level beliefs about the specific actions and goals pursued by each player on the 
field, and skills for executing the observed plays in the simulator. 
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B.3.  Observed Videos 

As noted, ASU's first step was to construct a symbolic description of each video, since ICARUS is 
not well suited to handling raw video data.  Each frame includes the current time (frame 
number), the identity of the player in possession of the ball, and information on each player, 
including his identity, role, location coordinates, direction of motion, team, and current action.  
The last of these is derived from the label assigned to the player by OSU.  ASU parses each play 
with a more detailed language than that used by OSU, so the original labels assigned by OSU are 
simply mapped into a set of low-level actions, such as blocking, runningto, and waiting. Note 
that these actions corresponded only approximately to the executable actions available in Rush. 

B. 4. The Rush Simulator 

In Rush, ICARUS controls only the offensive players, each of which has a unique role in the 
simulator. Rush provides percepts for all of the players and objects on the field. The offensive 
players and the agents that control them, all share the same set of percepts. Like the percepts 
generated from the videos, these include the location, direction and low-level action of each 
player on the field (including the defense) on each tick.  Also included is the location of the ball, 
which is indicated either by player currently in possession or AIR if the ball has been thrown, but 
not caught. The simulated players are controlled by assigning them a one or more instructions 
either before or during play. Rush provides a set of low-level commands, such as stride north or 
throwto RWR, that ICARUS uses to control the simulated players on a tick-by-tick basis. The 
simulator controls the defensive players by selecting one of several defensive strategies at 
random.  

B. 5.  Performance Goals 
ASU had two performance objectives in learning skills from the observed videos. The learned 
skills needed to demonstrate high fidelity with respect to original video, and needed to exhibit 
utility consistent with the observed videos when executed in the simulator. Together, these imply 
that the architecture has captured the key features of the observed play. More importantly, high 
fidelity skills that exhibit reasonable utility provide a manageable starting point for learning in 
the simulated environment. Skills that exhibit poor utility, or do not behave reasonably, require 
far more adaptation in the simulator than skills that perform well. This is undesirable from both a 
computational point of view, because adaptation in the target is expensive, and from a transfer 
point of view, because more demand for adaptation in the target implies that less information 
was transferred from source. This is an important insight that allows qualitative evaluation of 
transfer.  

B. 6.  Play Recognition 
Play recognition is a critical component of learning in the source domain for ICARUS. The goal is 
to highlight specific events and relationships among the players depicted in the video.  This is a 
generalization of ICARUS' previous recognition abilities, which focused on detecting non-
temporal relationships among the objects in a domain. Temporal events and relationship are of 
particular importance in football, as many of the behaviors executed by players depend on 
specific temporal orderings of events and relationships.  
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For example, consider a five-yard cross-left receiver's pattern, in which the receiver runs 
downfield for five yards, turns 90 degrees left, and then continues to run until the ball is caught. 
Notice that the receiver could eventually reach the same point by first running across the field, 
and then running downfield. These two approaches result in various running patterns, however, 
each can have important consequences.  Running across the field first might send a receiver 
through the quarterback's pocket, which may disrupt both the offensive linemen, and the 
receiver.  Likewise, the fact that the receiver finishes his pattern in the same location is only of 
consequence if the quarterback throws the ball to him at that point.  If the quarterback throws 
sooner, then the receiver will be out of position with respect to the ball.  In the remainder of this 
section, we provide an overview of the mechanisms that ICARUS uses to represent and reason 
about temporal relationships [3]. 

B. 7.  Temporal Extensions to Icarus 
Several architectural modifications are required for encoding and reasoning time in ICARUS. The 
first focuses on encoding temporal information with beliefs by including start and end time 
stamps, which indicate the first and last times at which a belief held. ICARUS already maintains 
an internal notion of time, based on cognitive cycles, that is now used to set these values. This 
augmented representation lets ICARUS distinguish beliefs about past events from ones about the 
present.  

A second extension is to expand the temporal scope of belief memory by retaining all of the 
beliefs held throughout an episode. This is equivalent to providing the architecture with an 
episodic belief memory, whereas previously belief memory included only those beliefs that held 
on the current cycle. All beliefs contained in the episodic memory are generated through 
inference, which is based on the agent's percepts, so belief memory maintains a record of 
experiences in the environment from the agent's perspective. 
 
The importance of episodic memory is well established, but the memory alone provides little 
improvement to an architecture's capabilities. To exploit this memory, ICARUS' concept language 
also requires modification. First, the :relations field, which lists the lower-level concepts that 
support a higher-level definition, expands to reference the time stamps assigned to beliefs. 
Second, we add a new :constraints field that represents simple arithmetic tests over time values 
referenced in the :relations field. Thus, this field lets ICARUS apply temporal constraints to the 
relationships established among the relations. 
 
The architecture's inference process also expands to support the changes in belief and conceptual 
memories. The fundamental mechanism, which computes in a bottom-up manner the deductive 
closure of conceptual memory with the belief and perceptual memories, remains unchanged. The 
only difference is that the time stamps and temporal constraints must be matched in addition to 
the percepts and relations fields. No new specialized control is required. 
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B.3.2.  Background Knowledge 
Given the ability to recognize temporal relationships among objects and events, the next step 
toward parsing football plays is to add background knowledge about football to ICARUS. The 
knowledge is encoded using ICARUS' concept language, such that each concept describes a class 
of environmental situations and potentially includes temporal relationships among the referenced 
objects and events. Importantly, the background conceptual knowledge captures state-like 
descriptions of plays, and does not contain any information about how such states should be 
achieved.  Learning procedures for achieving these states and events therefore remains a 
challenge as discussed below.  
 

B.3.3.  A Play Parsing Example 
Consider now an example drawn from one of the source domain videos. Figure B-1 (a) shows 
the paths followed by all eleven offensive players, while Figure B-1(b) shows the corresponding 
play diagram with labels for each player's high-level goal. The recognition task is then to observe 
the symbolic encoding of the play and construct a set of beliefs that capture the information 
shown in the diagram. In particular, ICARUS relies on highly structured knowledge 
representations, so the resulting beliefs about the play will contain information at a variety of 
levels of abstraction. 

 
 

Figure B-1. Paths followed by offensive players (a) and corresponding play diagram with high-level labels for 
each player's goals (b) for one of the videos. 

Table B-1 shows a subset of beliefs related to the quarterback inferred by ICARUS over the 
course of the play. Some of the beliefs indicate simple events, such as SNAP-COMPLETED, 
which holds at all times after the center snaps the ball to the quarterback. Other beliefs indicate 
specific properties of a state or sequence of states, such as POSSESSION, which indicates the 
range of times over which the quarterback had possession of the ball. Note that ICARUS performs 
play recognition in an online manner, meaning that the architecture attempts to determine the 
salient properties of the sequence as it unfolds, rather than through a post-hoc analysis. As a 
result, ICARUS sometimes generates beliefs about events and processes that have not yet 
completed.  For example, there are MOVED-DISTANCE and DROPPED-BACK beliefs for 
each yard of progress in the quarterback's drop.  This follows from ICARUS' lack of a priori 
knowledge about the intended drop distance. Also notice the structural relationships between 
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beliefs that hold earlier in the play, and those that hold later.  For example the sequence of events 
DROPPED-BACK, SCRAMBLED, and PASS-COMPLETED combine to form the higher-
level event DROP-SCRAMBLE-ONE-SECOND-PASS-COMPLETED, which represents the 
top-level goal for the quarterback in this play. 
 

Table B-1. A selection of inferred beliefs about the quarterback for the play shown above. 
__________________________________________________________________________ 
(SNAP-COMPLETED QB BALL1)                            140   NOW 
(POSSESSION QB BALL1)                                140   236 
(MOVED QB S)                                         140   191 
(MOVED-FROM QB 6.6 -24 S)                            140   191 
... 
(MOVED-DISTANCE-IN-GENERAL-DIRECTION QB 4 S)         177   186 
(MOVED-DISTANCE-IN-GENERAL-DIRECTION QB 5 S)         187   191 
... 
(DROPPED-BACK QB 4)                                  177   186 
(DROPPED-BACK QB 5)                                  187   191 
(SCRAMBLED-FOR-ONE-SECOND QB)                        215   229 
(THREW-BALL QB BALL1)                                237   237 
(PASS-COMPLETED QB RWR)                              259   259 
(DROP-SCRAMBLE-ONE-SECOND-PASS-COMPLETED QB RWR 5)   259   NOW 
__________________________________________________________________________ 

B.4  Learning Skills from Observed Behavior 
The ICARUS architecture has traditionally learned new skills in the context of problem solving. 
The architecture executes in a given domain until it reaches an impasse, or point at which no 
known skills are capable of achieving the agent's goals.  In response, the architecture resorts to 
backward-chaining search from the goal. Though effective, this approach can become 
computationally expensive when there are many possible paths to consider. The football domain 
offers an almost unlimited set of possibilities, since ICARUS controls all eight offensive players 
in the Rush simulator on a tick-by-tick basis. With this in mind, ASU converted the source task 
of video play recognition into an opportunity to learn skills for target based on the observed 
behavior of the human players.  

Our approach to skill learning from the observed video runs in three steps. First, the system 
observes the video of the game and infers beliefs as described above. Next, the architecture 
attempts to explain how the goal was achieved using both existing conceptual and procedural 
knowledge. Finally, the architecture uses the explained events to construct new skills, which can 
then be executed in the simulator. We summarize briefly the skill learning methods below, 
leaving a more detailed discussion for Li et al. [2]. 
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B.4.1.  Generating Explanations 
The objective of the explanation process in ICARUS is to show how the states in the observed 
sequence relate to each other, and how the progression relates to the goals and sub goals of a 
given agent. The explanation therefore provides important insight into the procedures that an 
observed agent must have applied in order to achieve its goals. In ICARUS, the observing agent 
tries to explain the observed trace using a combination of known skills and concepts. 
 
ICARUS first tries to explain its observations using existing skills by retrieving any skills that can 
achieve the top-level goal that was identified during play recognition. Skills whose start 
conditions are not consistent with the observed trace are ignored. The agent then selects a 
candidate skill and parses the observation sequence into subsequences based on the times when 
the start conditions and sub goals were achieved (using the temporal beliefs). The explanation 
process then recourses on each subsequence (corresponding to a start condition or sub goal) until 
the entire observation sequence is explained by a sequence of primitive skills. 
 
If ICARUS fails to explain the observation sequence using skills, it attempts to explain it using 
concepts. Using the belief corresponding to the observed goal and the lower-level beliefs that 
support it, the agent divides the observed sequence into temporal subsequences. As with skill-
based explanations, the agent recursively attempts to explain these sub goals. The observation 
sequence is considered successfully explained if either (1) there exists a skill for the goal that is 
applicable at the beginning of the trace, in which case there is no need to learn, or (2) all the sub 
goals of the current trace have already been successfully explained. Figure B-2 shows a partial 
explanation for the quarterback based on the beliefs shown in Table B-1.  
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Figure B-2. A partial explanation for the quarterback’s observed behavior. 

