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Abstract

In this paper, we cast the problem of managing traffic
flow in terms of a distributed collection of independent
agents that adapt to their environment. We describe
an evolutionary algorithm that learns strategies for
lane selection, using local information, on a simulated
highway that contains hundreds of agents. Experimen-
tal studies suggest that the learned controllers lead to
better traffic flow than ones constructed manually, and
that the learned controllers are robust with respect to
to blocked lanes and changes in the number of lanes
on the highway.

1. Introduction

In recent years, there has been growing interest in the
distributed behavior of large populations of independent
agents, and in the ability of such agents to adapt not
only to their environment but to each other’s behavior.
Most research in this area has focused on agent popula-
tions designed to mimic those that occur in the natural
world, such as colonies of ants and schools of fish. How-
ever, the artificial urban environment created by humans
contains another important example of distributed agent
behavior: automobile traffic on roads and highways.
The traffic domain has much to recommend it as a
fertile source of research problems. Clearly, each agent
(a driver and his vehicle) has independent control of its
actions, but its behavior must take into account physi-
cal constraints, such as staying on the road and avoiding
collisions, and the behavior of many other agents. An-
other advantage is that there exist clear criteria for eval-
uation, such as maximizing traffic flow and minimizing
lane changes. In addition, the domain supports complex
behaviors of the overall system, such as traffic jams, even
though the individual agents are relatively simple. Also,
most researchers have personal experience in traffic en-
vironments and, presumably, have good intuitions about
reasonable strategies and behaviors. Finally, progress in
this area could lead to improvements in actual traffic con-
ditions and thus increase the quality of life for drivers.
In this paper, we describe research on distributed
adaptation in the traffic domain. Following Moriarty and
Langley (1998), we formulate the problem of traffic man-
agement from a distributed, car-centered perspective and
the task of improving this process in terms of distributed

machine learning. We assume that each agent receives lo-
cal information about the vehicles that immediately sur-
round it, including their location and speed, and that the
agent determines which lane to drive in but not the ve-
hicle’s speed. The aim of learning, and thus our measure
of performance, is not the behavior of individual traffic
agents but rather the behavior of the traffic system as
a whole. To this end, we want the learning module to
develop a control strategy for lane selection that consid-
ers not only the maintenance of each car’s desired speed,
but that takes into account how its selection will affect
speeds of other cars. For instance, we would like the cars
to organize themselves into a cooperative system that
lets the fast drivers pass through, while still letting the
slow drivers maintain their speeds.

We begin by presenting our formulation of the traffic
control task, and its associated learning problem, in more
detail. We next describe the inputs and outputs of our
reactive vehicle controllers, along with our genetic ap-
proach to learning distributed control strategies. After
this, we characterize our simulated traffic environment
and report experimental studies of the system under a
variety of conditions. Elsewhere (Moriarty & Langley,
1998), we showed that our approach learns controllers
that are robust to changes in the proportion of learned
to ‘selfish’ cars on the highway and to changes in traffic
density. Here we focus instead on the system’s ability to
generalize to situations that involve blocked lanes and
different numbers of lanes from those used in training.
We close the paper with a discussion of related work on
distributed learning and our plans for future research.

2. Distributed Traffic Control

Our approach to traffic management involves a reformu-
lation of the problem into a distributed artificial intel-
ligence task, in which cars coordinate lane changes to
maintain desired speeds and reduce total lane maneu-
vers. We make no assumptions about the level of automa-
tion of the cars. Lane selection information could be pro-
vided to the driver, who completes the maneuver, or to
a regulation controller in an automated car (Pomerleau,
1995; Varaiya, 1993). Here we consider in more detail our
formulation of the performance and learning tasks.
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Figure 1 (a) An example traffic situation in which the traffic flows from left to right and the number on each car
shows the car’s speed. (b) Traffic after reorganization in which car 75 and 65 swap lanes, followed by another lane
change by car 65, so that all cars can maintain their desired speeds.

2.1 Definition of the Problem

Most work on advanced traffic management views cars
as tokens that follow simple, selfish rules of behavior.
These management systems affect the flow of the car to-
kens by controlling external, fixed-position devices such
as traffic signals, ramp meters, speed limits, and dynamic
lanes. Surprisingly, little research has addressed how the
cars themselves might sense and intelligently affect traffic
dynamics.!

Our view is that cars are not blind tokens, but rather
can sense their environment and act cooperatively to
achieve desired global behavior. More specifically, cars
can learn to organize themselves by traffic lanes to
increase overall traffic throughput, reduce the average
number of lane changes, and maintain the desired speeds
of drivers. Car-centered control, specifically lane selec-
tion, should therefore complement existing traffic man-
agement efforts by providing better behavior between
traffic signals.

