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Abstract

This paper presents a novel approach to traffic man-
agement by coordinating driver behaviors. Current
traffic management systems do not consider lane or-
ganization of the cars and only affect traffic flows by
controlling traffic signals or ramp meters. However,
drivers can increase traffic throughput and more con-
sistently maintain desired speeds by selecting lanes in-
telligently. We pose the problem of intelligent lane
selection as a challenging and potentially rewarding
problem for artificial intelligence, and we propose a
methodology that uses supervised and reinforcement
learning to form distributed control strategies. Initial
results are promising and demonstrate that intelligent
lane selection can achieve higher traffic throughput,
maximize desired speeds, and reduce the total num-
ber of lane changes.

Introduction

A large effort is under way by government and industry
in America, Europe, and Japan to develop intelligent
vehicle and highway systems (IVHS). These systems
incorporate ideas from artificial intelligence, intelligent
control, and decision theory, among others, to auto-
mate many aspects of driving and traffic control. The
goals of IVHS are quite broad and include increased
traffic throughput, fewer accidents, reduced fuel con-
sumption, and a better driving experience.

The work in this paper targets one component of
the overall task: the problem of managing traffic. Ad-
vanced traffic management systems are designed to re-
duce congestion and increase overall traffic throughput.
Almost all such systems maintain efficient traffic flows
by controlling traffic signals or highway ramp meters,
treating traffic as a single mass and normally ignor-
ing the behavior of individual cars (Gilmore, Elibiary,
& Forbes, 1994; Kagolanu, Fink, Smartt, Powell, &
Larson, 1995; Pooran, Tarnoff, & Kalaputapu, 1996).
This view, however, misses an important component
of traffic management: coordination of the cars them-
selves. Surprisingly, very little research has addressed
how the cars themselves can sense and intelligently af-
fect traffic flows. Drivers generate local behaviors such
as lane changes and speed control. These behaviors
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could be coordinated to better maintain desired speeds
and achieve greater traffic throughput.

Our view is that cars are not blind tokens, but
rather can sense their environment and act intelligently
and cooperatively to achieve a desired global behavior.
More specifically, cars can learn to organize themselves
by traffic lanes to increases overall traffic through-
put, reduce the average number of lane changes, and
maintain the desired speeds of the drivers. Intelligent
lane selection should therefore complement existing ef-
forts in advanced traffic management by providing bet-
ter throughput in between traffic signals and better-
defined driver behaviors for traffic-flow prediction.

A challenging problem for artificial intelligence and
machine learning lies in the development of cooperative
driving strategies for traffic management. This paper
explores one form of this problem: intelligent lane se-
lection. Each car receives local input of the surround-
ing traffic patterns and the desired speed of the driver,
then outputs the lane in which to drive. A car’s lane
selections should consider not only the maintenance of
its own desired speed, but also how the selection will
affect the speeds of other cars. In this way, the cars
should organize themselves into a cooperative system
that lets the fast drivers pass through, while still let-
ting the slow drivers maintain their speeds.

The work in this paper is exploratory in nature, and
follows Dietterich’s (1990) model for exploratory ma-
chine learning research. We formulate the problem
of traffic management from a car-centered, machine
learning perspective and present initial results of co-
operative lane selection.

Problem Definition

We recast the traffic management problem as a prob-
lem in distributed artificial intelligence, where each car
represents an individual agent in a multi-agent system.
Cars act on their world (highway) by selecting appro-
priate lanes to drive in. They interact with other cars
by competing for resources (spaces on the highway).
Each action is local in nature, and may not produce
any noticeable benefit to the car. Collectively, how-
ever, the local actions can improve the global perfor-



Figure 1: (a) An example traffic situation in which the traffic flows from left to right and the number on each car
shows the car’s speed. (b) Traffic after reorganization in which car 75 and 65 swap lanes.

mance of the traffic. For example, yielding a lane to
a faster car does not produce any local benefit to the
slower car, but does increase the overall traffic through-
put and let the passing car maintain its desired speed.

