
Learning Distributed Strategies for Tra�c ControlDavid E. Moriarty, Simon Handley, and Pat LangleyDaimler-Benz Research and Technology Center1510 Page Mill Road, Palo Alto, CA 94304fmoriarty,handley,langleyg@rtna.daimlerbenz.comAbstractIn this paper, we cast the problem of managing tra�c
ow in terms of a distributed collection of independentagents that adapt to their environment. We describean evolutionary algorithm that learns strategies forlane selection, using local information, on a simulatedhighway that contains hundreds of agents. Experimen-tal studies suggest that the learned controllers lead tobetter tra�c 
ow than ones constructed manually, andthat the learned controllers are robust with respect toto blocked lanes and changes in the number of laneson the highway.1. IntroductionIn recent years, there has been growing interest in thedistributed behavior of large populations of independentagents, and in the ability of such agents to adapt notonly to their environment but to each other's behavior.Most research in this area has focused on agent popula-tions designed to mimic those that occur in the naturalworld, such as colonies of ants and schools of �sh. How-ever, the arti�cial urban environment created by humanscontains another important example of distributed agentbehavior: automobile tra�c on roads and highways.The tra�c domain has much to recommend it as afertile source of research problems. Clearly, each agent(a driver and his vehicle) has independent control of itsactions, but its behavior must take into account physi-cal constraints, such as staying on the road and avoidingcollisions, and the behavior of many other agents. An-other advantage is that there exist clear criteria for eval-uation, such as maximizing tra�c 
ow and minimizinglane changes. In addition, the domain supports complexbehaviors of the overall system, such as tra�c jams, eventhough the individual agents are relatively simple. Also,most researchers have personal experience in tra�c en-vironments and, presumably, have good intuitions aboutreasonable strategies and behaviors. Finally, progress inthis area could lead to improvements in actual tra�c con-ditions and thus increase the quality of life for drivers.In this paper, we describe research on distributedadaptation in the tra�c domain. Following Moriarty andLangley (1998), we formulate the problem of tra�c man-agement from a distributed, car-centered perspective andthe task of improving this process in terms of distributed

machine learning. We assume that each agent receives lo-cal information about the vehicles that immediately sur-round it, including their location and speed, and that theagent determines which lane to drive in but not the ve-hicle's speed. The aim of learning, and thus our measureof performance, is not the behavior of individual tra�cagents but rather the behavior of the tra�c system asa whole. To this end, we want the learning module todevelop a control strategy for lane selection that consid-ers not only the maintenance of each car's desired speed,but that takes into account how its selection will a�ectspeeds of other cars. For instance, we would like the carsto organize themselves into a cooperative system thatlets the fast drivers pass through, while still letting theslow drivers maintain their speeds.We begin by presenting our formulation of the tra�ccontrol task, and its associated learning problem, in moredetail. We next describe the inputs and outputs of ourreactive vehicle controllers, along with our genetic ap-proach to learning distributed control strategies. Afterthis, we characterize our simulated tra�c environmentand report experimental studies of the system under avariety of conditions. Elsewhere (Moriarty & Langley,1998), we showed that our approach learns controllersthat are robust to changes in the proportion of learnedto `sel�sh' cars on the highway and to changes in tra�cdensity. Here we focus instead on the system's ability togeneralize to situations that involve blocked lanes anddi�erent numbers of lanes from those used in training.We close the paper with a discussion of related work ondistributed learning and our plans for future research.2. Distributed Tra�c ControlOur approach to tra�c management involves a reformu-lation of the problem into a distributed arti�cial intel-ligence task, in which cars coordinate lane changes tomaintain desired speeds and reduce total lane maneu-vers. We make no assumptions about the level of automa-tion of the cars. Lane selection information could be pro-vided to the driver, who completes the maneuver, or toa regulation controller in an automated car (Pomerleau,1995; Varaiya, 1993). Here we consider in more detail ourformulation of the performance and learning tasks.
