
Learning Cooperative Lane Selection Strategies for HighwaysDavid E. MoriartyInformation Sciences InstituteUniversity of Southern California4676 Admiralty WayMarina Del Rey, CA 90292moriarty@isi.edu Pat LangleyDaimler-Benz Research and Technology Center1510 Page Mill RoadPalo Alto, CA 94304langley@rtna.daimlerbenz.comAbstractThis paper presents a novel approach to tra�c man-agement by coordinating driver behaviors. Currenttra�c management systems do not consider lane or-ganization of the cars and only a�ect tra�c ows bycontrolling tra�c signals or ramp meters. However,drivers can increase tra�c throughput and more con-sistently maintain desired speeds by selecting lanes in-telligently. We pose the problem of intelligent laneselection as a challenging and potentially rewardingproblem for arti�cial intelligence, and we propose amethodology that uses supervised and reinforcementlearning to form distributed control strategies. Initialresults are promising and demonstrate that intelligentlane selection can achieve higher tra�c throughput,maximize desired speeds, and reduce the total num-ber of lane changes.IntroductionA large e�ort is under way by government and industryin America, Europe, and Japan to develop intelligentvehicle and highway systems (IVHS). These systemsincorporate ideas from arti�cial intelligence, intelligentcontrol, and decision theory, among others, to auto-mate many aspects of driving and tra�c control. Thegoals of IVHS are quite broad and include increasedtra�c throughput, fewer accidents, reduced fuel con-sumption, and a better driving experience.The work in this paper targets one component ofthe overall task: the problem of managing tra�c. Ad-vanced tra�c management systems are designed to re-duce congestion and increase overall tra�c throughput.Almost all such systems maintain e�cient tra�c owsby controlling tra�c signals or highway ramp meters,treating tra�c as a single mass and normally ignor-ing the behavior of individual cars (Gilmore, Elibiary,& Forbes, 1994; Kagolanu, Fink, Smartt, Powell, &Larson, 1995; Pooran, Tarno�, & Kalaputapu, 1996).This view, however, misses an important componentof tra�c management: coordination of the cars them-selves. Surprisingly, very little research has addressedhow the cars themselves can sense and intelligently af-fect tra�c ows. Drivers generate local behaviors suchas lane changes and speed control. These behaviors

could be coordinated to better maintain desired speedsand achieve greater tra�c throughput.Our view is that cars are not blind tokens, butrather can sense their environment and act intelligentlyand cooperatively to achieve a desired global behavior.More speci�cally, cars can learn to organize themselvesby tra�c lanes to increases overall tra�c through-put, reduce the average number of lane changes, andmaintain the desired speeds of the drivers. Intelligentlane selection should therefore complement existing ef-forts in advanced tra�c management by providing bet-ter throughput in between tra�c signals and better-de�ned driver behaviors for tra�c-ow prediction.A challenging problem for arti�cial intelligence andmachine learning lies in the development of cooperativedriving strategies for tra�c management. This paperexplores one form of this problem: intelligent lane se-lection. Each car receives local input of the surround-ing tra�c patterns and the desired speed of the driver,then outputs the lane in which to drive. A car's laneselections should consider not only the maintenance ofits own desired speed, but also how the selection willa�ect the speeds of other cars. In this way, the carsshould organize themselves into a cooperative systemthat lets the fast drivers pass through, while still let-ting the slow drivers maintain their speeds.The work in this paper is exploratory in nature, andfollows Dietterich's (1990) model for exploratory ma-chine learning research. We formulate the problemof tra�c management from a car-centered, machinelearning perspective and present initial results of co-operative lane selection.Problem De�nitionWe recast the tra�c management problem as a prob-lem in distributed arti�cial intelligence, where each carrepresents an individual agent in a multi-agent system.Cars act on their world (highway) by selecting appro-priate lanes to drive in. They interact with other carsby competing for resources (spaces on the highway).Each action is local in nature, and may not produceany noticeable bene�t to the car. Collectively, how-ever, the local actions can improve the global perfor-
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55 (b)Figure 1: (a) An example tra�c situation in which the tra�c ows from left to right and the number on each carshows the car's speed. (b) Tra�c after reorganization in which car 75 and 65 swap lanes.mance of the tra�c. For example, yielding a lane toa faster car does not produce any local bene�t to theslower car, but does increase the overall tra�c through-put and let the passing car maintain its desired speed.Figure 1(a) illustrates a situation where lane coor-dination is bene�cial. The �gure illustrates �ve carsalong with their speeds, which will be used as identi-�ers. Car 72 is approaching car 65 and is unable topass because of the position of car 67. Without reor-ganization, car 65 forces car 72 to reduce its speed andwait for car 67 to pass car 65, which will decrease traf-�c throughput and car 72's satisfaction. A solution isfor car 75 and car 65 to swap lanes, followed by car 65moving into the bottom