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Abstract

In this paper, we explore the use of machine learning
and data mining to improve the prediction of travel
times in an automobile. We consider two formulations
of this problem, one that involves predicting speeds
at different stages along the route and another that
relies on direct prediction of transit time. We focus
on the second formulation, which we apply to data
collected from the San Diego freeway system. We re-
port experiments on these data with k-nearest neigh-
bour combined with a wrapper to select useful fea-
tures and normalization parameters. The results sug-
gest that 3-nearest neighbour, when using information
from freeway sensors, substantially outperforms pre-
dictions available from existing digital maps. Analyses
also reveal some surprises about the usefulness of other
features like the time and day of the trip.

Introduction

Future drivers will expect accurate estimates of the time
it will take them to travel along a given route, both
for purposes of route planning and for deciding when
to start. Of course, existing digital maps provide such
time estimates, but these are usually based on the speed
limit for each route segment, and thus ignore many in-
formation sources that, potentially, could greatly im-
prove accuracy.

Some cities are already collecting data on traffic
speeds that could serve as the basis for more informed
predictions. Typically, this information comes from
sensors embedded in the freeway that measure average
velocity and traffic density over short time spans. For
example, the freeway system for San Diego, California,
includes some 116 such sensors, the values for which are
available on the World Wide Web.

Our aim is to use such data to discover useful knowl-
edge about the behavior of traffic. Specifically, given an
origin location O, a desired location D, a route from O
to D, and possibly other information such as traffic load
and starting time, we want to predict the time it will
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take to drive that route from O to D. The correspond-
ing data-mining task involves learning such a predictor
from available traffic data.

We hypothesize that techniques from machine learn-
ing, if carefully applied to such data, can improve the
prediction of travel times over that are currently avail-
able from digital maps. However, as with previous ap-
plied efforts in machine learning and data mining (Lan-
gley & Simon, 1995), we expect this will require signif-
icant efforts in formulating the problem, in collecting
and processing the data, and in crafting a representa-
tion. We present our responses to these issues in the
sections that follow, along with our selection of an in-
duction method. After this, we report experiments on
data from San Diego freeways and a detailed analysis
of our results. In closing, we discuss related research on
predicing travel time and consider directions for future
work on this topic.

Problem Formulation

Before we could make progress on our problem, we first
had to reformulate it in some way that would let us ap-
ply existing techniques for machine learning and data
mining. One straightforward way of viewing the prob-
lem was as a regression task in which the performance
element takes as input attribute values that represent
a trip and produces an estimate of that trip’s duration.
This formulation has the advantage of being simple and
mapping readily onto well-understood induction tech-
niques. However, treating trips as atomic entities would
limit the ability to generalize between trips. For exam-
ple, if we were to estimate that the trip A-B-C-D takes
10 minutes and that the trip B-C-D-E takes 15 min-
utes, then we would also like to estimate accurately the
duration of the trip B-C-D. With this formulation, the
knowledge learned about trips A-B-C-D and B-C-D-E
does not carry over to the trip B-C-D.

We attempted to address this limitation by treating
each trip not as a monolithic object but rather by con-
sidering the intermediate speeds that constitute them.
That is, we tried redefining the task as that of pre-
dicting the speed of traffic at a particular time and a
particular place, from which we could then compute
the desired estimates of trip duration. This formula-
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tion can be viewed as a form of time-series problem, in
that each location has a speed, s;, which is a function
of the previous speeds, s;_1,...,sq, as well as the data
from other locations. In the time-series community, this
approach is known as conditional forecasting (Pindyck
& Rubinfeld, 1991), that is, forecasting that bases its
predictions on other unknown variables that must also
be predicted.