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55 (b)Figure 1 (a) An example tra�c situation in which the tra�c 
ows from left to right and the number on each carshows the car's speed. (b) Tra�c after reorganization in which car 75 and 65 swap lanes, followed by another lanechange by car 65, so that all cars can maintain their desired speeds.2.1 De�nition of the ProblemMost work on advanced tra�c management views carsas tokens that follow simple, sel�sh rules of behavior.These management systems a�ect the 
ow of the car to-kens by controlling external, �xed-position devices suchas tra�c signals, ramp meters, speed limits, and dynamiclanes. Surprisingly, little research has addressed how thecars themselves might sense and intelligently a�ect tra�cdynamics.1Our view is that cars are not blind tokens, but rathercan sense their environment and act cooperatively toachieve desired global behavior. More speci�cally, carscan learn to organize themselves by tra�c lanes toincrease overall tra�c throughput, reduce the averagenumber of lane changes, and maintain the desired speedsof drivers. Car-centered control, speci�cally lane selec-tion, should therefore complement existing tra�c man-agement e�orts by providing better behavior betweentra�c signals.Figure 1(a) illustrates a situation in which lane co-ordination is bene�cial. The �gure shows �ve cars alongwith their speeds, which we will use as identi�ers. Car 72is quickly approaching car 65 and will be unable to passbecause of the position of car 67. Without reorganiza-tion, car 65 forces car 72 to reduce its speed and wait forcar 67 to pass car 65, which will decrease tra�c through-put and car 72's satisfaction. An e�cient solution to thisproblem is for car 75 and car 65 to immediately swaplanes, followed by car 65 moving into the bottom lane,as shown in Figure 1(b). This maneuver ensures that nospeeds are reduced and no throughput is lost.We recast the tra�c management task as a problemin distributed arti�cial intelligence, where each car rep-resents an individual agent in a multi-agent system. Cars1 One exception is the work of Carrara and Morello in theDOMINC project.

act on their world (the highway) by selecting appropriatelanes to drive in. They interact with other cars by com-peting for resources (the spaces or slots on the highway).Each action is local in nature, and may not produce anynoticeable bene�t to the car. Collectively, however, thelocal actions can improve the global performance of thetra�c. For example, yielding a lane to a faster car doesnot produce any local bene�t to the slower car, but doesincrease the overall tra�c throughput and let the passingcar maintain its desired speed.Global tra�c performance could be de�ned in manydi�erent ways. Governments want high tra�c through-put, whereas drivers want to maintain desired speedswith few lane changes. We selected the driver-orientedmetric, since drivers are likely to be the harshest criticsof cooperative driving. The performance measure P fora set of cars C contains two terms, one that penalizesdeviations in speed and one that penalizes lane changes,P (C) = PTt=1PNi=1(Sait � Sdit)2TN +4�60�PNi=1 LiTN ; (1)where T is the total number of time steps (in seconds),N is the number of cars, Sdit is the desired speed of car iat time t, Sait is the actual speed of car i at time t, andLi is the total number of lane changes for car i over Ttime steps. The �rst constant, 4, is a weighting factor,whereas the second, 60, converts the lane changes persecond into lane changes per minute. The goal is to min-imize the di�erence between actual speeds and desiredspeeds, modulated by the number of lane changes, av-eraged over several time steps and over all learned carson the road. Each speed di�erence is squared to penalizeextreme behavior. For example, driving 60 m/h 90% ofthe time and 10 m/h 10% of the time gives an average of55 m/h but is clearly less desirable than driving 56 m/h50% and 54 m/h 50% of the time, which gives the same