 

B.4.2.  Constructing Skills 
After explaining an observation sequence, the agent can learn skills for the achieved goals. These 
new skills then let the agent achieve similar goals in the future under similar conditions without 
additional problem solving. Note that new methods are constructed on top of existing methods 
based on the derived explanations. In the context of football, this means that the number of new 
skills acquired by observing a sequence of plays diminishes rapidly to zero, since only 
previously unobserved behaviors require additional skill learning. We consider this important 
point further in Section 0. 
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New skills are generated in two ways, depending on how the explanation was constructed. If the 
explanation is based on skill knowledge, then the sub goals of the new skill are the 
chronologically ordered start conditions and sub goals from the skills that provided the 
explanation that were achieved during the observed sequence. The start condition for a new skill 
includes the start conditions and sub goals that were true before or during the first cycle of the 
observed subsequence. 
 
If the explanation is based on conceptual knowledge, then the learner retrieves the concept 
definition corresponding to the goal. The sub goals of the new skill correspond to the sub 
concepts that were achieved during the observed sequence in chronological order. The start 
condition of the new skill includes the generalized lower-level beliefs (sub goals from the 
explanation) that were true before or during first cycle of the observed subsequence.   
 
Note that the methods for acquiring skills described above are not equivalent to compiling 
information already contained in the provided concept hierarchy into an operational form. The 
learning mechanism must recognize which parts of a concept definition are start conditions, and 
which are sub goals. If we simply consider all sub concepts in a definition to be sub goals, then 
ICARUS will conclude that the learned behaviors apply in many situations that they do not. The 
result would be that agents take many fruitless actions in the environment.  Similarly, the 
temporal constraints in a concept definition only provide partial ordering information about the 
sub goals in a new method. Although the concepts in football tend to provide a total ordering 
over the sub goals, this is not generally true, and our approach does not rely on this property. 
 

B.4.3. Learning Skill Preconditions 
The final step of skill construction is to determine the skill precondition, which specifies the 
environmental conditions that must hold in order for the skill to apply, and which may depend on 
temporal relations. In particular, many concept definitions include information about the 
temporal relationships among its sub concepts, and therefore the skill's sub goals. The learned 
skill should therefore retain this information in its start condition.  
 
ICARUS does not currently support temporal conditions in skill definitions.  Instead, the agent 
constructs a new concept to represent the start condition by extracting information from the 
original concept definition. Note that the learned start condition concepts describe both what 
must be true in the current state and conditions that must have held in the past to ensure that the 
skill applies.  Our learning mechanism is incremental in the sense that constructed concepts and 
skills can serve as domain knowledge for future trace explanation. This enables our mechanism 
to acquire increasingly complex domain knowledge over time. 
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B.5. Discussion and Conclusions 
The ICARUS-based approach for representing and acquiring transferable football knowledge is 
based on three principles.  The first is abstraction. The temporal representation described above 
allows the architecture to abstract away many unimportant details of the source and target 
domains, such as specific attributes of the individual players, so that both background and 
learned knowledge transfer easily from source to target. Although experiments such as those 
conducted by Li et al. [1] show that some adjustment in the target is necessary, the initial, 
untuned performance of the transferred skills is reasonable with respect to the domain. 
 
A second principle relates to high-fidelity learning. The skills learned by ICARUS from the 
source video reproduce the observed behavior quite faithfully in the Rush simulated. In some 
cases, the learned skills reproduced the observed plays with greater fidelity than hand-crafted 
agents based on Rush's built-in play-control commands. When combined with abstract 
knowledge representations, this should result in learned skills that perform robustly across a 
variety of offensive and defensive team configurations.  Pilot experiments suggest that this is 
true, though we have not yet confirmed this with detailed, formal experiments. 
 
The third principle is that the learned skills should compose to form new, unobserved behaviors 
to the extent possible. Ideally, ICARUS should be able to observe a variety of different behaviors 
in a variety of situations, and then combine the skills learned from these observations in new 
ways. This allows the architecture to increase the breadth of its execution capabilities much 
faster than if it needed to view the combinations before executing them. Experiments from the 
football domain suggest that ICARUS can compose behaviors without prior observation.  For 
example, the number of new skills learned from a given video observation drops rapidly toward 
zero as the number of observed videos increases.  This implies that ICARUS is able to explain 
(and by extension execute) previously unseen play combinations based primarily on existing 
skills. This ability has important consequences for transfer, since new domains will often require 
agents to apply known skills in ways that have not been previously considered. 
 
Next steps for this work include expanding the architecture to acquire the concept definitions 
currently provided as background knowledge automatically from the observed video traces.  The 
represents a significant expansion of the ICARUS architecture, which has not traditionally 
focused on inductive learning, and would operate in a complementary fashion to the analytical 
concept learning methods employed as part of the skill learning techniques described above. 
Expansion into concept learning will also play an important role in adding detail to the 
conceptual knowledge currently available to architecture.  For example, the football agents 
currently have limited knowledge of interaction with the defensive players.  As a result, they 
typically do not make significant efforts to avoid being tackled.  Increasing the resolution of the 
agent's conceptual knowledge would in turn allow the agent to increase the resolution of its skill 
knowledge, such as by learning to out-maneuver oncoming tacklers after receiving a pass. Such 
expansions would allow agents to take advantage of existing architectural properties, such as 
reactivity to the physical world, which then further improve ICARUS' ability to transfer learned 
knowledge among domains. 
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In summary, ASU's work on the transfer project focused on representation and learning in the 
source domain. The representation of temporal relationship plays a key role in the architecture's 
ability to recognize and capture information about football from the source video. Likewise, the 
expanded skill and precondition learning methods are important for both capturing temporally 
constrained procedural knowledge, and for allowing the architecture to avoid backward-chaining 
problem solving in the target domain, which would have been intractable. Finally, we concluded 
that the most important step toward making ICARUS' ability to transfer learned knowledge more 
robust is expanding the architecture's ability to identify and learn new concepts based on either 
experience in the source domain, or observed behaviors. These would allow agents to expand 
their understanding of the source problem, thereby giving the agents additional material on 
which draw in the target. 
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Appendix C:  Hierarchical Task Networks in Transfer Learning 
Dana Nau, Ugur Kuter 

University of Maryland College Park 
 

C.1  Introduction 
This report describes the research conducted at University of Maryland under DARPA's Transfer 
Learning contract. We have worked on two main research topics: learning Hierarchical Task 
Networks (HTNs) and combining heuristic search techniques in HTN planning. We have 
developed new algorithms in these topics and published our results in major conferences such as 
IJCAI, AAAI, and ILP. We have implemented and integrated our planning and learning 
algorithms in Transfer Learning systems developed by ISLE under this contract. We describe the 
impact and the results of our work in this program.  
 

C.2.  Summary of Research Conducted 
One of the objectives of transfer learning is transferring knowledge and skills learned from a 
variety of previous situations, called source problems, to the current, previously unencountered 
problems(s), called the target(s) (where significant differences may exist between these two 
problem types).  For this, a transfer learner needs to have some knowledge about the underlying 
characteristics of both source and target problems.  Transfer can be especially effective when 
such knowledge can be represented suitably structured, e.g., in a relational fashion as in 
reinforcement learning and/or in a hierarchical fashion as in Hierarchical Task Networks 
(HTNs). 

 
In our work, we have been using HTNs as a means for describing higher level problem-solving 
knowledge and studying how to generate plans with HTNs as well as how to learn such HTN-
based planning knowledge for the purposes of transfer. The subsequent sections summarize our 
main research accomplishments under the Transfer Learning contract.  
 

C.3.  HTN Planning for Guiding Transfer Learning 
 In transfer learning scenarios, planning with HTNs typically take place both in the source 
planning domain and in the target planning domain.  The former aims to support the learning 
process by producing plans as learning examples. The latter provides an evaluation framework  
(i.e., a simulation of execution) for the transferred knowledge.  In either case, the HTNs are 
learned by machine-learning algorithms that depend on the observations in the world.  In many 
planning domains, however, observations to learn HTN knowledge may not be completely 
available and thus, the learned HTNs do not typically have an expert-level quality. 

 



   

  46

Our objective in this direction was to develop ways to use  heuristic guidance to replace  some of 
the HTN based  knowledge that would otherwise be needed  for an HTN planner to generate 
solution plans. In automated planning, a planner that can use domain-independent heuristic 
information (e.g., FF [6], AltAlt [9], SGPlan [2],  HSP [1], FastDownward [5], and LPG [4]) 
usually does not need expert-provided domain knowledge, since the planner itself computes a 
heuristic for each domain.  This makes the domain formalization simpler and the planner easier 
to use; but the planner may often perform much worse than a planner that exploits specific 
domain knowledge. 
 
We have developed three approaches that combine the two schools of thought above in different 
ways. 
 
Integrating Heuristic Selection in SHOP2. In this work, we extended the definition of an HTN 
method (i.e., an operational procedure that describe how nonprimitive tasks are decomposed into 
their subtasks) to include a goal expression, i.e., a single logical atom that will be true in the state 
of the world when/if all of the subtasks are successfully accomplished in the current state.2 A 
method's goal expression describes the possible goal states reachable by the SHOP2 planner 
from the current state by accomplishing the current task.  This enabled us to use domain-
independent heuristics during task decomposition.  
 
The planner takes as input a domain-independent heuristic function and uses it to compute how 
close the goal of the method is to the state in which the decomposition is performed.  Given the 
current state and the goal expression of a method, the heuristic function computes a score value 
of using that method for the current task in the current state. The planner can compute a score 
using any heuristic function originally developed for existing state-space search planners, such as 
Manhattan Distance heuristic and the distance-based heuristics as in FASTFORWARD [6].  
 
This approach is also useful in planning with learned HTNs, i.e., HTN knowledge produced by a 
machine learning algorithm as opposed to an expert.  We have used this approach successfully in 
the Transfer Learning Go/Nogo tests in order to plan with HTNs learned by the learning 
algorithms such as Icarus and LIGHT in the program. 
 
Duet = SHOP2 X LPG.  In this work, we have developed a formalism that enabled us to 
combine SHOP2 and LPG, a well-known domain-independent classical planner, in a unified 
planning architecture called Duet. We extended the SHOP2 and LPG formalisms to allow the 
planners to communicate in Duet by generating subgoals of a planning problem for each other. 
Duet organizes the planning process by passing these subgoals to the individual planners until no 
subgoals are left to achieve.  
 