lane. This maneuver ensuresthat no speeds are reduced and no throughput is lost.Global tra�c performance could be de�ned in manydi�erent ways. Governments want high tra�c through-put, whereas drivers want to maintain desired speedswith few lane changes. We selected the driver-orientedmetric, since drivers are likely to be the harshest crit-ics of cooperative driving. The performance function Pwe devised for a set of cars C is given by the equation:P (C) = PTt=1PNi=1(Sait � Sdit)2TN � 60PNi=1 LiTN ; (1)where T is the total time steps (in seconds), N is thenumber of cars, Sdit is the desired speed of car i at timet, Sait is the actual speed of car i at time t, and Li isthe total number of lane changes for car i over T timesteps. The goal is to minimize the di�erence betweenactual speeds and desired speeds averaged over severaltime steps and over all cars. Each speed di�erence issquared to penalize extreme behavior. For example,driving 60 m=h 90% of the time and 10 m=h 10% ofthe time gives an average of 55 m=h but is clearly lessdesirable than driving 56 m=h 50% and 54 m=h 50%of the time, which also gives an average of 55 m=h.To discourage excessive lane changes, the performancefunction is adjusted by subtracting the number of lanechanges per minute averaged over all cars.The problem is thus to �nd a strategy or a set ofstrategies to maximize equation 1. A naive strategy

for each car, which most tra�c management systemsassume, is to select the lane that lets it most consis-tently achieve its desired speed and only change lanes ifa slower car is encountered. The disadvantage of such astrategy is that it does not take into account the globalcriteria of tra�c performance. A slow car should notdrive in the \fast" lane simply because it can maintainits desired speed. We will refer to cars that employthe naive strategy as sel�sh cars, since they maximizethe local performance of their respective car. We areinterested in strategies that maximize the aggregateperformance of tra�c. Cars that employ cooperativeselection strategies will be termed smart cars.Ideally, the smart cars should coexist with currentdrivers on the highways. This situation poses inter-esting research questions. How many smart driversare necessary to make cooperation worthwhile? Howquickly does the system break down when sel�shdrivers are introduced in the system? The experi-mental evaluation section presents some evidence that,even in distributions as high as 95% sel�sh cars, coop-erative lane selection can improve tra�c performance.Communication and CoordinationThe previous section de�ned the problem of car-centered tra�c management, but left open some im-portant issues in designing a distributed arti�cial in-telligence system for tra�c management. Speci�cally,we left open the level of communication between thecars and the amount of knowledge available on othercars' state. The multi-agent literature is often dividedon these matters, and we feel that it is not central tothe problem de�nition. Here we describe our assump-tions about communication and state information.We assume that cars have access to information ontheir own state, including knowledge of their currentdriving speed and the driver's desired speed. One couldimagine a driver specifying desired speeds at the startof a trip, or the system could infer this informationfrom the driver's historical behavior. We also assumethat cars can perceive limited state information of sur-rounding cars, such as their relative speeds. The sys-
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Figure 2: An illustration of the input to each car.tem could sense this information using radar or receiveit directly from other cars via radio waves or the In-ternet. Cars should also sense which surrounding carsare cooperative and which are sel�sh.Figure 2 illustrates the input for a car in a speci�ctra�c situation. The middle car receives as input itscurrent speed, its desired speed, the relative speedsof surrounding tra�c, and whether surrounding carsare cooperative or sel�sh. The range and granularityof the relative speed inputs could be adjusted to takeinto account both local tra�c and upcoming tra�c.Note that the cars only receive a partial view of theoverall tra�c situation. Another design option is togive all of the cars complete information of all othercars and treat the problem as a global optimizationproblem. We selected the local input representation fortwo reasons. First, we believe that it is more realisticto assume that only local tra�c infomation is available.Second, we believe that a local policy will provide moree�ective generalization across di�erent highways.We assume that the controller's output consists ofthree options: (1) stay in the current lane, (2) changelanes to the left, or (3) change lanes to the right. Theoutput does not specify the best lane to drive in, butrather whether the lanes immediately left or immedi-ately right are better than the current lane. This con-trol provides exibility, since it does not depend on thenumber of lanes on the roadway or knowledge of thecurrent driving lane.We assume that the controller's output represents aranking of the three possible choices, with the highestranked choice that is both valid and safe selected asthe car's next action. For a choice to be valid, theremust be a lane available in the speci�ed direction. Fora choice to be safe, there must not be a car in the samelongitudinal position in the new lane. We assume thatit is always safe to remain in the current lane.