average. Squaring the error from desired speed gives ahigher evaluation to the more consistent strategy.The problem is thus to �nd a lane-changing strat-egy that minimizes equation 1. A naive strategy for eachcar, which most tra�c management systems assume, isto select the lane that lets it most consistently achieveits desired speed and only change lanes if a slower caris encountered. The disadvantage of such a strategy isthat it does not take into account the global criteria oftra�c performance. A slow car should not drive in the\fast" lane simply because it can maintain its desiredspeed. We will refer to cars that employ the naive strat-egy as sel�sh, since they maximize the local performanceof their respective car. We are interested in smart strate-gies that maximize the aggregate performance of tra�cthrough cooperative lane-selection strategies.2.2 Communication and CoordinationThe previous section de�ned the problem of car-centeredtra�c management, but left open some important is-sues about the level of communication between cars andthe knowledge available about other cars' decisions andstates. The multi-agent literature is often divided onthese matters, and we feel that it is not central to theproblem de�nition. Still, we should describe our assump-tions about communication and state information.We assume that cars have access to information ontheir own state, including knowledge of their currentdriving speed and the driver's desired speed. One couldimagine a driver specifying desired speeds at the start ofa trip, or the system could infer this information from thedriver's historical behavior. We also assume that agentscan perceive limited state information of surroundingcars, such as their relative speeds. The system couldsense this information using radar or receive it directlyfrom other cars via radio waves or the Internet. Agentsshould also sense which surrounding cars are cooperativeand which are sel�sh. Again, the system could infer co-operation from driver behavior or direct communication.Figure 2 illustrates the input for an agent in a spe-ci�c tra�c situation. The middle car receives as inputits current speed, its desired speed, the relative speedsof surrounding tra�c, and whether surrounding cars arecooperative or sel�sh. The range and granularity of therelative speed inputs could be adjusted to take into ac-count both local tra�c and distant tra�c. For example,it may prove bene�cial to receive not only relative speedsof individual cars in the immediate vicinity, but also rel-ative speeds of groups of cars in farther ranges.We assume that the controller's output consists ofthree options: stay in the current lane, change lanes tothe left, or change lanes to the right. The output does notspecify the best lane to drive in, but rather whether thelanes immediately to the left or immediately to the rightare better than the current lane. This control provides
exibility, since it does not depend on the number of
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Figure 2 An illustration of the input to each agent. Theshaded region shows the current input information for themiddle car. The agent has access to its current speed, its de-sired speed, the relative speeds of surrounding tra�c, andwhether other cars are smart or sel�sh.lanes or on knowledge of the current driving lane. Thus,controllers that learn on a three-lane highway should, atleast in principle, generalize to greater or fewer lanes.We assume that the controller's output represents aranking of the three possible choices, with the highestranked choice that is both valid and safe being selectedas the car's next action. For a recommendation to bevalid, there must be a lane available in the speci�ed di-rection. For a recommendation to be safe, there must notbe a car in the same longitudinal position in the new lane.It is always safe to remain in the current lane. The sys-tem could also incorporate other safety assurances, suchas detecting whether a lane change produces an unsafespacing between cars in the new lane. For example, onemight specify that a slow car should not move in frontof a fast car even if there is immediate space for it inthe fast car's lane, since the fast car will likely close thatspace during the span of the lane change.The higher-level safety and validation process relievesthe controller of the overhead in deciding which lanes aresafe and centers the control problem on lane selection. Inother words, by removing the problem of validation andsafety, the controller can focus on and more easily learnto rank lanes. This approach is analogous to separatingthe identi�cation of legal moves from the selection ofdesirable moves in game playing.