                                                        
2 The use of goal expressions associated with HTN methods is originated from the previous work on ICARUS, a 
machine-learning system capable of producing hierarchical knowledge similar to HTNs [10] 
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In our experiments, we varied the amount of HTN-based domain-specific knowledge available to 
Duet and compared its performance with LPG's and SHOP2's performance as stand-alone 
planners. Even with just a small amount of domain-specific knowledge (e.g., ``choose the least-
fragile object and move it to the target museum''), Duet usually generated solutions faster than 
LPG. With more domain-specific problem-solving knowledge (e.g., how to properly stack art 
objects on top of each other), Duet ran faster and solved more  problems than both LPG and 
SHOP2. Although SHOP2's performance could have been improved, this would have required 
much more time for hand-crafting its knowledge base. 
 
This work is published in the 2008 proceedings of European Conference on Artificial 
Intelligence (ECAI-08). 
 
Translating HTNs into PDDL.  We have developed a translation methodology that takes an 
HTN knowledge base and an HTN planning domain description and an HTN planning problem 
and translates them into a classical planning domain description and classical planning problem. 
Any classical planner can use the produced domain description in order to solve the translated 
planning problem -- hence the HTN-based knowledge in its operations. 
 
Our experiments show that by translating partial HTN models into PDDL, we can substantially 
improve a classical planner's performance. In experiments with the well-known Fast-Forward 
(FF) planner [6] on more than 3500 planning problems, the translated knowledge improved FF's 
running time by several orders of magnitude, and enabled it to solve much larger planning 
problems than it could otherwise solve. 
 
This work is published in the 2009 proceedings of International Joint Conference on Artificial 
Intelligence (IJCAI-09). 

C.3.1   Learning HTN knowledge from Plan Traces 
It is crucial to develop learning techniques in order to produce planning knowledge when human 
contributions are limited or unavailable, either in the form of writing HTNs or devising heuristic 
functions. The subsequent sections summarize our research: 
 
Learn2SHOP.  Our objective was to develop HTN learning formalisms and algorithms that use 
computer simulations in a planning domain in order to acquire data about the unknown outcomes 
of the actions. We have developed the Learn2SHOP architecture, which departs significantly 
from the previous works on AI planning and learning in that its modular architecture integrates 
HTN planning, concept learning, and computer simulations.  
 
The overall algorithm employed by Learn2SHOP takes as input example solutions to given 
problems. It acquires data on the performance of these examples through simulation in the 
game's actual environment.  Using simulations during the planning and learning process enables 
the system to get information about the outcomes of the actions.  This data is then used in a 
concept learning algorithm to determine the applicability of the various HTN methods to the 
given game.  
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As learning progresses, Learn2SHOP becomes more and more certain of which HTN methods 
are best in which situations and performs better at the provided game. If the game is switched, 
Learn2SHOP will not be confused but will proceed as expected: applying lessons already learned 
that work, and re-learning those lessons which worked before but do not apply to the new 
environment.  
 
In Phase 1, the experiments with Learn2SHOP have demonstrated the advantages of integrating 
planning, learning, and simulation in the benchmark MadRTS real-time strategy game engine. 
We have tested Learn2SHOP in a transfer-learning task in this game, where the objective was to 
take knowledge that was acquired under one model and harness it in the learning within another 
model (e.g., taking lessons that were learned in one game scenario and using them in other game 
scenarios). The experiments performed by an objective third-party, namely Naval Research 
Laboratories, demonstrated the effectiveness of our integrated system in a suite of performance 
measures of knowledge transfer. 
 
HTN-Maker.  Furthermore, we have developed a way to formalize semantics of the tasks (i.e., 
activities) and to use that formalism in order to learn methods for decomposing tasks into smaller 
tasks. Intuitively, our formalism associates an activity with the conditions that must be held in 
the world in order to start that activity and the effects that will be realized when the activity ends. 
Existing HTN formalisms, such as the ones described in [3, 8, 11], that associate semantics to 
tasks typically does so through the methods that decompose those tasks  -- i.e., traditionally, the 
meaning of a task is given through what subtasks must be accomplished in order to accomplish 
the task and through the conditions under which such   accomplishments must be made.  
 
We describe HTN-Maker (short for Hierarchical Task Networks with Minimal Additional 
Knowledge Engineering Required), an offline and incremental algorithm for learning HTN 
methods  (i.e., both the structural relationships between tasks and their subtasks as well as the 
conditions under which a method must be applied to a task) using semantic information provided 
for the tasks in a planning domain. During learning, HTN-Maker uses hierarchical goal   
regression, a form of goal regression in order to generate the preconditions of the learned HTN 
methods and to identify the subtask relationships in a particular method. Unlike previous work 
on goal regression [7], HTN-Maker's goal regression propagates goals over HTNs, i.e., both over 
the actions and over the task hierarchy through previously learned methods. 
 
Our work was published in the 2008 proceedings of AAAI conference (AAAI-08).  

C.4.  Conclusions 
We have described our research on planning and learning with HTNs under DARPA's Transfer 
Learning contract. We have developed several planning and learning systems. Some of which 
were integrated and helped the ISLE's transfer learning effort in DARPA's Go/Nogo evaluations, 
and others produced pure research results that were published in highly prestigious AI 
conferences. 
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Appendix D:  Advances in Reinforcement Learning for Transfer 
Peter Stone 

The University of Texas at Austin 
 

D.1.  Introduction 
The Transfer Learning (TL) program directly enabled and supported a large body of successful 
and influential research within the UT Austin Learning Agent Research Group (LARG).  The 
program directly led to a completed Ph.D. dissertation which was published as a book (Matthew 
Taylor), another Ph.D. dissertation is near completion (Gregory Kuhlmann), two journal articles 
in one of the top machine learning journals (JMLR) [12, 14], and fourteen conference papers in 
top conferences such as ICML [11], ECML [7, 3], IJCAI [1, 2], AAAI [15, 4, 5, 13], and 
AAMAS [8, 16, 6, 10], and others [9].  All of these articles and papers are indexed together at 
http://www.cs.utexas.edu/~pstone/Papers/bib2html/class_rescat.html#Machine%20Learning:%2
0Transfer%20Learning. In addition, many more articles and papers in areas related to TL, such 
as abstraction in reinforcement learning and multi-agent learning, were partially supported. 

 
This document briefly summarizes the different threads of research carried out as a part of the 
TL program within LARG at UT Austin.  
 

D.2.  Transfer Learning in Reinforcement Learning 
 The main line of research supported by TL was Matthew Taylor's Ph.D. research on Transfer 
Learning in Reinforcement Learning.  The thesis was published as a book by Springer Verlag, 
and was runner up for the IFAAMAS-08 Victor Lesser Distinguished Dissertation Award. 

 
Reinforcement learning (RL) methods have become popular in recent years because of their 
ability to solve complex tasks with minimal feedback. While these methods have had 
experimental successes and have been shown to exhibit some desirable properties in theory, the 
basic learning algorithms have often been found slow in practice. Therefore, much of the current 
RL research focuses on speeding up learning by taking advantage of domain knowledge, or by 
better utilizing agents' experience. The ambitious goal of transfer learning, when applied to RL 
tasks, is to accelerate learning on some target task after training on a different, but related, source 
task. Matt's dissertation demonstrates that transfer learning methods can successfully improve 
learning in RL tasks via experience from previously learned tasks. Transfer learning can increase 
RL's applicability to difficult tasks by allowing agents to generalize their experience across 
learning problems. 
 
The dissertation presents inter-task mappings, the first transfer mechanism in this area to 
successfully enable transfer between tasks with different state variables and actions. Inter-task 
mappings have subsequently been used by a number of transfer researchers. A set of six transfer 
learning algorithms are then introduced.  While these transfer methods differ in terms of what 
base RL algorithms they are compatible with, what type of knowledge they transfer, and what 

http://www.cs.utexas.edu/~pstone/Papers/bib2html/class_rescat.html#Machine%20Learning:%2
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their strengths are, all utilize the same inter-task mapping mechanism. These transfer methods 
can all successfully use mappings constructed by a human from domain knowledge, but there 
may be situations in which domain knowledge is unavailable, or insufficient, to describe how 
two given tasks are related. We therefore also study how inter-task mappings can be learned 
autonomously by leveraging existing machine learning algorithms. Our methods use 
classification and regression techniques to successfully discover similarities between data 
gathered in pairs of tasks, culminating in what is currently one of the most robust mapping-
learning algorithms for RL transfer. 
 
Combining transfer methods with these similarity-learning algorithms allows us to empirically 
demonstrate the plausibility of autonomous transfer. We fully implemented these methods in 
four domains (each with different salient characteristics), showed that transfer can significantly 
improve an agent's ability to learn in each domain, and explored the limits of transfer's 
applicability. 
 
The central question examined in the dissertation is the following: 

 
The primary contribution of the dissertation is to answer the first part of the above question by 
demonstrating that TL is feasible. For this purpose, we introduce inter-task mappings, a construct 
that relates pairs of tasks that have different actions and state variables. Inter-task mappings are 
the field's first construct to enable such transfer techniques. 
 
The first TL method to use inter-task mappings is Value Function Transfer, which can transfer 
between agents3 in tasks with different state variables and actions, assuming that both agents use 
temporal difference (TD) learning algorithms and represent the learned value function in the 
same manner.  Experiments demonstrate that this method can significantly improve learning, but 
there may be situations where it is inapplicable because an agent does not use TD learning, or 
because agents use different representations. However, the inter-task mapping construct is robust 
enough to work in a variety of settings, and this dissertation fully explores the application of 
inter-task mappings as the core of multiple algorithms. Matt's dissertation introduces the 
following methods, all of which utilize inter-task mappings: 

                                                        
3 It is reasonable to frame TL as transferring from an agent in a source task to a different agent in a target task, or to 
consider training an agent in a source task and then having it move into the target task. The dissertation assumes 
transfer between different agents, but the two views are equivalent. 

Given a pair of related RL tasks that have different state spaces, different available 
actions, and/or different representative state variables, 
 

1. how and to what extent can agents transfer knowledge from the source task to 
learn faster or otherwise better in the target task, and 

 
2. what, if any, domain knowledge must be provided to the agent to enable 

successful transfer? 
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• Value Function Transfer is described above. 
• Q-Value Reuse on Value Function Transfer by directly reusing a learned source task 

action-value function, allowing for transfer between TD agents with different function 
approximators. 

• Policy Transfer modifies the structure and weights of neural network action selectors to 
transfer between direct policy search learning methods. 

• TIMBREL directly transfers experience data between tasks in order to improve learning 
on a model-based learning method in the target task, without placing any requirements on 
the type of source task learning method. 

• Rule Transfer learns production rules that summarize a source task policy learned with 
any RL method, and provides the rules as advice to a TD learner in a target task. 

• Representation Transfer allows experience from an agent trained in a task to be reused in 
the same task by an agent with a different representation (as defined by the learning 
algorithm, the function approximator, and the function approximator's parameterization), 
or in a different task. 