Figure 1(a) illustrates a situation in which lane co-
ordination is beneficial. The figure shows five cars along
with their speeds, which we will use as identifiers. Car 72
is quickly approaching car 65 and will be unable to pass
because of the position of car 67. Without reorganiza-
tion, car 65 forces car 72 to reduce its speed and wait for
car 67 to pass car 65, which will decrease traffic through-
put and car 72’s satisfaction. An efficient solution to this
problem is for car 75 and car 65 to immediately swap
lanes, followed by car 65 moving into the bottom lane,
as shown in Figure 1(b). This maneuver ensures that no
speeds are reduced and no throughput is lost.

We recast the traffic management task as a problem
in distributed artificial intelligence, where each car rep-
resents an individual agent in a multi-agent system. Cars

! One exception is the work of Carrara and Morello in the
DOMINC project.

act on their world (the highway) by selecting appropriate
lanes to drive in. They interact with other cars by com-
peting for resources (the spaces or slots on the highway).
Each action is local in nature, and may not produce any
noticeable benefit to the car. Collectively, however, the
local actions can improve the global performance of the
traffic. For example, yielding a lane to a faster car does
not produce any local benefit to the slower car, but does
increase the overall traffic throughput and let the passing
car maintain its desired speed.

Global traffic performance could be defined in many
different ways. Governments want high traffic through-
put, whereas drivers want to maintain desired speeds
with few lane changes. We selected the driver-oriented
metric, since drivers are likely to be the harshest critics
of cooperative driving. The performance measure P for
a set of cars C contains two terms, one that penalizes
deviations in speed and one that penalizes lane changes,

T N @ . N
DD SANC ! D 3/ 7

P(©) TN TN (1)

where T is the total number of time steps (in seconds),
N is the number of cars, S is the desired speed of car i
at time ¢, S% is the actual speed of car ¢ at time ¢, and
L; is the total number of lane changes for car i over T'
time steps. The first constant, 4, is a weighting factor,
whereas the second, 60, converts the lane changes per
second into lane changes per minute. The goal is to min-
imize the difference between actual speeds and desired
speeds, modulated by the number of lane changes, av-
eraged over several time steps and over all learned cars
on the road. Each speed difference is squared to penalize
extreme behavior. For example, driving 60 m/h 90% of
the time and 10 m/h 10% of the time gives an average of
55 m/h but is clearly less desirable than driving 56 m/h
50% and 54 m/h 50% of the time, which gives the same



average. Squaring the error from desired speed gives a
higher evaluation to the more consistent strategy.

The problem is thus to find a lane-changing strat-
egy that minimizes equation 1. A naive strategy for each
car, which most traffic management systems assume, is
to select the lane that lets it most consistently achieve
its desired speed and only change lanes if a slower car
is encountered. The disadvantage of such a strategy is
that it does not take into account the global criteria of
traffic performance. A slow car should not drive in the
“fast” lane simply because it can maintain its desired
speed. We will refer to cars that employ the naive strat-
egy as selfish, since they maximize the local performance
of their respective car. We are interested in smart strate-
gies that maximize the aggregate performance of traffic
through cooperative lane-selection strategies.

2.2 Communication and Coordination

The previous section defined the problem of car-centered
traffic management, but left open some important is-
sues about the level of communication between cars and
the knowledge available about other cars’ decisions and
states. The multi-agent literature is often divided on
these matters, and we feel that it is not central to the
problem definition. Still, we should describe our assump-
tions about communication and state information.

We assume that cars have access to information on
their own state, including knowledge of their current
driving speed and the driver’s desired speed. One could
imagine a driver specifying desired speeds at the start of
a trip, or the system could infer this information from the
driver’s historical behavior. We also assume that agents
can perceive limited state information of surrounding
cars, such as their relative speeds. The system could
sense this information using radar or receive it directly
from other cars via radio waves or the Internet. Agents
should also sense which surrounding cars are cooperative
and which are selfish. Again, the system could infer co-
operation from driver behavior or direct communication.

Figure 2 illustrates the input for an agent in a spe-
cific traffic situation. The middle car receives as input
its current speed, its desired speed, the relative speeds
of surrounding traffic, and whether surrounding cars are
cooperative or selfish. The range and granularity of the
relative speed inputs could be adjusted to take into ac-
count both local traffic and distant traffic. For example,
it may prove beneficial to receive not only relative speeds
of individual cars in the immediate vicinity, but also rel-
ative speeds of groups of cars in farther ranges.