Figure 1(a) illustrates a situation where lane coor-
dination 1s beneficial. The figure illustrates five cars
along with their speeds, which will be used as identi-
fiers. Car 72 is approaching car 65 and is unable to
pass because of the position of car 67. Without reor-
ganization, car 65 forces car 72 to reduce its speed and
wait for car 67 to pass car 65, which will decrease traf-
fic throughput and car 72’s satisfaction. A solution is
for car 75 and car 65 to swap lanes, followed by car 65
moving into the bottom lane. This maneuver ensures
that no speeds are reduced and no throughput is lost.

Global traffic performance could be defined in many
different ways. Governments want high traffic through-
put, whereas drivers want to maintain desired speeds
with few lane changes. We selected the driver-oriented
metric, since drivers are likely to be the harshest crit-
ics of cooperative driving. The performance function P
we devised for a set of cars C'is given by the equation:

P(C) — Z?:l Zi\;l(szat — Sflt)z _ 60 Zi\;l L; (1)
TN ™

where T is the total time steps (in seconds), N is the
number of cars, S¢ is the desired speed of car 7 at time
t, 5% 1s the actual speed of car ¢ at time ¢, and L; is
the total number of lane changes for car ¢ over 7" time
steps. The goal is to minimize the difference between
actual speeds and desired speeds averaged over several
time steps and over all cars. Each speed difference is
squared to penalize extreme behavior. For example,
driving 60 m/h 90% of the time and 10 m/h 10% of
the time gives an average of 55 m/h but is clearly less
desirable than driving 56 m/h 50% and 54 m/h 50%
of the time, which also gives an average of 55 m/h.
To discourage excessive lane changes, the performance
function is adjusted by subtracting the number of lane
changes per minute averaged over all cars.

The problem is thus to find a strategy or a set of
strategies to maximize equation 1. A naive strategy

for each car, which most traffic management systems
assume, 1s to select the lane that lets it most consis-
tently achieve its desired speed and only change lanes if
a slower car is encountered. The disadvantage of such a
strategy is that it does not take into account the global
criteria of traffic performance. A slow car should not
drive in the “fast” lane simply because it can maintain
its desired speed. We will refer to cars that employ
the naive strategy as selfish cars, since they maximize
the local performance of their respective car. We are
interested in strategies that maximize the aggregate
performance of traffic. Cars that employ cooperative
selection strategies will be termed smart cars.

Ideally, the smart cars should coexist with current
drivers on the highways. This situation poses inter-
esting research questions. How many smart drivers
are necessary to make cooperation worthwhile? How
quickly does the system break down when selfish
drivers are introduced in the system? The experi-
mental evaluation section presents some evidence that,
even in distributions as high as 95% selfish cars, coop-
erative lane selection can improve traffic performance.

Communication and Coordination

The previous section defined the problem of car-
centered traffic management, but left open some im-
portant issues in designing a distributed artificial in-
telligence system for traffic management. Specifically,
we left open the level of communication between the
cars and the amount of knowledge available on other
cars’ state. The multi-agent literature is often divided
on these matters, and we feel that it is not central to
the problem definition. Here we describe our assump-
tions about communication and state information.
We assume that cars have access to information on
their own state, including knowledge of their current
driving speed and the driver’s desired speed. One could
imagine a driver specifying desired speeds at the start
of a trip, or the system could infer this information
from the driver’s historical behavior. We also assume
that cars can perceive limited state information of sur-
rounding cars, such as their relative speeds. The sys-
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Figure 2: An illustration of the input to each car.

tem could sense this information using radar or receive
it directly from other cars via radio waves or the In-
ternet. Cars should also sense which surrounding cars
are cooperative and which are selfish.

Figure 2 illustrates the input for a car in a specific
traffic situation. The middle car receives as input its
current speed, its desired speed, the relative speeds
of surrounding traffic, and whether surrounding cars
are cooperative or selfish. The range and granularity
of the relative speed inputs could be adjusted to take
into account both local traffic and upcoming traffic.

Note that the cars only receive a partial view of the
overall traffic situation. Another design option is to
give all of the cars complete information of all other
cars and treat the problem as a global optimization
problem. We selected the local input representation for
two reasons. First, we believe that it 1s more realistic
to agsume that only local traffic infomation is available.
Second, we believe that a local policy will provide more
effective generalization across different highways.