Another important issue concerns the representa-tion of the di�erent types of lane-selection strategies.Clearly, di�erent types of drivers should select lanesdi�erently. Slower drivers will normally change lanes tocreate openings for faster tra�c. Faster drivers changelanes to pass through slower tra�c. Maintaining ex-plicit control policies for each type of driver, however,requires a priori knowledge of the number of drivertypes and the boundaries that separate them. Wechose instead to maintain a single control policy whichtakes as input the type of driver (desired speed input).Each car thus contains the same control policy, butsince it receives driving style as input, it behaves dif-ferently for di�erent drivers.Learning Distributed Control StrategiesCreating distributed lane-changing controllers by handappears quite di�cult. It is unclear whether expertsexist in this domain and, even if they do, experts of-ten �nd it di�cult to verbalize complex control skills,which creates a knowledge acquisition bottleneck. Also,the innumerable tra�c patterns and varying drivingstyles create a very large problem space. Even withsigni�cant expert domain knowledge, hand crafting acontroller that operates e�ectively in all areas of theproblem space may not be feasible.Our solution is to apply machine learning to developcontrollers through experience with the domain. Un-fortunately, the lane-selection problem appears out ofreach of the more standard, supervised machine learn-ing methods. Supervised learning would require ex-amples of correct lane decisions, which are di�cult toobtain without expert domain knowledge. We also donot want to mimic real drivers, since we believe thatdrivers do not currently select lanes cooperatively.We chose a multi-level learning approach that capi-talizes on the available domain knowledge, but is alsoexible enough to learn under sparse reinforcements.The learning system consists of three main compo-nents: reinforcement learning using SANE, supervisedlearning from pre-existing domain knowledge, and alocal learning strategy that is similar in spirit to tem-poral di�erence methods. Figure 3 illustrates the in-teraction of the di�erent learning methods, which aredescribed in the next three sections.Reinforcement Learning using SANEThe backbone of the learning system is the SANE rein-forcement learning method (Moriarty & Miikkulainen,1996; Moriarty, 1997). This section gives a brief out-line of SANE and its advantages; the aforementionedreferences provide more detailed information.SANE (Symbiotic, Adaptive Neuro-Evolution) wasdesigned as an e�cient method for forming decisionstrategies in domains where it is not possible to gen-erate training data for normal supervised learning.SANE maintains a population of possible strategies,evaluates the goodness of each from its performance
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StrategyFigure 3: The organization and interaction of the dif-ferent learning modules.in the domain, and uses an evolutionary algorithm togenerate new strategies. The evolutionary algorithmmodi�es the strategies through genetic operators likeselection, crossover, and mutation (Goldberg, 1989).SANE represents its decision strategies as arti�-cial neural networks that form a direct mapping fromsensors to decisions and provide e�ective generaliza-tion over the state space. The evolutionary algorithmsearches the space of hidden neuron de�nitions, whereeach hidden neuron de�nes a set of weighted connec-tions between a �xed input and �xed output layer. Inother words, SANE evolves all of the connections andweights between the hidden layer and the input andoutput layers in a three-layer network.SANE o�ers two important advantages for reinforce-ment learning that are normally