We assume that the controller’s output consists of
three options: stay in the current lane, change lanes to
the left, or change lanes to the right. The output does not
specify the best lane to drive in, but rather whether the
lanes immediately to the left or immediately to the right
are better than the current lane. This control provides
flexibility, since it does not depend on the number of
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Figure 2 An illustration of the input to each agent. The
shaded region shows the current input information for the
middle car. The agent has access to its current speed, its de-
sired speed, the relative speeds of surrounding traffic, and
whether other cars are smart or selfish.

lanes or on knowledge of the current driving lane. Thus,
controllers that learn on a three-lane highway should, at
least in principle, generalize to greater or fewer lanes.

We assume that the controller’s output represents a
ranking of the three possible choices, with the highest
ranked choice that is both valid and safe being selected
as the car’s next action. For a recommendation to be
valid, there must be a lane available in the specified di-
rection. For a recommendation to be safe, there must not
be a car in the same longitudinal position in the new lane.
It is always safe to remain in the current lane. The sys-
tem could also incorporate other safety assurances, such
as detecting whether a lane change produces an unsafe
spacing between cars in the new lane. For example, one
might specify that a slow car should not move in front
of a fast car even if there is immediate space for it in
the fast car’s lane, since the fast car will likely close that
space during the span of the lane change.

The higher-level safety and validation process relieves
the controller of the overhead in deciding which lanes are
safe and centers the control problem on lane selection. In
other words, by removing the problem of validation and
safety, the controller can focus on and more easily learn
to rank lanes. This approach is analogous to separating
the identification of legal moves from the selection of
desirable moves in game playing.



Another important issue concerns support for individ-
ual differences among drivers. Clearly, different drivers
should be able to select lanes differently. Slower drivers
will normally (but not always) use lane selection to open
up lanes for faster traffic, whereas faster drivers will se-
lect lanes to get through slower traffic. Average-speed
drivers will employ elements of both strategies. At issue
is how to represent and implement the different types of
strategies.

One approach is to maintain an explicit control policy
for each type of driver. For example, fast drivers would
utilize a fast lane-selection strategy and slow drivers a
slow lane-selection strategy. A disadvantage of this ap-
proach is that it requires a priori knowledge of the num-
ber of driver types and the boundaries that separate
them. Also, it does not provide a smooth transition be-
tween styles of driving. A driver on a boundary would be
forced into one of the two surrounding strategies instead
of an interpolation between the two.

A better approach is to parameterize the driving style
and use it as input to a single control policy. Each car
would contain the same control policy, but since it re-
ceives driving style as input, it behaves differently for
different types of drivers. In this case, driving style is
simply the desired speed. No a priori decisions are neces-
sary regarding the number of lane-selection strategies or
their boundaries. Moreover, since the different strategies
are keyed to a continuous input (desired speed), there
can be smooth transitions and interpolations between
different lane-selection strategies.

2.8 Approaches to Intelligent Lane Selection

Creating distributed lane-changing controllers by hand
appears quite difficult. It is unclear whether experts ex-
ist in this domain and, even if they do, experts often
find it difficult to verbalize complex control skills, which
creates a knowledge acquisition bottleneck. Also, the innu-
merable traffic patterns and varying driving styles create
a large problem space. Even with significant expert do-
main knowledge, hand crafting a controller that operates
effectively in all areas of the problem space may not be
feasible.

Another solution is to apply machine learning to de-
velop intelligent controllers through direct experience
with the domain. A learning algorithm would modify
the controller based on good and bad experiences in the
problem space. This approach frees us from the task of
acquiring and encoding expert domain knowledge, since
it discovers examples of good and bad decisions through
direct experience. Moreover, the controllers are not nec-
essarily fixed and could continue to learn and adapt with
new experiences.

The lane-selection problem appears out of reach of
the more standard, supervised machine learning methods
(e.g., Quinlan, 1986; Rumelhart, Hinton, & Williams,
1986). In supervised learning, control policies are formed

from examples of correct behavior. In the case of intelli-
gent lane selection, supervised learning requires demon-
strations of good and bad lane selections. Without ex-
pert domain knowledge, it is difficult to generate these
examples. In some control problems, supervised learning
is used to mimic the behavior of people (e.g., Pomerleau,
1992; Sammut, Hurst, Kedzier, & Michie, 1992). For in-
telligent lane selection, however, this is exactly what we
do not want to model. We believe that most drivers do
not select lanes intelligently, but are rather more selfish
in nature. Thus, it seems misguided to use real driver be-
haviors as a basis for learning cooperative lane selection.