We assume that the controller’s output consists of
three options: (1) stay in the current lane, (2) change
lanes to the left, or (3) change lanes to the right. The
output does not specify the best lane to drive in, but
rather whether the lanes immediately left or immedi-
ately right are better than the current lane. This con-
trol provides flexibility, since it does not depend on the
number of lanes on the roadway or knowledge of the
current driving lane.

We assume that the controller’s output represents a
ranking of the three possible choices, with the highest
ranked choice that is both valid and safe selected as
the car’s next action. For a choice to be valid, there
must be a lane available in the specified direction. For
a choice to be safe, there must not be a car in the same
longitudinal position in the new lane. We assume that
it 1s always safe to remain in the current lane.

Another important issue concerns the representa-
tion of the different types of lane-selection strategies.
Clearly, different types of drivers should select lanes
differently. Slower drivers will normally change lanes to
create openings for faster traffic. Faster drivers change
lanes to pass through slower traffic. Maintaining ex-
plicit control policies for each type of driver, however,
requires a priori knowledge of the number of driver
types and the boundaries that separate them. We
chose instead to maintain a single control policy which
takes as input the type of driver (desired speed input).
Each car thus contains the same control policy, but
since it receives driving style as input, it behaves dif-
ferently for different drivers.

Learning Distributed Control Strategies

Creating distributed lane-changing controllers by hand
appears quite difficult. It is unclear whether experts
exist in this domain and, even if they do, experts of-
ten find 1t difficult to verbalize complex control skills,
which creates a knowledge acquisition bottleneck. Also,
the innumerable traffic patterns and varying driving
styles create a very large problem space. Even with
significant expert domain knowledge, hand crafting a
controller that operates effectively in all areas of the
problem space may not be feasible.

Our solution is to apply machine learning to develop
controllers through experience with the domain. Un-
fortunately, the lane-selection problem appears out of
reach of the more standard, supervised machine learn-
ing methods. Supervised learning would require ex-
amples of correct lane decisions, which are difficult to
obtain without expert domain knowledge. We also do
not want to mimic real drivers, since we believe that
drivers do not currently select lanes cooperatively.

We chose a multi-level learning approach that capi-
talizes on the available domain knowledge, but is also
flexible enough to learn under sparse reinforcements.
The learning system consists of three main compo-
nents: reinforcement learning using SANE, supervised
learning from pre-existing domain knowledge, and a
local learning strategy that is similar in spirit to tem-
poral difference methods. Figure 3 illustrates the in-
teraction of the different learning methods, which are
described in the next three sections.

Reinforcement Learning using SANE

The backbone of the learning system is the SANE rein-
forcement learning method (Moriarty & Miikkulainen,
1996; Moriarty, 1997). This section gives a brief out-
line of SANE and its advantages; the aforementioned
references provide more detailed information.

SANE (Symbiotic, Adaptive Neuro-Evolution) was
designed as an efficient method for forming decision
strategies in domains where it is not possible to gen-
erate training data for normal supervised learning.
SANE maintains a population of possible strategies,
evaluates the goodness of each from its performance
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Figure 3: The organization and interaction of the dif-
ferent learning modules.

in the domain, and uses an evolutionary algorithm to
generate new strategies. The evolutionary algorithm
modifies the strategies through genetic operators like
selection, crossover, and mutation (Goldberg, 1989).

SANE represents its decision strategies as artifi-
cial neural networks that form a direct mapping from
sensors to decisions and provide effective generaliza-
tion over the state space. The evolutionary algorithm
searches the space of hidden neuron definitions, where
each hidden neuron defines a set of weighted connec-
tions between a fixed input and fixed output layer. In
other words, SANE evolves all of the connections and
weights between the hidden layer and the input and
output layers in a three-layer network.

SANE offers two important advantages for reinforce-
ment learning that are normally not present in other
implementations of neuro-evolution. First, it decom-
poses the search for complete solutions into a search
for partial solutions. Instead of searching for complete
neural networks all at once, solutions to smaller prob-
lems (good neurons) are evolved, which can be com-
bined to form effective full solutions ( neural networks).
In other words, SANE effectively performs a problem
reduction search on the space of neural networks.