not present in otherimplementations of neuro-evolution. First, it decom-poses the search for complete solutions into a searchfor partial solutions. Instead of searching for completeneural networks all at once, solutions to smaller prob-lems (good neurons) are evolved, which can be com-bined to form e�ective full solutions ( neural networks).In other words, SANE e�ectively performs a problemreduction search on the space of neural networks.Second, the system maintains diverse populations.Unlike the canonical evolutionary algorithm that con-verges the population on a single solution, SANE formssolutions in an unconverged population. Because sev-eral di�erent types of neurons are necessary to buildan e�ective neural network, there is inherent evolution-ary pressure to develop neurons that perform di�erentfunctions and thus maintain several di�erent types ofindividuals within the population. Diversity lets re-combination operators such as crossover continue togenerate new neural structures even in prolonged evo-lution. This feature helps ensure that the solutionspace will be explored e�ciently throughout the learn-

ing process.SANE represents each lane-selection strategy as aneural network that maps a car's sensory input into aspeci�c lane-selection decision. Each network consistsof 18 input units, 12 hidden units, and 3 output units.A network receives input on the car's current and de-sired speeds and the speeds of surrounding tra�c, andit outputs a ranking of the three possible choices.A strategy is evaluated by placing it in a tra�c sim-ulator and allowing it to make lane changes in a certainpercentage of the cars. Each strategy is evaluated in-dependently of other strategies in the population. The�tness of a strategy is measured using equation 1 aftersome number of simulated seconds. SANE uses theseevaluations to bias its genetic selection and recombi-nation operations towards the more pro�table lane-selection strategies.Incorporating Domain KnowledgeThe second learning component capitalizes on pre-existing domain knowledge and gives SANE a goodstarting set of initial strategies. Although expert in-formation is di�cult to obtain in this problem, generalrules of thumb are not. For example, one good heuris-tic speci�es that a very slow driver should in generalnot drive in the far left lane. Supervised learning fromthese general rules will not generate optimal lane se-lection strategies, but it can give the learning systema good head start towards intelligent behavior.The population seeder applies such heuristics in thetra�c simulator and generates a series of input andoutput pairs, which represent decisions made from therules of thumb based on speci�c sensory input. Thesepairs denote examples of good behavior that can be fedto a supervised learning method to form initial strate-gies. Since SANE's strategies are represented as neuralnetworks, the population seeder employs the backprop-agation algorithm (Rumelhart, Hinton, & Williams,1986) to train the networks over the training examples.To maintain diversity within the initial population ofneural networks and not overly bias SANE toward therules of thumb, only a subset of the networks are seededusing the default knowledge. In practice, we seed 25%of the initial population.We used four rules to seed SANE's population ofstrategies:� If your desired speed is 55 m=h or less and the rightlane is open, then change lanes right� If you are in the left lane, a car behind you has ahigher speed, and the right lane is open, then changelanes right� If a car in front of you has a slower current speedthan your desired speed and the left lane is open,then change lanes left.� In the previous situation, if the left lane was notopen but the right lane is, then change lanes right.