 
As a whole, these methods show that inter-task mappings can be used as a core component in 
multiple algorithms, allowing for transfer between many different types of learners and learning 
representations. Additionally, these methods show that different types of knowledge can be 
successfully transferred, emphasizing that inter-task mappings are a very general construct that 
allow for significant flexibility in specific transfer algorithms. 
 
A second contribution of Matt's dissertation is to answer the latter part of the above question by 
demonstrating that inter-task mappings can be learned autonomously. While all of the TL 
methods in the dissertation function well with mappings provided by a human, a human may 
sometimes be unable to generate such a mapping, either because she does not have the requisite 
domain knowledge, or because the agent is fully autonomous. A pair of mapping-learning 
methods are therefore introduced to address this potential shortcoming. The first uses 
classification, in conjunction with some limited domain knowledge, to learn a mapping between 
two tasks. The second gathers data in both tasks, uses regression to learn a simple model, and 
then selects an inter-task mapping by testing different possible mappings against the model 
offline. This second method is significantly more robust than existing methods that learn such 
relationships between tasks, and is capable of enabling autonomous transfer. 
 

1. There are many ways to formulate and address the transfer learning problem. Matt's 
research differs from prior approaches in three ways:  The TL methods enumerated above 
use inter-task mappings to transfer between tasks with differences in the action space and 
state variables, which increases their applicability (relative to many existing transfer 
methods). Our algorithms are also applicable when the transition function, reward 
function, and/or initial state differ between pairs of tasks4. 

2. Our methods are competitive with, or are able to outperform, other transfer methods with 
similar goals. 

                                                        
4 The dissertation uses the Markov Decision Process (MDP) framework. 
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3. We introduce two methods that are able to learn inter-task mappings in order to define 
relationships between pairs of tasks without relying on a human to provide them. Such 
methods are necessary for achieving autonomous transfer but remain a relatively 
unexplored area in the literature. 
 

D.3.  Transfer in General Game Playing 
 The second Ph.D. dissertation supported and directly inspired by the TL program will be that of 
Gregory Kuhlmann.  Greg is planning on defending his thesis in the Spring of 2010. 

Greg's focus is on the problem of General Game Playing.  In this paradigm, the challenge is to 
design an agent that can receive descriptions of previously unseen games and play them without 
human input.  This arrangement precludes us from doing the game analysis ourselves, and 
instead motivates research on automated techniques. Following the general game playing 
paradigm, Greg's thesis will present a system for performing automated domain analysis based 
on the description of the game.  The complete agent leverages this knowledge to improve its 
initial competency as well as its ability to learn and transfer knowledge between similar games. 
 
Much of the intellectually interesting part of game playing is found in game analysis.  One 
approach is to analyze a game's rules and develop heuristics directly from static analysis.  But 
static analysis of a game's formal description can be complemented by experience playing the 
game.  Through internal simulation, the player may refine some of the knowledge generated 
during domain analysis.  Examples include testing state invariants, discovering cooperative roles, 
and learning the weights of the heuristic evaluation function. 
 
To make the most of this learned experience, the player should be able to reuse its knowledge in 
the future when faced with a new, but similar game.  Such transfer learning can be evaluated in 
several ways, including its improvement to the player's initial competency in the new task or its 
increased learning rate in the new task.   
 
The simplest form of transfer is just direct reuse of learned knowledge when faced with a game 
that was played previously.  The problem becomes more difficult as the source task and the 
target task begin to share less overlap.  For any transfer to be possible, the agent must have a 
means to recognize similarity between games.  This thesis will present methods for automatically 
identifying similar games and deciding what knowledge to transfer. 
 
In addition to using transfer for increased generalization in the agent's lifelong learning, transfer 
learning can also be used to speed up learning on a completely new task by automatically 
generating the source task for itself.  There are several examples from the literature in which 
learning has been shown to improve by first learning a simpler source task before transferring 
that knowledge to the target task.  Typically, the simpler task is chosen by a human. However, 
Greg's thesis will contribute a method for automatically generating source tasks for some games.  
Greg demonstrates how the agent can speed up learning in this way.  This thesis builds directly 
upon the previous dissertation work of Matthew Taylor (described above), specifically by using 
reinforcement learning and value function transfer to automate the domain mapping through 
analysis of the game's formal description. 
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D.4.  Transfer Using Structure Mapping 
 In a separate line of research led by postdoc Yaxin Liu, we built upon Matt Taylor's Value 
Function Transfer as well as Ken Forbus' Structure Mapping Engine to demonstrate the ability to 
build automatic transfer maps. 

Feasible transfer often benefits from knowledge about the structures of the tasks.  Such 
knowledge helps identifying similarities among tasks and suggests where to transfer from and 
what to transfer.  In this work, we show how such knowledge helps transfer in reinforcement 
learning (RL) by using structure mapping to find similarities. Structure mapping is a 
psychological theory about analogy and similarities and the structure mapping engine (SME) is 
the algorithmic implementation of the theory.  SME takes as input a source and a target 
representated symbollically and outputs a similarity score and a mapping between source entities 
and target entities.  To apply structure mapping to transfer in RL, we need a symbolic 
representation of the RL tasks, namely, the state space, the action space, and the dynamics (how 
actions change states).  To this end, we adopt a qualitative version of dynamic Bayes networks 
(DBNs).  Dynamic Bayes networks are shown to be an effective representation for MDP-based 
probabilistic planning and reinforcement learning.   Although the probabilities in DBNs are too 
problem-specific to be relevant for transfer, the dependencies represented as links are useful 
information.  The qualitative DBN (QDBN) representation thus ignores probabilities but uses 
different types of links for different types of dependencies.  In this line of research, we 
specialized and optimized SME to work with QDBNs efficiently using heuristic search to find 
the best maximal mapping, since QDBNs typically involve at least an order of magnitude more 
entities than previous SME applications. 
 
As an application of the optimized SME for QDBNs, we generate the mapping of states and 
actions and thus the transfer functionality automatically, using domain knowledge represented as 
QDBNs.  The main contribution of this research is to use structure mapping to find similarities 
between the source and target tasks based on domain knowledge about these tasks, in the form of 
QDBNs in particular, and to automatically construct mappings of state variables and actions for 
transfer. 
 

D.5.  Other Research 
 In addition to the above lines of research directly related to the transfer learning program, the 
project supported and inspired several other lines of related lines of research.  Most notably, 
Nicholas Jong's upcoming dissertation on ``Automatic Induction of Generalization Hierarchies 
for Reinforcement Learning'' and David Pardoe's thesis on ``Adaptive Trading Agent Strategies 
Using Market Experience'' will both include some elements of transfer learning. Both are 
expected to defend in 2010. 

Meanwhile, I fully expect that the exciting transfer learning accomplishments that were achieved 
during the program will continue to shape the research of my more junior students for many 
years to come. 
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Appendix E:  Transfer Learning with Markov Logic Networks 
Ray Mooney 

University of Texas at Austin 
 

E.1.  Introduction 
Ray Mooney's group at the University of Texas developed transfer learning methods for Markov 
logic networks (MLNs). These methods allow an MLN learned for a source domain to be used to 
aid the learning of an MLN for a new related target domain.  This work was conducted in 
coordination with the research on MLNs lead by Pedro Domingos at the University of 
Washington (UW). All of the software developed was integrated with UW's Alchemy system for 
MLNs. By exploiting MLNs' ability to combine the expressiveness of first-order logic with the 
robustness of probabilistic graphical models (Richardson and Domingos, 2006), our methods 
allow transfer learning in rich, structural domains where even the representation of the target and 
source domains may be different.  Almost all other transfer-learning methods assume identical 
feature-vector representations in the source and target and cannot be applied in such cases. 

There are two aspects to learning an MLN: 1) acquiring the structure, or first-order logic clauses, 
and 2) setting the weights. While weight learning is relatively quick, structure learning is very 
computationally intensive. Therefore, we focused on MLN structure learning because it could 
particularly benefit from transfer.  We view transferring an MLN to a new domain as consisting 
of two subtasks: predicate mapping and theory refinement.  In general, the set of predicates used 
to describe data in the source and target domains may be partially or completely distinct. 
Therefore, the first transfer task is to establish a mapping from predicates in the source domain to 
predicates in the target domain. For example, consider transferring an MLN learned to model 
data about individuals and their relationships in an academic department to modeling data from 
the International Movie Database (IMDB).  A predicate mapping between the two domains 
might establish that directors are like professors, actors are like students, and movies are like 
research papers.  Once a mapping is established, clauses from the source domain can be 
translated to the target domain.  However, these clauses may not be completely accurate and may 
need to be revised, augmented, and re-weighted in order to properly model the target data. This 
step is similar to previous work in theory refinement (Richards and Mooney, 1995; Wrobel, 
1996), except the theory to be revised is learned in a previous domain rather than manually 
constructed by a human expert.  Below we elaborate on the mapping and revision steps. 
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E.2.  Predicate Mapping 
The goal of this step is to find the best way to map a source MLN into a target MLN. The quality 
of a mapping is measured by the performance of the mapped MLN on the target data, as 
estimated by the likelihood of the data given the model. To allow each clause to potentially use a 
different mapping, we map each source clause separately.  To find the best predicate mapping for 
a clause, we search the space of all legal mappings.  A mapping is legal if each source predicate 
in a given clause is mapped either to a compatible target predicate or to the ``empty'' predicate, 
which erases all literals of that source predicate from the clause. Two predicates are compatible 
if they have the same arity and the types of their arguments are consistent with the current type 
constraints. For any legal mapping, a type in the source domain is mapped to at most one 
corresponding type in the target domain, and the type constraints are formed by requiring that 
these type mappings are consistent across all predicates in the clause.  

 
For example, if the current type constraints are empty, then the source predicate Publication(title, 
person) is considered to be compatible with the target predicate Gender(person, gend), and the 
type mappings title → person and person → gend are added to the current type constraints. All 
subsequent predicate mappings within the current clause must conform to these type constraints.  
For example, with these constraints, the source predicate SamePerson(person, person) is 
compatible with the target predicate SameGender(gend, gend) but not compatible with the target 
predicate SamePerson(person, person).  The best predicate mapping for a clause is the one whose 
translated target clause gives the highest likelihood to the target training data. This process is 
repeated to find the best predicate mapping for each source clause.  Shown below is the best 
predicate mapping found by the algorithm for a given source clause and the resulting translated 
target clause:  
 
   Source clause: 
    Publication(T, A) � Publication(T, B) � Professor(A) � Student(B) �  
  ￢SamePerson(A, B) � AdvisedBy(B, A) 
 
   Best predicate mapping: 
    Publication(title,person) → MovieCredit(movie,person) 
    Professor(person) → Director(person) 
    Student(person) → Actor(person) 
    SamePerson(person,person) → SamePerson(person,person) 
    AdvisedBy(person,person) → WorkedFor(person,person) 
 
   Mapped target clause: 
    MovieCredit(T, A) � MovieCredit(T, B) � Director(A) � Actor(B) �  
  ￢SamePerson(A, B) � WorkedFor(B, A) 
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E.3.  Revising the Mapped Structure 
Next we describe how the mapped structure is revised to improve its fit to the target data. The 
revision algorithm has three steps and is similar to that of FORTE (Richards and Mooney, 1995), 
which revises theories in first-order logic.  
 