Another important issue concerns support for individ-ual di�erences among drivers. Clearly, di�erent driversshould be able to select lanes di�erently. Slower driverswill normally (but not always) use lane selection to openup lanes for faster tra�c, whereas faster drivers will se-lect lanes to get through slower tra�c. Average-speeddrivers will employ elements of both strategies. At issueis how to represent and implement the di�erent types ofstrategies.One approach is to maintain an explicit control policyfor each type of driver. For example, fast drivers wouldutilize a fast lane-selection strategy and slow drivers aslow lane-selection strategy. A disadvantage of this ap-proach is that it requires a priori knowledge of the num-ber of driver types and the boundaries that separatethem. Also, it does not provide a smooth transition be-tween styles of driving. A driver on a boundary would beforced into one of the two surrounding strategies insteadof an interpolation between the two.A better approach is to parameterize the driving styleand use it as input to a single control policy. Each carwould contain the same control policy, but since it re-ceives driving style as input, it behaves di�erently fordi�erent types of drivers. In this case, driving style issimply the desired speed. No a priori decisions are neces-sary regarding the number of lane-selection strategies ortheir boundaries. Moreover, since the di�erent strategiesare keyed to a continuous input (desired speed), therecan be smooth transitions and interpolations betweendi�erent lane-selection strategies.2.3 Approaches to Intelligent Lane SelectionCreating distributed lane-changing controllers by handappears quite di�cult. It is unclear whether experts ex-ist in this domain and, even if they do, experts often�nd it di�cult to verbalize complex control skills, whichcreates a knowledge acquisition bottleneck. Also, the innu-merable tra�c patterns and varying driving styles createa large problem space. Even with signi�cant expert do-main knowledge, hand crafting a controller that operatese�ectively in all areas of the problem space may not befeasible.Another solution is to apply machine learning to de-velop intelligent controllers through direct experiencewith the domain. A learning algorithm would modifythe controller based on good and bad experiences in theproblem space. This approach frees us from the task ofacquiring and encoding expert domain knowledge, sinceit discovers examples of good and bad decisions throughdirect experience. Moreover, the controllers are not nec-essarily �xed and could continue to learn and adapt withnew experiences.The lane-selection problem appears out of reach ofthe more standard, supervised machine learning methods(e.g., Quinlan, 1986; Rumelhart, Hinton, & Williams,1986). In supervised learning, control policies are formed

from examples of correct behavior. In the case of intelli-gent lane selection, supervised learning requires demon-strations of good and bad lane selections. Without ex-pert domain knowledge, it is di�cult to generate theseexamples. In some control problems, supervised learningis used to mimic the behavior of people (e.g., Pomerleau,1992; Sammut, Hurst, Kedzier, & Michie, 1992). For in-telligent lane selection, however, this is exactly what wedo not want to model. We believe that most drivers donot select lanes intelligently, but are rather more sel�shin nature. Thus, it seems misguided to use real driver be-haviors as a basis for learning cooperative lane selection.A more 
exible machine learning approach that iscapable of learning from general rewards instead of be-havioral examples has been termed reinforcement learn-ing. The rewards provide only a general measure of pro-�ciency over the task and do not explicitly direct thelearner toward any course of action. The learner adjustsits actions through trial and error interactions with theenvironment to maximize the reward signal. In the lane-selection problem, agents receive the rewards de�ned byequation 1 at speci�c time steps. In response, they adjusttheir lane-selection strategies using some reinforcementlearning algorithm to maximize the reward function.The literature includes two main types of approachto reinforcement learning. One class of methods learnthrough calculation of temporal di�erences (Sutton,1988; Watkins & Dayan, 1992; Kaelbling, Littman, &Moore, 1996) over rewards, which lets them acquire map-pings from state-action pairs onto expected values. An-other class of methods search more directly throughthe space of control policies (Grefenstette, Ramsey, &Schultz, 1990; Holland & Reitman, 1978; Moriarty &Miikkulainen, 1996; Whitley, Dominic, Das, & Ander-son, 1993; Wilson, 1994), often using evolutionary al-gorithms to this end. Our approach, to which we nowturn, relies on an evolutionary algorithm as the primarymechanism for reinforcement learning, but it also incor-porates a technique similar to temporal-di�erence learn-ing to handle smaller strategy re�nements.2.4 Machine Learning for Lane SelectionElsewhere (Moriarty & Langley, 1998), we have de-scribed our distributed learning system in detail, so herewe only review its main components. The system repre-sents its control knowledge as a feedforward neural net-work with one hidden layer, as depicted in Figure 3. Thisnetwork includes 16 input units, 12 hidden units, andthree output units, with full connections between adja-cent levels. The input nodes correspond to informationabout the car's current and desired speeds, as well as thespeeds of surrounding vehicles, whereas the output nodesspecify whether to stay in the current lane, to move left,or to move right. On each time step, the controller usesthe input values to compute activations for each outputnode, then selects the action with the highest activation.