A more flexible machine learning approach that is
capable of learning from general rewards instead of be-
havioral examples has been termed reinforcement learn-
ing. The rewards provide only a general measure of pro-
ficiency over the task and do not explicitly direct the
learner toward any course of action. The learner adjusts
its actions through trial and error interactions with the
environment to maximize the reward signal. In the lane-
selection problem, agents receive the rewards defined by
equation 1 at specific time steps. In response, they adjust
their lane-selection strategies using some reinforcement
learning algorithm to maximize the reward function.

The literature includes two main types of approach
to reinforcement learning. One class of methods learn
through calculation of temporal differences (Sutton,
1988; Watkins & Dayan, 1992; Kaelbling, Littman, &
Moore, 1996) over rewards, which lets them acquire map-
pings from state-action pairs onto expected values. An-
other class of methods search more directly through
the space of control policies (Grefenstette, Ramsey, &
Schultz, 1990; Holland & Reitman, 1978; Moriarty &
Miikkulainen, 1996; Whitley, Dominic, Das, & Ander-
son, 1993; Wilson, 1994), often using evolutionary al-
gorithms to this end. Our approach, to which we now
turn, relies on an evolutionary algorithm as the primary
mechanism for reinforcement learning, but it also incor-
porates a technique similar to temporal-difference learn-
ing to handle smaller strategy refinements.

2.4 Machine Learning for Lane Selection

Elsewhere (Moriarty & Langley, 1998), we have de-
scribed our distributed learning system in detail, so here
we only review its main components. The system repre-
sents its control knowledge as a feedforward neural net-
work with one hidden layer, as depicted in Figure 3. This
network includes 16 input units, 12 hidden units, and
three output units, with full connections between adja-
cent levels. The input nodes correspond to information
about the car’s current and desired speeds, as well as the
speeds of surrounding vehicles, whereas the output nodes
specify whether to stay in the current lane, to move left,
or to move right. On each time step, the controller uses
the input values to compute activations for each output
node, then selects the action with the highest activation.
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Figure 3 The input and outputs to the neural network for lane selection.

The learning system relies on three interrelated mod-
ules to determine the weights on the network’s links, and
thus to acquire robust controllers. The first component is
SANE (Moriarty & Miikkulainen, 1996; Moriarty, 1997),
which carries out genetic search through the space of
feedforward networks, given a network architecture, by
operating at two distinct levels. At one level, the module
retains a population of complete controllers, each defined
as a collection of hidden-layer neurons. The second-level
population consists of these individual neurons, each of
which specify the weights on their input and output links.
Each member of the neuron population can appear in
zero or more members of the controller population.

SANE assign fitness to each candidate controller by
converting its encoding (stored as bit strings) into a com-
plete neural network, then using that network in a sim-
ulated traffic environment for 400 seconds. The system
determines the fitness of a given controller by applying
equation 1 to traces of the traffic behavior. SANE also
assigns fitness to each candidate neuron based on the
fitnesses of the controllers to which it contributes. The
algorithm selectively applies genetic operators, such as
crossover, on members of each population to generate
new members, repeating the evaluation and generation
process many times.

The second learning module is responsible for seeding
the initial populations. Rather that starting SANE with
random populations of controllers and neurons, the sys-
tem initializes them with candidates that are likely to be
useful. The module accomplishes this feat by collecting
behavioral traces of the hand-written ‘polite’ controller
that we described earlier. These provide training cases
that take the form of sensor-action pairs, which the sys-

tem passes to a supervised algorithm (backpropagation)
to learn weights that approximate the polite controller.
The module repeats this process a number of times to
generate a collection of controllers and neurons that form
25% of the two initial populations.

As noted above, the SANE module evaluates the fit-
ness of candidate controllers by running them in the sim-
ulator for fixed time periods. Because the reward sig-
nals generated by this scheme are infrequent, we added
a third learning module that relies on more immediate
feedback. After every ten simulated seconds, this com-
ponent checks to determine if the overall traffic perfor-
mance has changed since the last measurement. If per-
formance has improved substantially, it labels all actions
taken during this period as desirable; if performance has
worsened, it labels all invoked actions as undesirable. In
either case, the module passes these actions (and their
associated sensory inputs) to the backpropagation algo-
rithm, which alters the controllers weights to either en-
courage or discourage their use.