1. Self-Diagnosis: 
 The purpose of this step is to focus the search for revisions only on the inaccurate parts of the 
transferred MLN. The algorithm inspects the MLN and determines for each clause whether it 
should be shortened, lengthened, or left as is. For each clause, C, this is done by considering 
every possible way of viewing C as an implication in which one of the literals is placed on the 
right-hand side of the implication and is treated as the conclusion and the remaining literals serve 
as the antecedents. The conclusion of a clause is drawn only if the antecedents are satisfied and 
the clause “fires.”  Thus, if a clause makes a wrong conclusion in the target data, it is considered 
for lengthening because the addition of more literals, or conditions, to the antecedents will make 
them harder to satisfy, thus preventing the clause from firing. On the other hand, there may be 
clauses that fail to draw the correct conclusion in the target data because there are too many 
conditions in the antecedents that prevent them from firing. In this case, we consider shortening 
the clause. 
 
2. Structure Update: 
Clause updates are performed using beam search similar to that used by Kok and Domingos 
(2005); however, we do not consider all possible additions and deletions of a literal to each 
clause. Rather, we only try removing literals from the clauses marked for shortening and adding 
literals to clauses marked for lengthening.  Thus, the search space is constrained first by limiting 
the number of clauses considered for updates, and second, by restricting the kind of update 
performed on each clause. 
 
3. New Clause Discovery: 
To learn additional new clauses for the target domain that do not have analogs in the source 
domain, we use relational pathfinding (RPF) (Richards and Mooney, 1992). RPF is a data-driven 
approach to clause discovery designed to overcome plateaus and local maxima in the search 
space.  RPF views the relational domain as a graph in which the constants are the vertices, and 
two constants are connected by an edge if they are related by some predicate.  Clauses are 
formed based on the path of relations that connect the arguments of a known predicate instance. 
For example, a clause defining the Cousin relationship can be learned from the Parent-Parent-
Child-Child path connecting two known cousins. 
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E.4.  Experimental Evaluation of MLN Transfer Learning 
We compared the performance of several MLN structure-learning methods.  We refer to the 
structure-learning method developed by Kok and Domingos (2005) as Alchemy.  We ran 
Alchemy “from scratch” without transfer learning (Alchemy Scratch); as well as using it to 
revise the MLN learned in the source domain and then automatically mapped to the target 
domain using our predicate mapping procedure (Alchemy Transfer).  We compared these 
methods to our complete transfer system (Revision + Pathfinding), using both our automatic 
predicate mapping and theory revision procedures. 

We used three real-world relational domains: IMDB, UW-CSE, and WebKB. Each dataset is 
broken down into mega-examples, where each mega-example contains a connected group of 
facts. Individual mega-examples are disconnected and independent of each other. The IMDB 
database is organized as five mega-examples, each containing information about four movies, 
their directors, and the first-billed actors.  The UW-CSE database was first used by Richardson 
and Domingos (2006). The database is divided into mega-examples based on five areas of 
computer science. It lists facts about people in an academic department (i.e. Student, Professor) 
and their relationships (i.e. AdvisedBy). The WebKB database contains information about 
entities from the “University Computer Science Department” data set, compiled by Craven et al. 
(1998). 
 
We used the two metrics employed by Kok and Domingos (2005), the area under the precision-
recall curve (AUC) and the conditional log-likelihood (CLL).  The AUC is useful because it 
demonstrates how well the algorithm predicts the few positives instances in the data. The CLL, 
on the other hand, determines the quality of the probability predictions output by the algorithm.  
To calculate the AUC and CLL of a given MLN, one uses it to perform inference, providing 
some of the facts in the test mega-example as evidence and testing the predictions for the 
remaining ones. Like Kok and Domingos (2005), we tested the instances of each of the 
predicates of the domain in turn, providing the rest as evidence, and averaging the results across 
all predicates.  
 
Learning curves for each performance measure were generated using a leave-1-mega-example-
out approach, averaging over k different runs, where k is the number of mega-examples in the 
dataset. In each run, we reserved a different mega-example for testing and trained on the 
remaining k−1 mega-examples, which were provided one by one. All systems observed the same 
sequence of mega-examples.   
 
A sample learning curve is shown below for transferring from UW-CSE as the source to IMDB 
as the target.  Here we additionally tested the performance of systems that do not use the 
automatic mapping but are provided with an intuitive hand-constructed global mapping that 
maps: Student  →  Actor, Professor  →  Director, AdvisedBy/TempAdvisedBy →   WorkedFor, 
Publication →   MovieCredit, Phase  →  Gender, and Position → Genre. The last two mappings 
are motivated by the observation that Phase in UW-CSE applies only to Student and Gender in 
IMDB applies only to Actor, and similarly Position and Genre apply only to Professor and 
Director respectively. The systems using the automatic mapping perform much better because it 
discovers a mapping for each clause that allows the source knowledge to adapt better to the 
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target domain.  In addition, our revision algorithm outperforms the Alchemy approach. 
Comprehensive results from our evaluation are presented by Mihalkova, Huynh, and Mooney 
(2007). 

 
 

Figure E-1.  Learning Curves in the IMDB Domain 

E.5.  Transfer Learning for MLNs with Minimal Target Data 
We also developed an alternative predicate-mapping algorithm that is still effective when there is 
very minimal training data in the target domain. In such cases, the target data is insufficient to 
accurately judge the accuracy of the complete translated MLN resulting from a proposed 
predicate mapping. Therefore, we developed a predicate-mapping algorithm for target data that 
consists of just a handful of entities. In the extreme case, only a single entity is known. This 
setting may arise in a variety of real-world situations. For instance, when a new social 
networking site is launched, data is available on only a few initial registrants. The popularity of 
the site depends on its ability to make meaningful predictions that would allow it to suggest 
promising friendships to users. However, the sparsity of available data makes learning an 
effective model from scratch infeasible. 

We developed an alternative predicate-mapping algorithm for this situation, SR2LR (which 
stands for Short-Range To Long-Range) that is based on the observation that a good model for 
the source domain contains two types of clauses: short-range ones that concern the properties of 
a single entity, and long-range ones that relate the properties of several entities. Because possible 
mappings of the short-range clauses to the target domain can be directly evaluated on the limited 
available target data, the key is to use the short-range clauses in order to find mappings between 
the relations in the two domains, which are then used to translate the long-range clauses. 
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In one experiment evaluating SR2LR on transfer learning from UW-CSE to IMDB, we measured 
the accuracy of predicting workedUnder as representative of an interesting relation that is 
reasonably predictable.  To do this, we considered 5 distinct orderings of the constants of type 
person in each IMDB mega-example, and provided the first n to the systems, with n ranging 
from 2 to 40, where the smallest mega-example has 44 constants of type person. Each point on 
the learning curves is the average over all training instances with that many known entities. The 
AUC results are shown below.  As can be seen, SR2LR outperforms our basic predicate mapping 
algorithm (mTAMAR) in this situation and maintains its effectiveness even as more data 
becomes available. Further evaluation of SR2LR is provided by Mihalkova and Mooney (2009). 
 

 
   Figure E-2.  Comparison of SR2LR and mTamar. 

 

E.6.  Non-Transfer Learning for MLNs 
In addition to developing transfer learning algorithms for MLNs, we also developed improved 
algorithms for learning their structure and parameters even when knowledge from a prior domain 
is not available.  Previous structure learning methods for MLNs take a top-down approach, 
heuristically searching the space of increasingly complex models, guiding the search by scoring 
models using a statistical measure of their fit to the training data.  Such top-down approaches 
follow a “blind” generate-and-test strategy in which many potential changes to an existing model 
are systematically generated independent of the training data, and then tested for empirical 
adequacy.  For complex models such as MLNs, the space of potential revisions is 
combinatorially explosive and such a search can become difficult to control, resulting in 
convergence to suboptimal local maxima.  Bottom-up learning methods attempt to use the 
training data to directly construct promising structural changes or additions to the model and 
thereby avoid such local maxima.  Therefore, we developed a bottom-up structure-learning 
method, BUSL, for MLNs and demonstrated its superior performance on several benchmark 
problems (Mihalkova and Mooney, 2007). 
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Most MLN learning algorithms, including BUSL, are non-discriminative and attempt to learn a 
set of clauses that is equally capable of predicting the truth value of any predicate given an 
arbitrary set of evidence.  However, in many learning problems, there is a specific target 
predicate that must be inferred given evidence data about other background predicates used to 
describe the input data.  Most traditional Inductive Logic Programming (ILP) methods focus on 
discriminative relational learning (Dzeroski, 2007); however, they do not address the issue of 
uncertainty.  Discriminative methods have been developed for parameter learning in MLNs 
(Singla and Domingos, 2005; Lowd and Domingos, 2007); however, they do not address 
structure learning.  We found that existing MLN structure learning methods perform very poorly 
when tested on several benchmark ILP problems on relating the activity of chemical compounds 
to their structure.  This led us to develop new discriminative structure and parameter learning 
algorithms for MLNs whose performance on these problems surpasses that of traditional ILP 
methods.  The overall approach uses traditional ILP methods to construct a large number of 
potentially useful clauses, and then uses a new discriminative MLN parameter learning method 
to properly weight them, preferring to assign zero weights to clauses that do not contribute 
significantly to overall predictive accuracy, thereby eliminating them. On several benchmark ILP 
problems, we demonstrated improved performance of our system over existing MLN and ILP 
methods (Huynh and Mooney, 2008). 
 