Second, the system maintains diverse populations.
Unlike the canonical evolutionary algorithm that con-
verges the population on a single solution, SANE forms
solutions in an unconverged population. Because sev-
eral different types of neurons are necessary to build
an effective neural network, there is inherent evolution-
ary pressure to develop neurons that perform different
functions and thus maintain several different types of
individuals within the population. Diversity lets re-
combination operators such as crossover continue to
generate new neural structures even in prolonged evo-
lution. This feature helps ensure that the solution
space will be explored efficiently throughout the learn-

ing process.

SANE represents each lane-selection strategy as a
neural network that maps a car’s sensory input into a
specific lane-selection decision. Each network consists
of 18 input units, 12 hidden units, and 3 output units.
A network receives input on the car’s current and de-
sired speeds and the speeds of surrounding traffic, and
it outputs a ranking of the three possible choices.

A strategy is evaluated by placing it in a traffic sim-
ulator and allowing it to make lane changes in a certain
percentage of the cars. Each strategy is evaluated in-
dependently of other strategies in the population. The
fitness of a strategy is measured using equation 1 after
some number of simulated seconds. SANE uses these
evaluations to bias its genetic selection and recombi-
nation operations towards the more profitable lane-
selection strategies.

Incorporating Domain Knowledge

The second learning component capitalizes on pre-
existing domain knowledge and gives SANE a good
starting set of initial strategies. Although expert in-
formation 1s difficult to obtain in this problem, general
rules of thumb are not. For example, one good heuris-
tic specifies that a very slow driver should in general
not drive in the far left lane. Supervised learning from
these general rules will not generate optimal lane se-
lection strategies, but it can give the learning system
a good head start towards intelligent behavior.

The population seeder applies such heuristics in the
traffic simulator and generates a series of input and
output pairs, which represent decisions made from the
rules of thumb based on specific sensory input. These
pairs denote examples of good behavior that can be fed
to a supervised learning method to form initial strate-
gies. Since SANE’s strategies are represented as neural
networks, the population seeder employs the backprop-
agation algorithm (Rumelhart, Hinton, & Williams,
1986) to train the networks over the training examples.
To maintain diversity within the initial population of
neural networks and not overly bias SANE toward the
rules of thumb, only a subset of the networks are seeded
using the default knowledge. In practice, we seed 25%
of the initial population.

We used four rules to seed SANE’s population of
strategies:

o If your desired speed is 55 m/h or less and the right
lane is open, then change lanes right

e If you are in the left lane, a car behind you has a
higher speed, and the right lane is open, then change
lanes right

e If a car in front of you has a slower current speed
than your desired speed and the left lane is open,
then change lanes left.

e In the previous situation, if the left lane was not
open but the right lane is, then change lanes right.



These rules are based on our interpretation of the
“slower traffic yield to the right” signs posted on the
highways. We will refer to this strategy hereafter as the
polite strategy. The selfish strategy described earlier in
the paper operates using only the last two rules.

Local Learning

We also implemented a local learning module that, like
the population seeder, was included to increase learn-
ing efficiency and thereby reduce the amount of sim-
ulation time necessary to form good strategies. Lo-
cal learning occurs during the evaluation of a lane-
selection strategy and makes small refinements to the
strategy based on immediate rewards or penalties. A
reward or positive training signal is given if there is a
significant increase in traffic performance and a penalty
or negative training signal is given if there 1s a sig-
nificant decrease. In practice, traffic performance is
sampled every 10 simulated seconds and a reward or
penalty is generated if the difference in performance
from equation 1 is larger than 10.

If a training signal is generated, all actions per-
formed in the sampling interval are considered respon-
sible. If the signal is positive, each of those actions is
reinforced. If it is negative, they are punished. Rein-
forcement and punishment are achieved by backpropa-
gating error signals associated with the network’s acti-
vation in that situation and a training example derived
from the training signal. For example, reinforcement
on a change left decision would create a training exam-
ple of the previous input paired with the target output
(0.0, 1.0, 0.0). The targets of stay center and change
right are 0.0 and change left is 1.0. Using the standard
backpropagation procedure, the weights are updated
based on this training example and the resulting net-
work is more likely to choose change left in a similar
situation. A negative training signal in the previous
example would generate a target output of (1.0, 0.0,
1.0), and the resulting network would be less likely to
choose change left in similar situations.