Recall that the system’s reward signal is based on
equation 1, which assumes global information about
overall traffic behavior. Clearly, such information is not
currently available to actual cars or their drivers, but we
predict this will change as vehicles come to include posi-
tioning devices and gain access to the Internet, which will
let them report their position and speed to a central facil-
ity. For now, we have been forced to rely on a simulated
traffic domain, which has also encouraged us to use an
offline training regimen to collect accurate statistics over
extended runs. However, the basic approach also lends
itself to online learning, though we expect the learning
rate would decrease in this scenario.



3. Experimental Evaluation

Our approach to distributed learning appears to offer
a viable method for acquiring lane-selection strategies
and thus improving overall traffic performance. How-
ever, whether the method works in practice is an empir-
ical question, and in this section we report experimental
studies of the system’s adaptive behavior.

3.1 A Simulated Traffic Environment

To evaluate traffic management through intelligent lane
selection, we developed a simulator to model traffic on
a highway. For each car, the simulator updates the con-
tinuous values of position, velocity, and acceleration at
one second intervals. The acceleration and deceleration
functions were set by visualizing traffic performance un-
der different, conditions and represent our best estimate
of the behavior of actual drivers. We adjust acceleration
(A) using the equation A(s) = 10s7%5, where s repre-
sents the current speed in miles per hour (m/h).

Deceleration occurs at the rate of —2.0 m/h per sec-
ond if the difference in speed from the immediate preced-
ing car is greater than twice the number of seconds sepa-
rating the two cars. In other words, if a car approaches a
slower car, the deceleration point is proportional to the
difference in speed and the distance between the cars.
If there is a large difference in speed, cars will deceler-
ate sooner than if the speed differences are small. If the
gap closes to two seconds, the speed is matched instan-
taneously. The simulator allows lane changes only if the
change maintains a two-second gap between leading and
following cars.

The simulated roadway is 3.3 miles long, but the top
of each lane “wraps around” toroidally to the bottom,
creating an infinite stretch of roadway. We designed the
simulator as a tool to efficiently evaluate different lane-
selection strategies, and thus it makes several assump-
tions about traffic dynamics. The current model makes
five primary assumptions:

— all cars are the same size;

— all cars use the same acceleration rules;

— cars accelerate to and maintain their desired speed if
there are no slower cars directly ahead;

— lane changes are instantaneous; and

— there are no curves, hills, on ramps, or exit ramps.

Although none of these assumptions hold for real-world
traffic, they do not appear crucial for evaluating the mer-
its of intelligent lane selection, and removing them un-
necessarily complicates the model. In future work, how-
ever, we hope to expand our experiments to more realis-
tic simulators such as SmartPATH (Eskafi, 1996).
During training, the learning system uses the traf-
fic simulator to evaluate candidate lane-selection strate-
gies. Each evaluation or trial lasts 400 simulated seconds
and begins with a random dispersement of 200 cars over

three lanes on the 3.3 mile roadway. Desired speeds are
selected randomly from a normal distribution with mean
60 m/h and standard deviation 8 m/h. In each trial, the
percentage of smart cars is randomly selected from a uni-
form distribution with a minimum percentage of 5%. All
other cars follow the selfish lane-selection strategy out-
lined in Section 2.1.

To simulate congestion caused by lane closures and
merging, we blocked portions of either the far right or far
left lanes during training. Lane closures last for one mile
and only one closure exists at any given time. There is
an equal probability that the far right or far left lane will
be blocked. A lane-selection strategy perceives a blocked
lane as a car with a speed of zero.

Each training run begins with a population of 75 ran-
dom lane-selection strategies and 25 seeded strategies,
which are modified by SANE and the local learning mod-
ule over 30 simulated driving hours. SANE keeps track of
the best strategy found so far based on its performance
over a trial. When the system finds a better strategy, it
is saved to a file for later testing. The saved strategies
are each tested over ten 2000-second trials and the best
is returned as the final strategy.

We developed two hand-written controllers for use as
benchmarks and to provide the simulated environment.
The polite controllers follow four rules:

— If your desired speed is 55 m/h or less and the right
lane is open, then change lanes to the right.

— If you are in the left lane, a car behind you has a
higher speed, and the right lane is open, then change
lanes to the right.

— If a car in front of you has a slower current speed
than your desired speed and the left lane is open,
then change lanes to the left.

— In the previous situation, if the left lane was not open
but the right lane is open, then change to the right.

We based these rules on our interpretation of the “slower
traffic yield to the right” signs posted on the highways.
The selfish strategy described earlier uses only the last
two rules.