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Figure 3 The input and outputs to the neural network for lane selection.The learning system relies on three interrelated mod-ules to determine the weights on the network's links, andthus to acquire robust controllers. The �rst component isSANE (Moriarty & Miikkulainen, 1996; Moriarty, 1997),which carries out genetic search through the space offeedforward networks, given a network architecture, byoperating at two distinct levels. At one level, the moduleretains a population of complete controllers, each de�nedas a collection of hidden-layer neurons. The second-levelpopulation consists of these individual neurons, each ofwhich specify the weights on their input and output links.Each member of the neuron population can appear inzero or more members of the controller population.SANE assign �tness to each candidate controller byconverting its encoding (stored as bit strings) into a com-plete neural network, then using that network in a sim-ulated tra�c environment for 400 seconds. The systemdetermines the �tness of a given controller by applyingequation 1 to traces of the tra�c behavior. SANE alsoassigns �tness to each candidate neuron based on the�tnesses of the controllers to which it contributes. Thealgorithm selectively applies genetic operators, such ascrossover, on members of each population to generatenew members, repeating the evaluation and generationprocess many times.The second learning module is responsible for seedingthe initial populations. Rather that starting SANE withrandom populations of controllers and neurons, the sys-tem initializes them with candidates that are likely to beuseful. The module accomplishes this feat by collectingbehavioral traces of the hand-written `polite' controllerthat we described earlier. These provide training casesthat take the form of sensor-action pairs, which the sys-

tem passes to a supervised algorithm (backpropagation)to learn weights that approximate the polite controller.The module repeats this process a number of times togenerate a collection of controllers and neurons that form25% of the two initial populations.As noted above, the SANE module evaluates the �t-ness of candidate controllers by running them in the sim-ulator for �xed time periods. Because the reward sig-nals generated by this scheme are infrequent, we addeda third learning module that relies on more immediatefeedback. After every ten simulated seconds, this com-ponent checks to determine if the overall tra�c perfor-mance has changed since the last measurement. If per-formance has improved substantially, it labels all actionstaken during this period as desirable; if performance hasworsened, it labels all invoked actions as undesirable. Ineither case, the module passes these actions (and theirassociated sensory inputs) to the backpropagation algo-rithm, which alters the controllers weights to either en-courage or discourage their use.Recall that the system's reward signal is based onequation 1, which assumes global information aboutoverall tra�c behavior. Clearly, such information is notcurrently available to actual cars or their drivers, but wepredict this will change as vehicles come to include posi-tioning devices and gain access to the Internet, which willlet them report their position and speed to a central facil-ity. For now, we have been forced to rely on a simulatedtra�c domain, which has also encouraged us to use ano�ine training regimen to collect accurate statistics overextended runs. However, the basic approach also lendsitself to online learning, though we expect the learningrate would decrease in this scenario.