The learning strategy i1s somewhat similar to the
temporal difference methods for reinforcement learn-
ing (Sutton, 1988), in that updates are made based on
the performance differences over successive time peri-
ods. However, temporal difference methods treat per-
formance differences as prediction errors from which
they can learn to predict future rewards. Our local
learning component uses the differences to determine
whether to reinforce or penalize specific decisions. A
temporal difference method could also be used as a
local learning component in our framework, and we
expect to evaluate this approach in the near future.

Experimental Evaluation

Intelligent lane selection appears to offer important ad-
vantages for traffic control and our learning approach
appears to be a plausible methodology to generate the

selection strategies. In this section, we test these hy-
potheses in a simulated traffic environment.

A Simulated Traffic Environment

To evaluate intelligent lane selection, we developed a
simulator to model traffic on a highway. For each car,
the simulator updates the continuous values of posi-
tion, velocity, and acceleration at one second intervals.
The acceleration and deceleration functions were set
by visualizing traffic performance under different con-
ditions and represent our best estimate of the behavior
of actual drivers. Acceleration (A) is adjusted based
on the equation A(s) = 10s~%5 where s represents the
current speed in miles per hour (m/h).

Deceleration occurs at the rate of -2.0 m/h per sec-
ond if the difference in speed from the immediate pre-
ceding car is greater than twice the number of sec-
onds separating the two cars. In other words, if a car
approaches a slower car, the deceleration point is in
proportion to the difference in speed and the distance
between the cars. If there is a large difference in speed,
cars will decelerate sooner than if the speed differences
are small. If the gap closes to two seconds, the speed
1s matched instantaneously. Lane changes are only al-
lowed if the change maintains a two-second gap be-
tween preceding and following cars.

The simulated roadway is 3.3 miles long, but the
top of each lane “wraps around” to the bottom, creat-
ing an infinite stretch of roadway. The simulator was
designed as a tool to efficiently evaluate different lane-
selection strategies and thus makes several simplifying
assumptions about traffic dynamics. The primary as-
sumptions in the current model are that:

e cars are the same size;
e cars use the same acceleration rules;

e cars accelerate to and maintain their desired speed
if there are no slower, preceding cars;

Although these assumptions do not hold for real traf-
fic, they are also not crucial to evaluate the merits of
intelligent lane selection. Removing these assumptions
unnecessarily complicates the model, which creates un-
acceptable run times for exploratory research. In fu-
ture work, we will expand our experiments to a more
realistic simulator such as SmartPATH (Eskafi, 1996).

During training, the learning system uses the traffic
simulator to evaluate candidate lane-selection strate-
gies. Each evaluation or #rial lasts 400 simulated sec-
onds and begins with a random dispersement of 200
cars over three lanes on the 3.3 mile roadway. Desired
speeds are selected randomly from a normal distribu-
tion with mean 60 m/h and standard deviation 8 m/h.
In each trial, the percentage of smart cars is random
with a minimum percentage of 5%. All other cars fol-
low the selfish lane selection strategy.

Each training run begins with a population of 75 ran-
dom lane selection strategies and 25 seeded strategies,
which are modified by SANE and the local learning
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Figure 4: Speed error using different lane selection
strategies under different traffic densities.

module over 30 simulated driving hours. SANE keeps
track of the best strategy found so far based on its per-
formance over a trial. When a better strategy is found,
it 1s saved to a file for later testing. The saved strate-
gies are each tested over ten 2000-second trials and the
best is considered the final strategy of the training run.

Experiment 1: Traffic Densities

The first study compares the performance of traffic
under different traffic densities using three different
lane-selection schemes: a selfish strategy, a polite strat-
egy, and the learned strategy. The selfish and polite
strategies operate as described previously in this pa-
per. The learned strategy is the best strategy from the
five training runs. Here we are not interested in the
aggregate performance over several learning runs, but
rather in the performance of a single learned strategy
that could be used in traffic. Experiments in (Tech.
report reference omitted to ensure anonymity) more
thoroughly evaluate the learning system and present
learning curves averaged over all training runs.