3.2 FEvaluation of Intelligent Lane Selection

Our earlier studies (Moriarty & Langley, 1998) evalu-
ated the learned controllers’ behavior as we varied the
density of traffic and the ratio of learned to selfish con-
trollers. The results, which showed reasonable behavior
over a wide range of densities and ratios, encouraged us
to carry out additional additional studies to further test
the adaptive nature of the learned controllers.

We designed our first experiment to evaluate the po-
lite, selfish, and learned strategies in the presence of
lane closures. Recall that, during training, we closed one
mile of either the far left or far right lane and the loca-
tion of the closure changed every 500 simulated seconds.
We replicated lane closures in testing to determine each



350.0

300.0 - oo Selfish b
Polite
A—A
250.0 Learned

200.0

150.0

100.0

50.0

Mean Squared Difference from Desired Speed

0.0

Number of Cars
(a)

Figure 4 Traffic performance when portions of the lanes were blocked.

strategy’s ability to handle high congestion areas created
by the merging traffic. The degree of merging in these
tests is extreme (a blocked lane every 13 miles), to fully
test the robustness of the three strategies.

Figure 4 plots the mean squared error in desired
speeds and the average number of lane changes with
closed lanes. Surprisingly, the polite strategy performed
worse than the selfish one when lanes were blocked, which
differed from our earlier results with no closures. Fig-
ure 4(a) shows that, under a high degree of merging, it
is better to act greedily than politely. The large errors
that the polite strategy incurs come when portions of
the rightmost lane are closed. Since the polite strategy
directs all of its slow drivers into the right lane, it be-
comes difficult to merge them back into the two faster
lanes when this lane is blocked. This difficulty causes
large bottlenecks in the right lane and creates high er-
rors in desired speed. Since the selfish strategy assigns
no lane bias based on driving speed, it is less affected by
right lane closures.

Although the learned strategy also directs its slower
drivers to the right lane, its response to bottlenecks is
even more robust than the selfish scheme. Under the
learned strategy, faster drivers in the center and left lanes
maneuver to let slower drivers merge more easily, which
eases congestion. These seemingly altruistic behaviors
were learned because reinforcement comes from the ag-
gregate traffic performance. Additionally, the learned
cars have relative speed sensors that can detect slow
speeds in traffic ahead. Thus, the learned strategy can
merge the cars much earlier than the polite strategy,
which does not begin to merge until a slow car or closed
lane forces it to decelerate. Overall, the learned strategy
incurs substantially lower driving errors and performs
only a fraction of the lane change maneuvers as the other
two strategies.
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The second experiment evaluated the learned strat-
egy’s ability to adapt to four-lane highways. As noted
in Section 2.2, we designed the controller input to ig-
nore the car’s actual lane, and the output to reflect only
whether the left or right lane is better than the cur-
rent one. Thus, in principle an effective strategy learned
only on a three-lane highway should perform well on four
lanes. Since the learning system only experienced three-
lane highways in training, this experiment serves as an-
other test of the learned strategy’s adaptability.

Figure 5 plots the error in driving speed and average
number of lane changes using four lanes of traffic. Since
there is more lane capacity, we need up to 600 cars in
this study. The figure shows that the learned strategy
achieves the same performance gains over the polite and
selfish strategies in four lanes of traffic as it does in three
lanes. In dense traffic, the learned strategy incurs one
third to one quarter of the driving speed error for the
selfish strategy and one half of the error for the polite
strategy. As with three lanes of traffic, the polite and
selfish strategies make substantially more lane change
maneuvers than the learned controller.

Figure 6 provides a visualization of the lane utiliza-
tion for the three strategies with four traffic lanes us-
ing 300 cars. This shows that the selfish strategy assigns
no lane bias based on driving speed, whereas the polite
strategy exhibits a sharp transition between slow and
fast driving styles. The graph for the learned strategy is
very similar to its three-lane counterpart, giving further
evidence that it generalizes to more than three lanes.

With only three lanes, the learned strategy encum-
bers the right lane with many slow drivers and uses the
other lanes to organize the faster drivers. Under four
lanes of traffic, however, the fastest drivers are placed
more consistently in the leftmost lane than under three
lanes. For example, drivers with desired speeds of 80
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Figure 5 Traffic performance with four driving lanes; no lanes were blocked in this condition.

m/h drive in the left lane 83% of the time with four
lanes of traffic, compared to only 57% of the time with
three lanes. Most of the traffic organization occurs in
the middle two lanes, with the middle-speed drivers. This
strategy seems reasonable, since the middle-speed drivers
make two different types of lane changes: passing slow
cars and yielding to fast cars, and therefore must reor-
ganize more frequently.