Like other discriminative training algorithms for learning MLN weights, our initial method 
attempts to maximize the conditional log likelihood (CLL) of the target predicates given the 
evidence from the background predicates.  If the goal is to predict accurate target-predicate 
probabilities, this approach is well motivated.  However, in many applications, the actual goal is 
to maximize an alternative performance metric such as classification accuracy or F-measure. 
Max-margin methods are a competing approach to discriminative training that are well-founded 
in computational learning theory and have demonstrated empirical success in many applications 
(Cristianini and Shawe-Taylor, 2000).  They also have the advantage that they can be adapted to 
maximize a variety of performance metrics in addition to classification accuracy (Joachims, 
2005).  Therefore, we developed Max-Margin MLNs (M3LNs) by instantiating an existing 
general framework for max-margin training of structured models (Joachims, Finley and Yu, 
2009). Extensive experiments in two real-world MLN applications demonstrated that M3LNs 
generally produce improved results when the goal involves maximizing predictive accuracy 
metrics other than CLL (Huynh and Mooney, 2009). 
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Appendix F:  Deep Transfer through Markov Logic Networks 
Pedro Domingos 

University of Washington 
 

F.1.  Introduction 
Inductive learning has traditionally been defined as generalizing from training instances to test 
instances from the same distribution. Unfortunately, in real applications, training and test data 
often come from different distributions. Humans are able to cope with this much better than 
machines. In fact, humans are even able to take knowledge learned in one domain and apply it to 
an entirely different one. For example, Wall Street firms often hire physicists to solve finance 
problems. Even though these two domains have superficially nothing in common, training as a 
physicist provides knowledge and skills that are highly applicable in finance (e.g., solving 
differential equations and performing Monte Carlo simulations). In contrast, a model learned on 
physics data would simply not be applicable to finance data, because the variables in the two 
domains are different. Transfer learning addresses this issue by explicitly assuming that the 
source and target problems are different. In shallow transfer, test instances are from the same 
domain, but have a different distribution. In deep transfer, test instances are from a different 
domain entirely (i.e., described by different predicates). Work to date falls mainly into what may 
be termed shallow transfer while deep transfer remains largely unaddressed.   The inability to 
discover structural regularities that apply to many different domains, irrespective of their 
superficial descriptions is arguably the biggest gap between current learning systems and 
humans. 

We have successfully developed an approach to deep transfer as described in a series of papers 
[1,2,3]. Markov logic forms the basis of our approach [4]. The key innovation behind our 
approach is a second-order extension of Markov logic that introduces predicate variables into the 
representation language. Using predicate variables in place of predicate names allow us to 
represent knowledge in a domain-independent fashion. The central problem is deciding what is 
the most appropriate knowledge to transfer. Often, the data representation does not explicitly 
encode the high-level regularities best suited for transfer and it is necessary to discover them.  To 
address this problem, we defined the problem of statistical predicate invention, which is the 
discovery of new concepts, properties and relations from data, expressed in terms of the 
observable ones, using statistical techniques to guide the process and explicitly represent the 
uncertainty in the discovered predicates. We automatically invented predicates by clustering 
objects, attributes and relations which capture arbitrary regularities over all relations. Each 
cluster represents a high-level relation or concept. We developed both top-down (i.e., divisive) 
and bottom-up (agglomerative) clustering approaches.  We studied the benefit of constructing 
multiple different clusterings versus searching for the single best clustering. This was all done in 
an unsupervised and domain-independent manner. We also developed a system for automatically 
using the source data to discern high-level similarities between logical formulas by lifting a set 
of first-order formulas into second-order logic by replacing all predicate names with predicate 
variables. Those second-order formulas that capture the strongest regularities are transferred to 
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the target domain where they provide a declarative bias for structure learning. Using this 
approach, we have successfully transferred learned knowledge among social network, molecular 
biology and web domains. In addition to improved empirical performance, our approach 
discovered patterns that include broadly useful properties of predicates, like symmetry and 
transitivity, and relations among predicates, such as homophily. 

F.2.  Background 
Markov logic networks (MLNs) combine logic and probability by attaching weights to first-order 
logic rules [5], and viewing these as templates for features of Markov networks [6].  

In first-order logic, formulas are constructed using four types of symbols: constants, variables, 
functions, and predicates. Constants represent objects in the domain of discourse (e.g., people: 
(Anna, Bob, etc.). Variables (e.g., x, y) range over the objects in the domain. Predicates represent 
relations among objects (e.g., Friends), or attributes of objects (e.g., Student). Variables and 
constants may be typed. An atom is a predicate symbol applied to a list of arguments, which may 
be variables or constants (e.g., Friends(Anna,x)). (In this report, we use predicate and relation 
interchangeably.) A ground atom is an atom all of whose arguments are constants (e.g., 
Friends(Anna,Bob)). A world is an assignment of truth values to all possible ground atoms. A 
database is a partial specification of a world; each atom in it is true, false or (implicitly) 
unknown. A clause is a disjunction of non-negated/negated atoms.   

A Markov network or Markov random field is a model for the joint distribution of a set of 
variables . It is composed of an undirected graph and a set of potential 
functions . The graph has a node for each variable, and the model has a potential function for 
each clique in the graph. A potential function is a non-negative, real-valued function of the state 
of the corresponding clique. The joint distribution represented by a Markov network is given by 

where  is the state of the th clique (i.e., the state of the 
variables that appear in that clique). , known as the partition function, is given by 

. Markov networks are often conveniently represented as log-linear 
models, with each clique potential replaced by an exponentiated weighted sum of features of the 
state, leading to . A feature may be any real-valued function of 
the state. This report will focus on binary features  In the most direct translation 
from the potential-function form, there is one feature corresponding to each possible state  of 
each clique, with its weight being . This representation is exponential in the size of 
the cliques. However, we are free to specify a much smaller number of features (e.g., logical 
functions of the state of the clique), allowing for a more compact representation than the 
potential-function form, particularly when large cliques are present. Markov logic takes 
advantage of this. 



   

  67

A Markov logic network (MLN) is a set of weighted first-order formulas. Together with a set of 
constants representing objects in the domain, it defines a Markov network with one node per 
ground atom and one feature per ground formula. The weight of a feature is the weight of the 
first-order formula that originated it. The probability distribution over possible worlds  
specified by the ground Markov network is given by  
where  is the partition function, is the set of all first-order formulas in the MLN,  is the 
set of groundings of the th first-order formula, and  if the th ground formula is true 
and  otherwise. Markov logic enables us to compactly represent complex models in 
non-i.i.d. domains. 

Algorithms have been proposed for learning the weights for each formula (e.g., [7]), as well as 
for learning the formulas themselves (e.g., [8]). We will focus on the structure learning algorithm 
of Kok and Domingos [8], which we will call MSL. Structure learning consists of two 
components: constructing clauses and evaluating clauses. Clause construction follows an 
inductive logic programming style search [9]. When learning a network from scratch, MSL starts 
with an empty clause and specializes it by successively adding literals to the clause. 
Additionally, the algorithm can refine an existing network to correct errors in the clauses. Here, 
it considers both removing and adding literals to a clause as well as flipping the sign of a literal 
in the clause. The algorithm uses a beam search to find the current best clause and add it to the 
network. The search ends when no clause improves the score of the MLN. To evaluate the merit 
of each clause, it uses weighted pseudo-log-likelihood (WPLL). To avoid overfitting, each clause 
receives a penalty term proportional to the number of literals that differ between the current 
clause and the initial clause. MSL is implemented in the publicly available Alchemy package 
[10]. 
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F.3.  Statistical Predicate Invention 

F.3.1.   System Description 

In statistical predicate invention (SPI), we seek to discover new concepts, properties and 
relations from data, expressed in terms of the observable ones, using statistical techniques to 
guide the process and explicitly represent the uncertainty in the discovered predicates. These can 
in turn be used as a basis for discovering new predicates, which is potentially much more 
powerful than learning based on a fixed set of simple primitives.  

We create the Multiple Relational Clusterings (MRC) system [1] as a first step towards a general 
framework for SPI. MRC automatically invents predicates by clustering objects, attributes and 
relations in an unsupervised manner, without requiring the number of clusters to be specified in 
advance. The invented predicates capture arbitrary regularities over all relations, and are not just 
used to predict a designated target relation. MRC learns multiple clusterings, rather than just one, 
to represent the complexities in relational data. MRC is based on the observation that, in 
relational domains, multiple clusterings are necessary to fully capture the interactions between 
objects. Consider the following simple example. People have coworkers, friends, technical skills, 
and hobbies. A person’s technical skills are best predicted by her coworkers' skills, and her 
hobbies by her friends’ hobbies. If we form a single clustering of people, coworkers and friends 
will be mixed, and our ability to predict both skills and hobbies will be hurt. Instead, we should 
cluster together people who work together, and simultaneously cluster people who are friends 
with each other. Each person thus belongs to both a “work cluster” and a “friendship cluster.” 
(See Figure F-1.) Membership in a work cluster is highly predictive of technical skills, and 
membership in a friendship cluster is highly predictive of hobbies.  

 
Figure F-1.  Example of Multiple Clusterings. 

       F.3.1.1.  Model 

We define our model using finite second-order Markov logic, in which variables can range over 
relations (predicates) as well as objects (constants). We use the variable r to range over predicate 
symbols, xi for the ith argument of a predicate,  for a cluster of ith arguments of a predicate 
(i.e., a set of symbols), and  for a clustering (i.e., a set of clusters or, equivalently, a 
partitioning of a set of symbols). For simplicity, we present our rules in generic form for 
predicates of all arities and argument types, with n representing the arity of relation r; in reality, 
if a rule involves quantification over predicate variables, a separate version of the rule is required 
for each arity and argument type. 
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The first rule in our MLN for SPI states that each symbol belongs to at least one cluster. This 
rule is hard, i.e., it has infinite weight and cannot be violated. 

 

The second rule states that a symbol cannot belong to more than one cluster in the same 
clustering. This rule is also hard.  

 

If r is in cluster r and xi is in cluster i, we say that r(x1, . . . , xn) is in the combination of clusters 

( r, 1, . . . , n). The next rule says that each atom appears in exactly one combination of 
clusters, and is also hard.  is defined as the set of tuples constructible by taking 
the cross product of clusters in . 

 

The next rule is the key rule in the model, and states that the truth value of an atom is determined 
by the cluster combination it belongs to. This rule is soft. The “+” notation is syntactic sugar that 
signifies that there is an instance of this rule with a separate weight for each tuple of clusters 

 

 

To combat the proliferation of clusters and consequent overfitting, we impose an exponential 
prior on the number of clusters, represented by the formula 

 

with negative weight −λ. The parameter λ is fixed during learning, and is the penalty in log-
posterior incurred by adding a cluster to the model. Thus larger λ's lead to fewer clusterings 
being formed. 

A cluster assignment { } is an assignment of truth values to all and  atoms. 
Learning consists of finding the cluster assignment that maximizes P({ }|R)  P({ },R) = P({

})P(R|{ }), where R is the truth assignments to observable ground atoms. MRC simplifies the 
learning problem by performing hard assignments of symbols to clusters (i.e., instead of 
computing probabilities of cluster membership, a symbol is simply assigned to its most likely 
cluster). This allows the maximum a posteriori (MAP) weights of the atom prediction rules, and 
the MAP log-posterior to be computed in closed form. We use top-down search to greedily find 
the cluster assignment that maximizes the log-posterior. 