3. Experimental EvaluationOur approach to distributed learning appears to o�era viable method for acquiring lane-selection strategiesand thus improving overall tra�c performance. How-ever, whether the method works in practice is an empir-ical question, and in this section we report experimentalstudies of the system's adaptive behavior.3.1 A Simulated Tra�c EnvironmentTo evaluate tra�c management through intelligent laneselection, we developed a simulator to model tra�c ona highway. For each car, the simulator updates the con-tinuous values of position, velocity, and acceleration atone second intervals. The acceleration and decelerationfunctions were set by visualizing tra�c performance un-der di�erent conditions and represent our best estimateof the behavior of actual drivers. We adjust acceleration(A) using the equation A(s) = 10s�0:5, where s repre-sents the current speed in miles per hour (m/h).Deceleration occurs at the rate of �2:0 m/h per sec-ond if the di�erence in speed from the immediate preced-ing car is greater than twice the number of seconds sepa-rating the two cars. In other words, if a car approaches aslower car, the deceleration point is proportional to thedi�erence in speed and the distance between the cars.If there is a large di�erence in speed, cars will deceler-ate sooner than if the speed di�erences are small. If thegap closes to two seconds, the speed is matched instan-taneously. The simulator allows lane changes only if thechange maintains a two-second gap between leading andfollowing cars.The simulated roadway is 3.3 miles long, but the topof each lane \wraps around" toroidally to the bottom,creating an in�nite stretch of roadway. We designed thesimulator as a tool to e�ciently evaluate di�erent lane-selection strategies, and thus it makes several assump-tions about tra�c dynamics. The current model makes�ve primary assumptions:{ all cars are the same size;{ all cars use the same acceleration rules;{ cars accelerate to and maintain their desired speed ifthere are no slower cars directly ahead;{ lane changes are instantaneous; and{ there are no curves, hills, on ramps, or exit ramps.Although none of these assumptions hold for real-worldtra�c, they do not appear crucial for evaluating the mer-its of intelligent lane selection, and removing them un-necessarily complicates the model. In future work, how-ever, we hope to expand our experiments to more realis-tic simulators such as SmartPATH (Eska�, 1996).During training, the learning system uses the traf-�c simulator to evaluate candidate lane-selection strate-gies. Each evaluation or trial lasts 400 simulated secondsand begins with a random dispersement of 200 cars over

three lanes on the 3.3 mile roadway. Desired speeds areselected randomly from a normal distribution with mean60 m/h and standard deviation 8 m/h. In each trial, thepercentage of smart cars is randomly selected from a uni-form distribution with a minimum percentage of 5%. Allother cars follow the sel�sh lane-selection strategy out-lined in Section 2.1.To simulate congestion caused by lane closures andmerging, we blocked portions of either the far right or farleft lanes during training. Lane closures last for one mileand only one closure exists at any given time. There isan equal probability that the far right or far left lane willbe blocked. A lane-selection strategy perceives a blockedlane as a car with a speed of zero.Each training run begins with a population of 75 ran-dom lane-selection strategies and 25 seeded strategies,which are modi�ed by SANE and the local learning mod-ule over 30 simulated driving hours. SANE keeps track ofthe best strategy found so far based on its performanceover a trial. When the system �nds a better strategy, itis saved to a �le for later testing. The saved strategiesare each tested over ten 2000-second trials and the bestis returned as the �nal strategy.We developed two hand-written controllers for use asbenchmarks and to provide the simulated environment.The polite controllers follow four rules:{ If your desired speed is 55 m/h or less and the rightlane is open, then change lanes to the right.{ If you are in the left lane, a car behind you has ahigher speed, and the right lane is open, then changelanes to the right.{ If a car in front of you has a slower current speedthan your desired speed and the left lane is open,then change lanes to the left.{ In the previous situation, if the left lane was not openbut the right lane is open, then change to the right.We based these rules on our interpretation of the \slowertra�c yield to the right" signs posted on the highways.The sel�sh strategy described earlier uses only the lasttwo rules.3.2 Evaluation of Intelligent Lane SelectionOur earlier studies (Moriarty & Langley, 1998) evalu-ated the learned controllers' behavior as we varied thedensity of tra�c and the ratio of learned to sel�sh con-trollers. The results, which showed reasonable behaviorover a wide range of densities and ratios, encouraged usto carry out additional additional studies to further testthe adaptive nature of the learned controllers.We designed our �rst experiment to evaluate the po-lite, sel�sh, and learned strategies in the presence oflane closures. Recall that, during training, we closed onemile of either the far left or far right lane and the loca-tion of the closure changed every 500 simulated seconds.We replicated lane closures in testing to determine each