Strategies were tested over car densities of 50 to 400
cars per 3.3 miles and performance was measured over
20 simulations at each density. In this experiment, all
cars on the highway in a given condition employed the
same strategy.

Figure 4 shows the error in driving speed for the self-
ish, polite, and learned strategy under different traffic
densities. The error is computed from the first term in
equation 1 and represents the average squared differ-
ence between actual speeds and desired speeds in m/h.
The figure shows the clear advantage of the learned
strategy. In sparse traffic (50-100 cars), the perfor-
mance of the three strategies is comparable; however,
in more dense traffic, the learned strategy produces
significantly lower divergence from desired speeds. At
a density of 200 cars, the learned strategy incurs only
a quarter of the error of the selfish strategy and less
than half the error of the polite strategy. The self-
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Figure 5: Average number of lane changes using dif-
ferent lane selection strategies under different traffic
densities.

ish strategy error grows faster in dense traffic than
the polite and learned strategies, because of the many
bottlenecks generated by the unyielding, slow drivers.
The polite strategy solves many of these bottlenecks by
moving slower drivers to the right, but still maintains
a error of at least 20 m/h? over the learned strategy.

Figure 5 plots the average number of lane changes
per car under each strategy. There is a large contrast in
behavior between the polite and learned strategy. Even
in very sparse traffic, the polite strategy produces over
twice as many lane changes as the learned strategies.
In heavy traffic, the polite strategy calls for almost
nine times as many lane changes. The learned strate-
gies reach a maximum lane change rate of 0.35 changes
per minute, whereas the polite strategy reaches 1.53
lane changes per minute. The selfish strategy gener-
ates fewer lane changes than the polite strategy, since
it does not have a yielding component; however, it still
generates over five times as many lane changes as the
learned strategy in denser traffic. Thus, compared to
both the selfish and polite strategy, the learned strat-
egy makes far fewer lane maneuvers, which should in-
crease driver acceptance of intelligent lane selection
and hopefully reduce accident rates.

Figure 6 provides a visualization of lane utilization
under the different selection strategies for a density of
200 cars. Each graph represents an average over 20
simulations of the percentage of time a driver with a
given desired speed spends in each lane. The selfish
strategy, shown in Figure 6(a), assigns no lane bias
to faster or slower drivers, and thus drivers at dif-
ferent speeds are spread across all three lanes fairly
evenly. The polite strategy, in Figure 6(b), does bias
slow drivers towards the right lane and fast drivers
towards the left lane, but does so with a rigid parti-
tion at 55 m/h. Thus, a car with a desired speed of 54
m/h behaves quite differently than a car with a desired
speed of 56 m/h. This partition comes from the polite



LITILTTTT
Left Lane

I Center Lane
Right Lane

Left Lane Left Lane
Center Lane Center Lane
Right Lane Right Lane

40.0 50.0 60.0 70.0 80.0 40.0 50.0 60.0

Desired Speed (m/h)

(a) (b)

Desired Speed (m/h)

70.0 80.0 40.0 50.0 60.0 70.0 80.0
Desired Speed (m/h)

()

Figure 6: Utility of lanes with respect to desired speeds for the (a) selfish, (b) polite, and (c) learned strategies.
The graph shows the percentage of time that cars drive in the left, center, and middle lanes as a function of desired
speeds. These tests used a traffic density of 200 cars per 3.3 miles.

Left Lane Center Lane Right Lane
Selfish 0.35 0.35 0.30
Polite 0.35 0.26 0.39
Learned 0.25 0.27 0.48

Table 1: The distribution of traffic for the three lane
selection strategies.

rule that moves cars traveling slower than 55 m/h to
the right lane. The learned strategy, in Figure 6(c),
produces a much smoother lane utilization bias.