The basic idea is the following: when clustering sets of symbols related by atoms, each 
refinement of one set of symbols potentially forms a basis for the further refinement of the 
related clusters. MRC is thus composed of two levels of search: the top level finds clusterings, 
and the bottom level finds clusters. At the top level, MRC is a recursive procedure whose inputs 
are a cluster of predicates  per arity and argument type, and a cluster of symbols  per type. 
In the initial call to MRC, each  is the set of all predicate symbols with the same number and 
type of arguments, and  is the set of all constant symbols of the ith type. At each step, MRC 
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creates a cluster symbol for each cluster of predicate and constant symbols it receives as input. 
Next it clusters the predicate and constant symbols, creating and deleting cluster symbols as it 
creates and destroys clusters. It then calls itself recursively with each possible combination of the 
clusters it formed. For example, suppose the data consists of binary predicates r(x1, x2), where x1 
and x2 are of different type. If r is clustered into  and , x1 into  and , and x2 into  
and , MRC calls itself recursively with the cluster combinations , 

, ,  

Within each recursive call, MRC uses greedy search with restarts to find the MAP clustering of 
the subset of predicate and constant symbols it received. It begins by assigning all constant 
symbols of the same type to a single cluster, and similarly for predicate symbols of the same 
arity and argument type. The search operators used are: move a symbol between clusters, merge 
two clusters, and split a cluster. (If clusters are large, only a random subset of the splits is tried at 
each step.) A greedy search ends when no operator increases posterior probability. Restarts are 
performed, and they give different results because of the random split operator used. MRC 
terminates when no further refinement increases posterior probability, and returns the finest 
clusterings produced. 

F.3.2.  Empirical Evaluation 
In our experiments, we compare MRC with the Infinite Relational Model (IRM) [11] and MLN 
structure learning (MSL) [8]. We compared the systems on four datasets: Animals (which relates 
a small set of animals and their features); Unified Medical Language System (UMLS; a 
biomedical ontology); Kinship (which describes kinship relationships of an Australian aboriginal 
tribe); and Nations (which describes features and relationships of nations). For each dataset, we 
performed ten-fold cross-validation by randomly dividing the atoms into ten folds, training on 
nine folds at a time, and testing on the remaining one. We measured the average conditional log-
likelihood of the test atoms given the observed training ones (CLL), and the area under the 
precision-recall curve (AUC). The experimental results are shown in Figure F-2.  From the 
figure, we see that MRC does as well as the comparison systems on the smaller two datasets 
(Animals and Nations) and outperforms them by a large margin on the larger two datasets 
(UMLS and Kinship). In the figure, Init is the initial clustering formed by MRC. 
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Figure Error! No text of specified style in document.­2.  Experimental Results. 

 

F.4.  Semantic Network Extractor 
We create the Semantic Network Extractor (SNE) system as a first step in addressing the long-
standing goal in AI of building an autonomous agent that can read and understand text. SNE uses 
the TextRunner system [12] to extract r(x,y) triples (e.g., orbits(space_shuttle,moon) ) from a 
large corpus of Web pages. Using the triples as input, SNE creates a simple semantic network by 
jointly clustering objects and relations. In its algorithm, SNE allows information from object 
clusters it has created at each step to be used in forming relation clusters, and vice versa. Each 
object cluster corresponds to a concept, and each relation cluster corresponds to a high-level 
relation. 

   F.4.1.  System Description 

To create SNE, we modify the MRC system so that it scales to the Web.  SNE uses a bottom-up 
agglomerative clustering approach rather than MRC’s top-down generate-and-test one. While 
MRC’s ‘blind’ generate-and-test approach may work well for small datasets, it will not be 
feasible for large Web-scale datasets like the one used in our experiments. For such large 
datasets, the search space will be so enormous that the top-down algorithm will generate too 
many candidate moves to be tractable.  

SNE’s bottom-up agglomerative clustering algorithm begins by assigning each symbol to its own 
unit cluster. Next it tries to merge pairs of clusters of each type. It creates candidate pairs of 
clusters, and for each of them, it evaluates the change in posterior probability if the pair is 
merged. If the candidate pair improves posterior probability, it stores it in a sorted list. It then 
iterates through the list, performing the best merges first, and ignoring those containing clusters 
that have already been merged. In this manner, it incrementally merges clusters until no merges 
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can be performed to improve posterior probability. To avoid creating all possible candidate pairs 
of clusters of each type (which is quadratic in the number of clusters), it makes use of canopies 
[13]. A canopy for relation symbols is a set of clusters such that there exist object clusters  
and , and for all clusters in the canopy, the cluster combination  contains at least 
one true ground atom . We say that the clusters in the canopy share the property  
Canopies for object symbols  and  are similarly defined. SNE only tries to merge clusters in a 
canopy that is no larger than a parameter . This parameter limits the number of 
candidate cluster pairs it considers for merges, making its algorithm more tractable. Furthermore, 
by using canopies, it only tries “good” merges, because symbols in clusters that share a property 
are more likely to belong to the same cluster than those in clusters with no property in common. 

SNE also differs from MRC in having an exponential prior on the number of cluster 
combinations with true ground atoms rather than on the number of clusters. Unlike MRC which 
finds multiple clustering, SNE finds a single clustering. 

   F.4.2. Empirical Evaluation 

We conducted experiments to investigate the efficacy of jointly clustering relations and objects 
vis-à-vis clustering them separately (i.e., clustering relations but not objects, and vice versa). We 
also investigated the effectiveness of SNE against three other relational clustering systems: 
Multiple Relational Clustering (MRC) [1], Information-Theoretic Co-clustering (ITC) [14], and 
Infinite Relational Model (IRM) [11].  

All experiments were conducted on a large Web dataset consisting of 2.1 million  triples 
(publicly available at http://knight.cis.temple.edu-/~yates/data/resolver_data.tar.gz) extracted in a 
Web crawl by the information extraction system TextRunner [12]. Each triple takes the form 

 where  is a relation symbol, and  and  are object symbols. Some example triples are: 
named_after(Jupiter,Roman_god) and upheld(Court,ruling). There are 15,872 distinct r symbols, 
700,781 distinct  symbols, and 665,378 distinct  symbols. Two characteristics of 
TextRunner's extractions are that they are sparse and noisy. To reduce the noise in the dataset, 
we only considered symbols that appeared at least 25 times. This leaves 10,214  symbols, 8942 

 symbols, and 7995  symbols. There are 2,065,045 triples that contain at least one symbol that 
appears at least 25 times. In all experiments, we set the  parameter to 50. We also 
made the closed-world assumption for all systems (i.e., all triples not in the dataset are assumed 
false). Because the other relational clustering systems do not scale to the Web dataset, we had to 
modify them to use SNE’s search algorithm. We also limited MRC to find a single clustering (it 
is able to find multiple) for an apple-to-apple comparison with SNE. 

We evaluated the clusterings learned by each model against a gold standard that we manually 
created. The gold standard assigns 2688  symbols, 2568  symbols, and 3058  symbols to 
874, 511, and 700 non-unit clusters respectively. We measured the pairwise precision, recall and 
F1 of each model against the gold standard. Pairwise precision is the fraction of symbol pairs in 
learned clusters that appear in the same gold clusters. Pairwise recall is the fraction of symbol 
pairs in gold clusters that appear in the same learned clusters. F1 is the harmonic mean of 
precision and recall. 

http://knight.cis.temple.edu-/~yates/data/resolver_data.tar.gz
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Figure F-3 shows a snippet of the semantic network learned by SNE. Table F-1 shows the 
performance of SNE when it clusters relations and objects jointly and when it clusters them 
separately. From that figure, we can see that SNE has the better overall F1 when it clusters 
relations and objects jointly (SNE) instead of separately (SNE-Sep). We show the best F1s in 
bold. Table F-2 compares performance of SNE to those of three other relational clustering 
systems, and shows that SNE has the best overall F1 score. From Table F-3 which shows the 
runtimes of the various systems, we see that SNE scales well relative to the other systems. We 
also evaluated the systems in terms of the semantic statements that they learned where a 
semantic statement is a cluster combination with one true ground atom. We found that SNE 
outperforms the other systems in terms of the fraction of correct semantic statements discovered 
(see [2] for details). We also found the clusters discovered by SNE agrees well with those in a 
publicly available ontology WordNet [15].  

Table F-1. Performance when SNE Clusters Relations and Objects Jointly and Separately (SNE-Sep). 

 

Systems 

Relation Object 

Precision Recall F1 Precision Recall F1 

SNE 0.452 0.187 0.265 0.509 0.062 0.110 

SNE-Sep 0.597 0.116 0.194 0.535 0.046 0.085 
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Table F-2. Performance of SNE and Three Other Relational Clustering Systems. 

 

Systems 

Relation Object 

Precision Recall F1 Precision Recall F1 

SNE 0.452 0.187 0.265 0.509 0.062 0.110 

IRM 0.201 0.089 0.124 0.280 0.042 0.073 

ITC 0.773 0.003 0.006 0.617 0.025 0.048 

MRC 0.054 0.044 0.049 0.045 0.009 0.015 

 

Table F-3. Runtimes of SNE and Three Other Relational Clustering Systems. 

Systems Runtimes 

(hrs) 

SNE   5.5 

IRM   9.5 

ITC 72.0  

MRC   1.1 

 

 

 
Figure F-3. Snippet of Semantic Network Learned by SNE. 



   

  75

F.5.  Deep Transfer Via Second-Order Markov Logic 

    F.5.1.    System Description 
The formulas in an MLN capture regularities that hold in the data for a given domain. However, 
the knowledge that the formulas encode is specific to the types of objects and predicates present 
in that domain. Our system, called Deep Transfer via Markov Logic (DTM), uses second-order 
Markov logic, where formulas contain predicate variables [1] to model common structures 
among first-order formulas. To illustrate the intuition behind DTM, consider the formulas:  

 Complex(z, y) � Interacts(x, z) ⇒ Complex(x, y) 

 Location(z, y) � Interacts(x, z) ⇒ Location(x, y). 

Both are instantiations of:  

 r(z, y) � s(x, z) ⇒ r(x, y),  

where r and s are predicate variables. Using predicate variables allows DTM to represent high-
level structural regularities in a domain-independent fashion. This knowledge can be transferred 
to another problem, where the formulas are instantiated with the appropriate predicate names.  

Given a set of first-order formulas, DTM converts each formula into second-order logic by 
replacing all predicate names with predicate variables. It then groups the second-order formulas 
into cliques. Two second-order formulas are assigned to the same clique if and only if they are 
over the same set of literals. DTM evaluates which second-order cliques represent regularities 
whose probability deviates significantly from independence among their subcliques. It selects the 
top k highest-scoring second-order cliques to transfer to the target domain. The transferred 
knowledge provides a declarative bias for structure learning in the target domain. 

The four key elements of DTM, introduced in the next subsections, are: (i) how to define cliques, 
(ii) how to search for cliques, (iii) how to score the cliques and (iv) how to apply cliques to a 
new problem. 