These rules are based on our interpretation of the\slower tra�c yield to the right" signs posted on thehighways. We will refer to this strategy hereafter as thepolite strategy. The sel�sh strategy described earlier inthe paper operates using only the last two rules.Local LearningWe also implemented a local learning module that, likethe population seeder, was included to increase learn-ing e�ciency and thereby reduce the amount of sim-ulation time necessary to form good strategies. Lo-cal learning occurs during the evaluation of a lane-selection strategy and makes small re�nements to thestrategy based on immediate rewards or penalties. Areward or positive training signal is given if there is asigni�cant increase in tra�c performance and a penaltyor negative training signal is given if there is a sig-ni�cant decrease. In practice, tra�c performance issampled every 10 simulated seconds and a reward orpenalty is generated if the di�erence in performancefrom equation 1 is larger than 10.If a training signal is generated, all actions per-formed in the sampling interval are considered respon-sible. If the signal is positive, each of those actions isreinforced. If it is negative, they are punished. Rein-forcement and punishment are achieved by backpropa-gating error signals associated with the network's acti-vation in that situation and a training example derivedfrom the training signal. For example, reinforcementon a change left decision would create a training exam-ple of the previous input paired with the target output(0.0, 1.0, 0.0). The targets of stay center and changeright are 0.0 and change left is 1.0. Using the standardbackpropagation procedure, the weights are updatedbased on this training example and the resulting net-work is more likely to choose change left in a similarsituation. A negative training signal in the previousexample would generate a target output of (1.0, 0.0,1.0), and the resulting network would be less likely tochoose change left in similar situations.The learning strategy is somewhat similar to thetemporal di�erence methods for reinforcement learn-ing (Sutton, 1988), in that updates are made based onthe performance di�erences over successive time peri-ods. However, temporal di�erence methods treat per-formance di�erences as prediction errors from whichthey can learn to predict future rewards. Our locallearning component uses the di�erences to determinewhether to reinforce or penalize speci�c decisions. Atemporal di�erence method could also be used as alocal learning component in our framework, and weexpect to evaluate this approach in the near future.Experimental EvaluationIntelligent lane selection appears to o�er important ad-vantages for tra�c control and our learning approachappears to be a plausible methodology to generate the

selection strategies. In this section, we test these hy-potheses in a simulated tra�c environment.A Simulated Tra�c EnvironmentTo evaluate intelligent lane selection, we developed asimulator to model tra�c on a highway. For each car,the simulator updates the continuous values of posi-tion, velocity, and acceleration at one second intervals.The acceleration and deceleration functions were setby visualizing tra�c performance under di�erent con-ditions and represent our best estimate of the behaviorof actual drivers. Acceleration (A) is adjusted basedon the equation A(s) = 10s�0:5, where s represents thecurrent speed in miles per hour (m=h).Deceleration occurs at the rate of -2.0 m=h per sec-ond if the di�erence in speed from the immediate pre-ceding car is greater than twice the number of sec-onds separating the two cars. In other words, if a carapproaches a slower car, the deceleration point is inproportion to the di�erence in speed and the distancebetween the cars. If there is a large di�erence in speed,cars will decelerate sooner than if the speed di�erencesare small. If the gap closes to two seconds, the speedis matched instantaneously. Lane changes are only al-lowed if the change maintains a two-second gap be-tween preceding and following cars.The simulated roadway is 3.3 miles long, but thetop of each lane \wraps around" to the bottom, creat-ing an in�nite stretch of roadway. The simulator wasdesigned as a tool to e�ciently evaluate di�erent lane-selection strategies and thus makes several simplifyingassumptions about tra�c dynamics. The primary as-sumptions in the current model are that:� cars are the same size;� cars use the same acceleration rules;� cars accelerate to and maintain their desired speedif there are no slower, preceding cars;Although these assumptions do not hold for real traf-�c, they are also not crucial to evaluate the merits ofintelligent lane selection. Removing these assumptionsunnecessarily complicates the model, which creates un-acceptable run times for exploratory research. In fu-ture work, we will expand our experiments to a morerealistic simulator such as SmartPATH (Eska�, 1996).During training, the learning system uses the tra�csimulator to evaluate candidate lane-selection strate-gies. Each evaluation or trial lasts 400 simulated sec-onds and begins with a random dispersement of 200cars over three lanes on the 3.3 mile roadway. Desiredspeeds are selected randomly from a normal distribu-tion with mean 60 m=h and standard deviation 8 m=h.In each trial, the percentage of smart cars is randomwith a minimum percentage of 5%. All other cars fol-low the sel�sh lane selection strategy.Each training run begins with a population of 75 ran-dom lane selection strategies and 25 seeded strategies,which are modi�ed by SANE and the local learning