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(b)Figure 4 Tra�c performance when portions of the lanes were blocked.strategy's ability to handle high congestion areas createdby the merging tra�c. The degree of merging in thesetests is extreme (a blocked lane every 13 miles), to fullytest the robustness of the three strategies.Figure 4 plots the mean squared error in desiredspeeds and the average number of lane changes withclosed lanes. Surprisingly, the polite strategy performedworse than the sel�sh one when lanes were blocked, whichdi�ered from our earlier results with no closures. Fig-ure 4(a) shows that, under a high degree of merging, itis better to act greedily than politely. The large errorsthat the polite strategy incurs come when portions ofthe rightmost lane are closed. Since the polite strategydirects all of its slow drivers into the right lane, it be-comes di�cult to merge them back into the two fasterlanes when this lane is blocked. This di�culty causeslarge bottlenecks in the right lane and creates high er-rors in desired speed. Since the sel�sh strategy assignsno lane bias based on driving speed, it is less a�ected byright lane closures.Although the learned strategy also directs its slowerdrivers to the right lane, its response to bottlenecks iseven more robust than the sel�sh scheme. Under thelearned strategy, faster drivers in the center and left lanesmaneuver to let slower drivers merge more easily, whicheases congestion. These seemingly altruistic behaviorswere learned because reinforcement comes from the ag-gregate tra�c performance. Additionally, the learnedcars have relative speed sensors that can detect slowspeeds in tra�c ahead. Thus, the learned strategy canmerge the cars much earlier than the polite strategy,which does not begin to merge until a slow car or closedlane forces it to decelerate. Overall, the learned strategyincurs substantially lower driving errors and performsonly a fraction of the lane change maneuvers as the othertwo strategies.

The second experiment evaluated the learned strat-egy's ability to adapt to four-lane highways. As notedin Section 2.2, we designed the controller input to ig-nore the car's actual lane, and the output to re
ect onlywhether the left or right lane is better than the cur-rent one. Thus, in principle an e�ective strategy learnedonly on a three-lane highway should perform well on fourlanes. Since the learning system only experienced three-lane highways in training, this experiment serves as an-other test of the learned strategy's adaptability.Figure 5 plots the error in driving speed and averagenumber of lane changes using four lanes of tra�c. Sincethere is more lane capacity, we need up to 600 cars inthis study. The �gure shows that the learned strategyachieves the same performance gains over the polite andsel�sh strategies in four lanes of tra�c as it does in threelanes. In dense tra�c, the learned strategy incurs onethird to one quarter of the driving speed error for thesel�sh strategy and one half of the error for the politestrategy. As with three lanes of tra�c, the polite andsel�sh strategies make substantially more lane changemaneuvers than the learned controller.Figure 6 provides a visualization of the lane utiliza-tion for the three strategies with four tra�c lanes us-ing 300 cars. This shows that the sel�sh strategy assignsno lane bias based on driving speed, whereas the politestrategy exhibits a sharp transition between slow andfast driving styles. The graph for the learned strategy isvery similar to its three-lane counterpart, giving furtherevidence that it generalizes to more than three lanes.With only three lanes, the learned strategy encum-bers the right lane with many slow drivers and uses theother lanes to organize the faster drivers. Under fourlanes of tra�c, however, the fastest drivers are placedmore consistently in the leftmost lane than under threelanes. For example, drivers with desired speeds of 80