Another contrast between the three strategies lies
in the overall utilization of the three lanes across all
speeds. Table 1 shows the overall lane distribution for
all cars. The learned strategy has a significant bias
towards the right lane and places almost half of the
cars there. This organization seems reasonable and
quite effective since slower cars encounter fewer slower
preceding cars and should operate more efficiently in
higher traffic density than faster cars. The learned
lane-selection strategy essentially moves half of the
traffic to the right lane and uses the middle and left
lanes to organize the faster traffic. It is also important
to note from Figure 6 that the faster cars do appear in
the right lane, but the slower cars never appear in the
left lane. The likely reason is that a slow car in the left
lane causes large disruptions to traffic flow, whereas a
fast car in the right lane will normally only disrupt its
own performance.

Experiment 2: Mixing Strategies

The second experiment evaluated the learned strategy
in the presence of selfish cars. The aim was to exam-
ine the robustness of the smart car’s group behavior to
cars that do not follow the same rules. We were inter-
ested in how quickly the learned strategy degrades as
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Figure 7: The average squared error of smart and self-
ish cars under different smart car distributions. These
tests used 200 cars.

selfish drivers are added and how many smart cars are
necessary to make cooperative behavior worthwhile.
Figure 7 shows the error in driving speeds under dif-
ferent smart car distributions. The figure plots the
speed error for both the smart cars and the selfish cars
and 1llustrates how the performance of both increases
with the introduction of more smart cars. The figure
shows that, even at distributions as low as 5% smart
cars, there is incentive to cooperate. At 100% self-
ish traffic, cars average a 36.80 m/h? driving error,
while at 95% selfish traffic the error drops to 34.40
m/h?. While this is not a substantial improvement it
demonstrates that very few smart cars are necessary to
generate an increase in traffic performance. Moreover,
performance improves steadily as more cars cooperate,
which provides further motivation to drive coopera-
tively. Finally, at 100% smart cars the average speed



error drops to 9.66 m/h?, which is approximately one
fourth of the error when all traffic is selfish.

Related Work

Intelligent lane selection appears to be a novel ap-
proach to traffic management that has received almost
no attention in the traffic management literature. Af-
ter a lengthy literature search and several email in-
quiries, we have found only one project with simi-
lar goals. Carrara and Morello have proposed a sys-
tem called DOMINC that employs cooperative driving
techniques to increase traffic efficiency.! The main ob-
jective of the DOMINC project 1s to explore the ben-
efits 1n traffic efficiency, comfort, and safety of coop-
erative driving. The project’s vision is thus very close
to our formulation of car-centered traffic management.
However, the paper that we have only describes the po-
tential benefits and does not propose a specific method-
ology for cooperative driving.

There are a number of systems designed to learn
lane selection for a single-agent, non-cooperative sys-
tem. McCallum (1996) used reinforcement learning to
train a driving agent to weave around traffic, a task
that he calls “New York driving”. Sukthankar, Baluja,
and Hancock (1997) used an approach similar to evo-
lutionary algorithms to form a voting scheme that de-
termines the appropriate driving lane and speed for
a single car. Finally, the Bayesian Automated Taxi
(BAT) project, an attempt to build a fully automated
vehicle that can drive in normal traffic (Forbes, Huang,
Kanazawa, & Russell, 1995), will eventually contain a
module for lane selection. Each of these systems were
designed to maximize the performance of a single ve-
hicle and do not form cooperative controllers. Our
approach is directed at the global traffic management
problem, where cooperation is important.

Summary and Conclusions

Coordination of local car behaviors is a novel approach
to traffic management that poses a challenging prob-
lem to both artificial intelligence and machine learn-
ing. In this paper, we proposed one formulation of this
problem: intelligent lane selection to maintain desired
driving speeds and reduce lane changes. Given only
information on the local traffic patterns and the de-
sired speed, cars can coordinate local lane changes to
let faster traffic pass through while still allowing slower
traffic to maintain desired speeds.

We described and evaluated an approach that uses
supervised and reinforcement learning to generate the
lane-selection strategies through trial and error inter-
actions with the traffic environment. Compared to
both a selfish strategy and the standard “yield to
the right” strategy, the smart cars maintained speeds
closer to the desired speeds of their drivers while mak-
ing fewer lane changes. Additionally, intelligent lane

!The paper that we have does not include a reference.

selection was shown robust in the presence of selfish
drivers. Traffic performance improves even when as
few as five percent of the cars cooperate. Future work
will explore more realistic traffic and driver models, as
well as variations on the coordination task.
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