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Figure 4: Speed error using di�erent lane selectionstrategies under di�erent tra�c densities.module over 30 simulated driving hours. SANE keepstrack of the best strategy found so far based on its per-formance over a trial. When a better strategy is found,it is saved to a �le for later testing. The saved strate-gies are each tested over ten 2000-second trials and thebest is considered the �nal strategy of the training run.Experiment 1: Tra�c DensitiesThe �rst study compares the performance of tra�cunder di�erent tra�c densities using three di�erentlane-selection schemes: a sel�sh strategy, a polite strat-egy, and the learned strategy. The sel�sh and politestrategies operate as described previously in this pa-per. The learned strategy is the best strategy from the�ve training runs. Here we are not interested in theaggregate performance over several learning runs, butrather in the performance of a single learned strategythat could be used in tra�c. Experiments in (Tech.report reference omitted to ensure anonymity) morethoroughly evaluate the learning system and presentlearning curves averaged over all training runs.Strategies were tested over car densities of 50 to 400cars per 3.3 miles and performance was measured over20 simulations at each density. In this experiment, allcars on the highway in a given condition employed thesame strategy.Figure 4 shows the error in driving speed for the self-ish, polite, and learned strategy under di�erent tra�cdensities. The error is computed from the �rst term inequation 1 and represents the average squared di�er-ence between actual speeds and desired speeds in m=h.The �gure shows the clear advantage of the learnedstrategy. In sparse tra�c (50-100 cars), the perfor-mance of the three strategies is comparable; however,in more dense tra�c, the learned strategy producessigni�cantly lower divergence from desired speeds. Ata density of 200 cars, the learned strategy incurs onlya quarter of the error of the sel�sh strategy and lessthan half the error of the polite strategy. The self-
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Figure 5: Average number of lane changes using dif-ferent lane selection strategies under di�erent tra�cdensities.ish strategy error grows faster in dense tra�c thanthe polite and learned strategies, because of the manybottlenecks generated by the unyielding, slow drivers.The polite strategy solves many of these bottlenecks bymoving slower drivers to the right, but still maintainsa error of at least 20 m=h2 over the learned strategy.Figure 5 plots the average number of lane changesper car under each strategy. There is a large contrast inbehavior between the polite and learned strategy. Evenin very sparse tra�c, the polite strategy produces overtwice as many lane changes as the learned strategies.In heavy tra�c, the polite strategy calls for almostnine times as many lane changes. The learned strate-gies reach a maximum lane change rate of 0.35 changesper minute, whereas the polite strategy reaches 1.53lane changes per minute. The sel�sh strategy gener-ates fewer lane changes than the polite strategy, sinceit does not have a yielding component; however, it stillgenerates over �ve times as many lane changes as thelearned strategy in denser tra�c. Thus, compared toboth the sel�sh and polite strategy, the learned strat-egy makes far fewer lane maneuvers, which should in-crease driver acceptance of intelligent lane selectionand hopefully reduce accident rates.Figure 6 provides a visualization of lane utilizationunder the di�erent selection strategies for a density of200 cars. Each graph represents an average over 20simulations of the percentage of time a driver with agiven desired speed spends in each lane. The sel�shstrategy, shown in Figure 6(a), assigns no lane biasto faster or slower drivers, and thus drivers at dif-ferent speeds are spread across all three lanes fairlyevenly. The polite strategy, in Figure 6(b), does biasslow drivers towards the right lane and fast driverstowards the left lane, but does so with a rigid parti-tion at 55 m=h. Thus, a car with a desired speed of 54m=h behaves quite di�erently than a car with a desiredspeed of 56 m=h. This partition comes from the polite