4. Related and Future Work

One can roughly divide research on communities of learn-
ing agents into two broad categories. The first, often
called multi-agent learning, refers to situations in which
the agents have shared goals and thus cooperate, either
explicitly or implicitly, to achieve those goals. Exam-
ples of this approach include Schultz, Grefenstette, and
Adams’ (1996) work on multi-robot herding behavior,
Matarié’s (1994) efforts on foraging, in which four robots
acquire social rules that reduce disruption, Tan’s (1993)
studies of reinforcement learning among predators coop-
erating to track down prey, and Sen and Sekaran’s (1998)
use of reinforcement learning to improve two-agent co-
ordination in block pushing. Stone and Veloso (1997)
present an extensive review of work on multi-agent learn-
ing, including their own results on soccer playing, so we
will not try to be exhaustive here.

Another category focuses on situations that involve
many agents, typically more than in multi-agent set-
tings, each of which pursues its own goals. Research on
such distributed learning seems less common than multi-
agent work, but it also a bears a closer relation to our
own approach. Perhaps the best-known effort of this sort
revolves around Holland’s (1996) EcHO, a simulation
framework designed to study the behavior of complex bi-
ological systems, such as the interaction of plants, herbi-
vores, and carnivores in an ecosystem (Schmitz & Booth,

1997). Schoonderwoerd, Holland, and Bruten (1997) use
distributed agents to balance loads in telecommunica-
tions networks, but learning occurs only in the sense that
agents lay down ant-like trails to improve performance.
Grand, Cliff, and Malhotra’s (1997) work on CREATURES
is more akin to our own work, with independent agents
that exist in a simulated environment, receive rewards,
and change their behaviors with experience.

There does exist some work on machine learning
for traffic control, but this has focused on learning
for individual driving agents. For example, Sukthankar
et al. (1996) use reinforcement learning to acquire con-
trol strategies for a vehicle that operates on a simulated
highway among other cars controlled by hand-crafted
strategies. Similarly, McCallum (1996) reports a system
that uses reinforcement learning to acquire a single-agent
controller for ‘New York driving’, which involves weav-
ing around slower traffic. There also exists a substantial
literature on more traditional approaches to traffic man-
agement that typically involve more centralized control,
which we have reviewed in a separate paper (Moriarty &
Langley, 1998).

Although we have found no other work on distributed
learning in the traffic domain, we remain excited about
its potential as a fertile research testbed. In future work,
we plan to improve our traffic simulator to include dura-
tive lane changes, entrance ramps, and exit ramps. We
believe these additions will produce more realistic con-
gestion patterns and thus increase the need for intelligent
lane selection. The revised simulator will also let the
vehicles increase or decrease their speed, which should
provide further improvements in traffic flow, at least for
learned controllers.

In the longer term, we envision an extended simula-
tor that supports a network of interconnected highways.
Each car would be given a destination and, to the extent
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that multiple routes are available, the controller will se-
lect among routes just as it currently selects among lanes.
This will require access to higher-level information about
the distribution of cars on the various highways, so that
the distributed controllers can select routes that avoid
congestion. These variations on the task of distributed
traffic management should provide a rich set of problems
to drive our research in years to come.

However, our research methodology should remain
much the same, in that we will construct systems that
control traffic in a distributed manner and we will study
those systems’ adaptive behavior under a variety of ex-
perimental conditions. We invite other researchers to join
us in our exploration of an intriguing domain that re-
mains poorly understood despite its relevance to our ev-
eryday lives.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments and Dan Shapiro for his evaluation of
traffic simulators.

References

Carrara, M., & Morello, E. Advanced control strategies
and methods for motorway of the future. In The
drive project DOMINC: New concepts and research
under way.

Eskafi, F. (1996). Modeling and simulation of the auto-
mated highway system. Ph.D. thesis, Department
of Electrical Engineering and Computer Science,
University of California, Berkeley.

Grand, S., Cliff, D., & Malhotra, A. (1997). CREATURES:
Artificial life autonomous software agents for home
entertainment. In Proceedings of the First Interna-
tional Conference on Autonomous Agents, pp. 22—
29. New York: ACM Press.

Grefenstette, J. J., Ramsey, C. L., & Schultz, A. (1990).
Learning sequential decision rules using simulation
models and competition. Machine Learning, 5,
355 381.

Holland, J. H. (1996). Hidden order: How adaptation
builds complexity. Reading, MA: Addison-Wesley.