    F.5.1.1.   Second-Order Cliques 

DTM uses second-order cliques to model structure. This representation is preferable to arbitrary 
second-order formulas because multiple different formulas over the same predicates can capture 
the same regularity. A clique groups those formulas with similar effects into one structure. A set 
of literals with predicate variables, such as {r(x, y), r(y, x)}, defines each second-order clique 
and the states, or features, are conjunctions over the literals in the clique. It is more convenient to 
look at conjunctions than clauses as they do not overlap, and can be evaluated separately. DTM 
imposes the following restrictions on cliques: the literals in the clique are connected and no 
cliques are the same modulo variable renaming. The states of a clique are all possible ways of 
negating the literals in the clique subject to the following constraints: no two features are the 
same modulo variable renaming and two distinct variables are not allowed to unify.  
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    F.5.1.2.   Search 

DTM works with any learner than induces formulas in first-order logic. We evaluated two 
strategies for inducing formulas in the source domain: exhaustive search and beam search.  

Exhaustive search. Given a source domain, the learner generates all first-order clauses up to a 
maximum clause length and a maximum number of object variables. The entire set of clauses is 
passed to DTM for evaluation.  

Beam search. Exhaustive search does not scale well, as the number of clauses it produces is 
exponential in the clause length and it is computationally infeasible to score long clauses. Beam 
search, a common strategy for scaling structure learning, is used in MSL (the standard MLN 
structure learning algorithm). However, transfer learning and structure learning have different 
objectives. In transfer learning, the goal is to derive a large, diverse set of clauses to evaluate for 
potential transfer to the target domain. Structure learning simply needs to induce a compact 
theory that accurately models the predicates in the source domain. The theories induced by MSL 
tend to contain very few clauses and thus are not ideal for transfer. An alternative approach is to 
induce a separate theory to predict each predicate in the domain. However, the resulting theory 
may not be very diverse, since clauses will contain only the target predicate and predicates in its 
Markov blanket (i.e., its neighbors in the network). A better approach is to construct models that 
predict sets of predicates. Given the final set of learned models, DTM groups the clauses into 
second-order cliques and evaluates each clique that appears more than twice. 

    F.5.1.3.   Second-Order Clique Evaluation 

Each clique can be decomposed into pairs of subcliques, and it should capture a regularity 
beyond what its subcliques represent. For example, the second-order clique {r(x, y), r(z, y), s(x, 
z)} can be decomposed into the following three pairs of subcliques: (i) {r(x, y), r(z, y)} and {s(x, 
z)}, (ii) {r(x, y), s(x, z)} and {r(z, y)}, and (iii) {r(z, y), s(x, z)} and {r(x, y)}. To score a second-
order clique, each of its first-order instantiations is evaluated. To score a first-order clique, DTM 
checks if its probability distribution is significantly different from the product of the probabilities 
of each possible pair of subcliques that it can be decomposed into. 

The natural way to compare these two distributions is to use the K-L divergence: D(p||q) = Σ p(x) 
log (p(x)/q(x)), where p is the clique’s probability distribution, and q is the distribution it would 
have if the two subcliques were independent. We use Bayesian estimates of the probabilities with 
Dirichlet priors with all  i = 1. For each first-order instantiation of a second-order clique, DTM 
computes its K-L divergence versus all its decompositions. Each instantiation receives the 
minimum K-L score over the set of its decompositions, because any single one could explain the 
clique’s distribution. Each second-order clique receives the average score of its top m first-order 
instantiations, in order to favor second-order cliques that have multiple useful instantiations. 

    F.5.1.4.   Transfer Mechanism 
The next question is how to make use of the transferred knowledge in the target domain. A key 
component of an inductive logic programming (ILP) [9] system is the declarative bias. Due to 
the large search space of possible first-order clauses, devising a good declarative bias is crucial 
for achieving good results with an ILP system. In ILP, two primary methods exist for expressing 
a declarative bias, and both forms of bias are often used in the same system. The first method 
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restricts the search space. Common strategies include having type constraints, forcing certain 
predicate arguments to contain bound variables, and setting a maximum clause length. The 
second method involves incorporating background knowledge in the form of hand-crafted 
clauses that define additional predicates which can be added to a clause under construction. 
Effectively, background knowledge allows the learner to add multiple literals to a clause at once 
and overcome the myopia of greedy search. It is important to note that these common strategies 
can easily be expressed in second-order logic. DTM can be viewed as a way to learn the 
declarative bias in one domain and apply it in another, as opposed to having a user hand-craft the 
bias for each domain. 

To apply a second-order clique in a target domain, DTM decomposes the clique into a set of 
clauses, and transfers each clause. It uses clauses instead of conjunctions since most structure 
learning approaches, both in Markov logic and ILP, construct clauses. In Markov logic, a 
conjunction can be converted into an equivalent clause by negating each literal in it and flipping 
the sign of its weight. We investigate three different ways to reapply the knowledge in the target 
domain:  

Transfer by Seeding the Beam. In the first approach, the second-order cliques provide a 
declarative bias for the standard MLN structure search. DTM selects the top k cliques that have 
at least one true grounding in the target domain. At the beginning of each iteration of the beam 
search, DTM seeds the beam with the clauses obtained from each legal instantiation of a clique 
in the target domain. This strategy forces certain clauses to be evaluated in the search process 
that would not be scored otherwise and helps overcome some of the limitations of greedy search. 

Greedy Transfer without Refinement. The second approach again picks the top k second-order 
cliques that have at least one true grounding in the target domain and creates all legal 
instantiations in the target domain. This algorithm imposes a very stringent bias by performing a 
structure search where it only considers including the transferred clauses. The algorithm 
evaluates all clauses and greedily picks the one that leads to the biggest improvement in WPLL. 
The search terminates when no clause addition improves the WPLL.  

Greedy Transfer with Refinement. The final approach adds a refinement step to the previous 
algorithm. The MLN generated by the greedy procedure serves as a seed network during 
standard structure learning. The MLN search can both refine the clauses picked by the greedy 
procedure to better match the target domain and induce new clauses to add to the theory.  
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F.5.2  Empirical Evaluation 
We evaluated our approach on three real world data sets. The Yeast Protein data come from the 
MIPS (Munich Information Center for Protein Sequence) Comprehensive Yeast Genome 
Database as of February 2005 [16,17].The data set includes information on protein location, 
function, phenotype, class, and enzymes as well as protein-protein interaction and protein 
complex data. For this data set, we attempt to predict the truth value of all groundings of two 
predicates: Function and Interaction.  The WebKB data consists of labeled Web pages from the 
computer science departments of four universities [18]. The data also contains information about 
which words appear on each Web page and links between pages. For this data set, we again try 
two tasks: predicting the class label for each Web page and predicting whether a hyperlink exists 
between each pair of Web pages. The Social Network data consists of pages collected from the 
Facebook social networking Web site. The data consist of information about friendships among 
individuals and properties of individuals, such as hobbies, interests and network memberships. 

    F.5.2.1.   High-Scoring Second-order Cliques  
An important evaluation measure for transfer learning is whether it discovers and transfers 
relevant knowledge. In fact, DTM discovers multiple broadly useful properties. Among cliques 
of length three with up to three object variables, {r(x, y), r(z, y), s(x, z)} is ranked first in all 
three domains. This represents the concept of homophily, which is present when related objects 
(x and z) tend to have similar properties (y). The clique {r(x, y), r(y, z), r(z, x)} is ranked second 
in Yeast and fourth in WebKB and Facebook and represents the concept of transitivity. Both 
homophily and transitivity are important concepts that appear in a variety of domains. Therefore 
it is quite significant that DTM discovers and assigns a high ranking to these concepts.  In all 
three domains, the top three cliques of length two are: {r(x, y), r(z, y)}, {r(x, y), r(x, z)}, and 
{r(x, y), r(y, x)}. The first clique captures the fact that particular feature values are more 
common across objects in a domain than others. The second clique captures the fact that pairs of 
values for the same feature, such as words in the WebKB domain, commonly co-occur in the 
same object. The final clique captures symmetry, another important general property of relations. 

    F.5.2.2.   Methodology and Results 
We compared the DTM algorithm to the Markov logic structure learning (MSL) [8] and to 
TAMAR [19], another transfer learning algorithm. We tried four source-target pairs: Facebook to 
Yeast Protein, WebKB to Yeast Protein, Facebook to WebKB and Yeast Protein to WebKB. 
Each target domain was divided into four disjoint subsets, which we called mega-examples. We 
selected a subset of the mega-examples to train the learner on and then tested it on the remaining 
mega-examples. We repeated this train-test cycle for all possible subsets of the mega-examples. 
Within each domain, all algorithms had the same parameter settings. Each algorithm was allotted 
100 hours per database to run. In each domain, we optimized the WPLL for the two predicates 
we were interested in predicting. For DTM we tried two settings, k = 5 and k = 10 for the 
number k of second-order cliques transferred to the target domain. We tried two settings for 
exhaustive search. The first evaluated all clauses containing at most three literals and three object 
variables and the second evaluated all clauses containing up to four literals and four object 
variables. To evaluate each system, we measured the test set conditional log-likelihood (CLL) 
and area under the precision-recall curve (AUC) for each predicate.  
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Figure F-4 shows representative learning curves for predicting protein function when transferring 
cliques of up to length four from the WebKB domain into the Yeast domain. DTM consistently 
outperforms MSL. Figure F-5 shows representative learning curves for predicting whether two 
Web pages are linked when transferring cliques of up to length four from Facebook into WebKB. 
As in Figure F-4, DTM consistently outperforms MSL. TAMAR does significantly worse than 
all other approaches. TAMAR was unable to map theories from WebKB into the Yeast domain 
in the allotted time. Overall, we found that DTM using greedy transfer with refinement works 
better than the other approaches. Furthermore, exhaustive search works better than beam search 
for finding second-order cliques.  

 
Figure F-4. Learning curves for the Function predicate when transferring second-order cliques of length four from the 

WebKB domain. 

 
Figure F-5. Learning curves for the Linked predicate when transferring second-order cliques of length four from the 

Facebook domain. 
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F.6. Conclusions 
We have successfully developed our approach as planned. As a first step towards achieving deep 
transfer, we explored techniques for statistical predicate invention. Our MRC and SNE systems 
automatically  invent predicates in a domain-independent, unsupervised manner by clustering 
objects and relations. MRC used a top-down, divisive clustering strategy to construct predicate 
definitions. SNE extended MRC to web scale by using a bottom-up, agglomerative approach.  
This is an important first step towards achieving deep transfer because the available data often 
does not explicitly encode the high-level regularities best suited for transfer and it is necessary to 
automatically invent them.  Our DTM system performed deep transfer by identifying domain-
independent regularities in the form of second-order Markov logic clauses, and using them to 
guide discovery of new structure in the target domain. Initial experiments in bioinformatics, Web 
and social network domains showed that DTM outperformed standard structure learning, and 
discovered significant regularities like homophily and transitivity.  
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