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(c)Figure 6: Utility of lanes with respect to desired speeds for the (a) sel�sh, (b) polite, and (c) learned strategies.The graph shows the percentage of time that cars drive in the left, center, and middle lanes as a function of desiredspeeds. These tests used a tra�c density of 200 cars per 3.3 miles.Left Lane Center Lane Right LaneSel�sh 0.35 0.35 0.30Polite 0.35 0.26 0.39Learned 0.25 0.27 0.48Table 1: The distribution of tra�c for the three laneselection strategies.rule that moves cars traveling slower than 55 m=h tothe right lane. The learned strategy, in Figure 6(c),produces a much smoother lane utilization bias.Another contrast between the three strategies liesin the overall utilization of the three lanes across allspeeds. Table 1 shows the overall lane distribution forall cars. The learned strategy has a signi�cant biastowards the right lane and places almost half of thecars there. This organization seems reasonable andquite e�ective since slower cars encounter fewer slowerpreceding cars and should operate more e�ciently inhigher tra�c density than faster cars. The learnedlane-selection strategy essentially moves half of thetra�c to the right lane and uses the middle and leftlanes to organize the faster tra�c. It is also importantto note from Figure 6 that the faster cars do appear inthe right lane, but the slower cars never appear in theleft lane. The likely reason is that a slow car in the leftlane causes large disruptions to tra�c ow, whereas afast car in the right lane will normally only disrupt itsown performance.Experiment 2: Mixing StrategiesThe second experiment evaluated the learned strategyin the presence of sel�sh cars. The aim was to exam-ine the robustness of the smart car's group behavior tocars that do not follow the same rules. We were inter-ested in how quickly the learned strategy degrades as
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Figure 7: The average squared error of smart and self-ish cars under di�erent smart car distributions. Thesetests used 200 cars.sel�sh drivers are added and how many smart cars arenecessary to make cooperative behavior worthwhile.Figure 7 shows the error in driving speeds under dif-ferent smart car distributions. The �gure plots thespeed error for both the smart cars and the sel�sh carsand illustrates how the performance of both increaseswith the introduction of more smart cars. The �gureshows that, even at distributions as low as 5% smartcars, there is incentive to cooperate. At 100% self-ish tra�c, cars average a 36.80 m=h2 driving error,while at 95% sel�sh tra�c the error drops to 34.40m=h2. While this is not a substantial improvement itdemonstrates that very few smart cars are necessary togenerate an increase in tra�c performance. Moreover,performance improves steadily as more cars cooperate,which provides further motivation to drive coopera-tively. Finally, at 100% smart cars the average speed



error drops to 9.66 m=h2, which is approximately onefourth of the error when all tra�c is sel�sh.Related WorkIntelligent lane selection appears to be a novel ap-proach to tra�c management that has received almostno attention in the tra�c management literature. Af-ter a lengthy literature search and several email in-quiries, we have found only one project with simi-lar goals. Carrara and Morello have proposed a sys-tem called DOMINC that employs cooperative drivingtechniques to increase tra�c e�ciency.1 The main ob-jective of the DOMINC project is to explore the ben-e�ts in tra�c e�ciency, comfort, and safety of coop-erative driving. The project's vision is thus very closeto our formulation of car-centered tra�c management.However, the paper that we have only describes the po-tential bene�ts and does not propose a speci�c method-ology for cooperative driving.There are a number of systems designed to learnlane selection for a single-agent, non-cooperative sys-tem. McCallum (1996) used reinforcement learning totrain a driving agent to weave around tra�c, a taskthat he calls \New York driving". Sukthankar, Baluja,and Hancock (1997) used an approach similar to evo-lutionary algorithms to form a voting scheme that de-termines the appropriate driving lane and speed fora single car. Finally, the Bayesian Automated Taxi(BAT) project, an attempt to build a fully automatedvehicle that can drive in normal tra�c (Forbes, Huang,Kanazawa, & Russell, 1995), will eventually contain amodule for lane selection. Each of these systems weredesigned to maximize the performance of a single ve-hicle and do not form cooperative controllers. Ourapproach is directed at the global tra�c managementproblem, where cooperation is important.Summary and ConclusionsCoordination of local car behaviors is a novel approachto tra�c management that poses a challenging prob-lem to both arti�cial intelligence and machine learn-ing. In this paper, we proposed one formulation of thisproblem: intelligent lane selection to maintain desireddriving speeds and reduce lane changes. Given onlyinformation on the local tra�c patterns and the de-sired speed, cars can coordinate local lane changes tolet faster tra�c pass through while still allowing slowertra�c to maintain desired speeds.We described and evaluated an approach that usessupervised and reinforcement learning to generate thelane-selection strategies through trial and error inter-actions with the tra�c environment. Compared toboth a sel�sh strategy and the standard \yield tothe right" strategy, the smart cars maintained speedscloser to the desired speeds of their drivers while mak-ing fewer lane changes. Additionally, intelligent lane1The paper that we have does not include a reference.
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