Holland, J. H., & Reitman, J. S. (1978). Cognitive sys-
tems based on adaptive algorithms. In Waterman,
D. A., & Hayes-Roth, F. (Eds.), Pattern-directed
inference systems. New York: Academic Press.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of Ar-
tificial Intelligence Research, 4, 237-285.

Matari¢, M. J. (1994). Learning to behave socially. In
Proceedings of the Third International Conference
on Simulation of Adaptive Behavior, pp. 453 462.
Cambridge, MA: MIT Press.

McCallum, A. K. (1996). Learning to use selective at-
tention and short-term memory in sequential tasks.
In Proceedings of Fourth International Conference
on Simulation of Adaptive Behavior, pp. 315 324
Cape Cod, MA.

Moriarty, D. E. (1997). Symbiotic evolution of neural
networks in sequential decision tasks. Ph.D. thesis,
Department of Computer Sciences, University of
Texas at Austin.

Moriarty, D. E.; & Langley, P. (1998). Learning coop-
erative lane selection strategies for highways. In
Proceedings of the Fifeenth National Conference
on Artificial Intelligence Menlo Park, CA: AAAI
Press.

Moriarty, D. E., & Miikkulainen, R. (1996). Efficient re-
inforcement learning through symbiotic evolution.
Machine Learning, 22, 11-32.



Pomerleau, D. (1995). RALpH: Rapidly adapting lat-
eral position handler. In Proceedings of the 1995
IEEE Symposium on Intelligent Vehicles, pp. 506—
511 Detroit, MI.

Pomerleau, D. A. (1992). Neural network perception for
mobile robot guidance. Ph.D. thesis, School of Com-
puter Science, Carnegie Mellon University, Pitts-
burgh, PA.

Quinlan, J. R. (1986). Induction of decision trees. Ma-
chine Learning, 1, 81 106.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J.
(1986). Learning internal representations by error
propagation. In Rumelhart, D. E., & McClelland,
J. L. (Eds.), Parallel distributed processing: Explo-
rations in the microstructure of cognition, Volume
1: Foundations. Cambridge, MA: MIT Press.

Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992).
Learning to fly. In Proceedings of the Ninth Inter-
national Workshop on Machine Learning, pp. 385
393. San Francisco: Morgan Kaufmann.

Schmitz, O., & Booth, G. (1997). Modelling food web
complexity: The consequences of individual-based,
spatially explicit behavioral ecology on trophic in-
teractions. Fwvolutionary Ecology, 11, 379 398.

Schoonderwoerd, R., Holland, O., & Bruten, J. (1997).
Ant-like agents for load balancing in telecommu-
nications networks. In Proceedings of the First In-
ternational Conference on Autonomous Agents, pp.
209 216. New York: ACM Press.

Schultz, A. C., Grefenstette, J. J., & Adams, W. (1996).
RoboShepherd: Learning a complex behavior. In
Proceedings of RoboLearn-96: International Work-
shop for Learning in Autonomous Robots Key
West, FL.

Sen, S., & Sekaran, M. (1998). Individual learning of
coordination knowledge. Journal of Ezperimental
& Theoretical Artificial Intelligence, 10.

Stone, P., & Veloso, M. (1997). Multiagent systems: A
survey from a machine learning perspective. Tech.
rep. CMU-CS-97-193, School of Computer Science,
Carnegie Mellon University.

Sukthankar, R., Hancock, J., Baluja, S., Pomerleau, D.,
& Thorpe, C. (1996). Adaptive intelligent vehi-
cle modules for tactical driving. In Proceedings
of the AAAI-96 Workshop on Intelligent Adaptive
Agents, pp. 13 22 Portland, OR. Also available at
http://www.cs.cmu.edu/~rahuls/Shiva/.

Sutton, R. S. (1988). Learning to predict by the methods

of temporal differences. Machine Learning, 3, 9-44.

, M. (1993). Multi-agent reinforcement learning:

Independent vs. cooperative agents. In Proceed-
ings of the Tenth International Conference on Ma-
chine Learning, pp. 330-337. San Francisco: Mor-
gan Kaufmann.

Tan

Varaiya, P. (1993). Smart cars on smart roads: Prob-
lems of control. IEEE Transactions on Automatic
Control, 38, 195-207.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning.
Machine Learning, 8, 279-292.

Whitley, D., Dominic, S., Das, R., & Anderson, C. W.
(1993). Genetic reinforcement learning for neuro-
control problems. Machine Learning, 13, 259 284.

Wilson, S. W. (1994). ZCS: A zeroth level classifier sys-
tem. FEwvolutionary Computation, 2, 1-18.