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(b)Figure 5 Tra�c performance with four driving lanes; no lanes were blocked in this condition.m/h drive in the left lane 83% of the time with fourlanes of tra�c, compared to only 57% of the time withthree lanes. Most of the tra�c organization occurs inthe middle two lanes, with the middle-speed drivers. Thisstrategy seems reasonable, since the middle-speed driversmake two di�erent types of lane changes: passing slowcars and yielding to fast cars, and therefore must reor-ganize more frequently.4. Related and Future WorkOne can roughly divide research on communities of learn-ing agents into two broad categories. The �rst, oftencalled multi-agent learning , refers to situations in whichthe agents have shared goals and thus cooperate, eitherexplicitly or implicitly, to achieve those goals. Exam-ples of this approach include Schultz, Grefenstette, andAdams' (1996) work on multi-robot herding behavior,Matari�c's (1994) e�orts on foraging, in which four robotsacquire social rules that reduce disruption, Tan's (1993)studies of reinforcement learning among predators coop-erating to track down prey, and Sen and Sekaran's (1998)use of reinforcement learning to improve two-agent co-ordination in block pushing. Stone and Veloso (1997)present an extensive review of work on multi-agent learn-ing, including their own results on soccer playing, so wewill not try to be exhaustive here.Another category focuses on situations that involvemany agents, typically more than in multi-agent set-tings, each of which pursues its own goals. Research onsuch distributed learning seems less common than multi-agent work, but it also a bears a closer relation to ourown approach. Perhaps the best-known e�ort of this sortrevolves around Holland's (1996) Echo, a simulationframework designed to study the behavior of complex bi-ological systems, such as the interaction of plants, herbi-vores, and carnivores in an ecosystem (Schmitz & Booth,

1997). Schoonderwoerd, Holland, and Bruten (1997) usedistributed agents to balance loads in telecommunica-tions networks, but learning occurs only in the sense thatagents lay down ant-like trails to improve performance.Grand, Cli�, and Malhotra's (1997) work onCreaturesis more akin to our own work, with independent agentsthat exist in a simulated environment, receive rewards,and change their behaviors with experience.There does exist some work on machine learningfor tra�c control, but this has focused on learningfor individual driving agents. For example, Sukthankaret al. (1996) use reinforcement learning to acquire con-trol strategies for a vehicle that operates on a simulatedhighway among other cars controlled by hand-craftedstrategies. Similarly, McCallum (1996) reports a systemthat uses reinforcement learning to acquire a single-agentcontroller for `New York driving', which involves weav-ing around slower tra�c. There also exists a substantialliterature on more traditional approaches to tra�c man-agement that typically involve more centralized control,which we have reviewed in a separate paper (Moriarty &Langley, 1998).Although we have found no other work on distributedlearning in the tra�c domain, we remain excited aboutits potential as a fertile research testbed. In future work,we plan to improve our tra�c simulator to include dura-tive lane changes, entrance ramps, and exit ramps. Webelieve these additions will produce more realistic con-gestion patterns and thus increase the need for intelligentlane selection. The revised simulator will also let thevehicles increase or decrease their speed, which shouldprovide further improvements in tra�c 
ow, at least forlearned controllers.In the longer term, we envision an extended simula-tor that supports a network of interconnected highways.Each car would be given a destination and, to the extent
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(c)Figure 6 Utility of lanes with respect to desired speeds for the (a) sel�sh, (b) polite, and (c) learned strategies withfour tra�c lanes.that multiple routes are available, the controller will se-lect among routes just as it currently selects among lanes.This will require access to higher-level information aboutthe distribution of cars on the various highways, so thatthe distributed controllers can select routes that avoidcongestion. These variations on the task of distributedtra�c management should provide a rich set of problemsto drive our research in years to come.However, our research methodology should remainmuch the same, in that we will construct systems thatcontrol tra�c in a distributed manner and we will studythose systems' adaptive behavior under a variety of ex-perimental conditions. We invite other researchers to joinus in our exploration of an intriguing domain that re-mains poorly understood despite its relevance to our ev-eryday lives.AcknowledgementsWe would like to thank the anonymous reviewers for theirhelpful comments and Dan Shapiro for his evaluation oftra�c simulators.ReferencesCarrara, M., & Morello, E. Advanced control strategiesand methods for motorway of the future. In Thedrive project DOMINC: New concepts and researchunder way.Eska�, F. (1996). Modeling and simulation of the auto-mated highway system. Ph.D. thesis, Departmentof Electrical Engineering and Computer Science,University of California, Berkeley.Grand, S., Cli�, D., & Malhotra, A. (1997). Creatures:Arti�cial life autonomous software agents for homeentertainment. In Proceedings of the First Interna-tional Conference on Autonomous Agents, pp. 22{29. New York: ACM Press.
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