Unfortunately, preliminary experiments with this
time-series formulation encountered difficulties, the rea-
sons for which emerged after simple analysis. Consider
the steps involved in calculating the duration of a trip
from a collection of speed estimates. We assume that
the route is divided into a series of segments and that
we estimate the car’s speed at the start of each such
segment. These estimated speeds are functions of time
and we compute the total duration by successively esti-
mating the time at which the car enters each segment.
However, the estimate for the car’s speed when enter-
ing segment i derives from the sum of estimated times
taken to traverse segments 0 through ¢ — 1, which in
turn derive from the estimated speeds when entering
segment 0 through ¢ — 2, etc. This routine is unstable
in that errors in the speed estimations are magnified by
the successive estimations, until the resultant estimate
for trip duration has a much higher error than the speed
estimates from which it is derived.

Our understanding about how errors are likely to
propagate through this prediction method, coupled
with the large errors in speed estimates, led us to con-
clude that the time-series formulation was not a promis-
ing approach for this domain. Consequently, we have
focused on the simpler regression formulation that in-
volves directly predicting the durations of trips.

Collecting and Processing the Data

Having formulated the problem, our next step was to
collect and process traffic data. Because we lacked a
large database of observed trip durations on which to
test our system, we created one from available data on
traffic speeds. We collected these data from 116 sen-
sors, updated periodically, at fixed locations in the San
Diego freeway system, that are available through the
World Wide Web (www.maxwell.com/caltrans/sd/
sd_transnet.html).

Each sensor reports four numbers every minute:!
the 30-second average for traffic speed, the 360-second
speed average, the 30-second average for flow, and the
360-second flow average. The distances between adja-
cent sensors ranged from 0.2 to 9.5 miles with a distribu-
tion of 1.6 &+ 1.8 miles. We used an automated script to
download these sensor readings from the web site over
a period of 21 days (September 9, 1997, to October 1,
1997), resulting in about 1.3 million readings.

!For one sensor we examined, the actual time between
readings was 61.1 £ 20.6 seconds, with a median of 60 and
a minimum of 30.

We processed the sensor readings in three ways.
First, if a sensor reported all zeros, we copied the speeds
and flows from the previous sample for that sensor. Sec-
ond, we could not determine accurately the location
for one sensor (#148), so we discarded all readings for
it. Finally, the data contained many entries in which
a sensor reading at, say, ‘11:58:00PM 09/12/97 was
followed by a reading at, say, ‘12:00:30AM 09/12/97".
The most likely cause of these anomalies was that the
date was not being updated correctly, so we incre-
mented the date for the second reading by one day.

Now that we had a database of average traffic speeds
at certain locations and times, we proceeded to build a
database of trips and durations. We started by enumer-
ating all routes that began and ended at one of the 116
sensors. We then selected just the routes on Interstate 5
southbound, as this was both the longest stretch of free-
way available and contained the most sensors. This in-
strumented section of Interstate 5 is approximately 25
miles in length, starts at Encinitas Boulevard, finishes
at 6th Avenue, and contains 12 sensors. We then used
available route-planning software to compute the dis-
tance between each pair of adjacent sensors. Finally,
for each of these 12(12 —1)/2 = 66 routes we uniformly
and randomly generated 100 start dates and times.

For each of the computed 6,600 trips, we next com-
puted an ‘observed’ duration. Since each route is a con-
tiguous subsequence of the 12 sensors on Interstate 5,
S1...8n, we determined the speed of an average car
driving that route and then the duration of the trip
from those speeds. Each sensor S; has a speed, s;(t),
that is a function of date and time. From these we es-
timated the time, t;, that the car took to drive from
sensor S; to sensor S;1 by choosing n — 1 pairs of time
and speed, (t;,5;), that together minimize Y error(i)

where
error(i) = |8; — si(to + th)\
i<i
and tg is the start date and time. The duration of the
entire trip is just Y ;.

We discarded a trip if it required sensor readings out-
side of the selected dates or if it coincided with a gap
of more than ten minutes in the readings for one or
more of the required sensors. We replaced each such
discarded trip with another trip so that, after discard-
ing malformed trips, there were still 6,600 in total.

Feature Selection and Induction

Having defined the performance task (estimating the
duration of an individual trip), as well as the collection
and processing of the data, we next chose an induction
algorithm and applied it in this context. We selected
the k nearest neighbour method because of its algorith-
mic simplicity and because our intuitions suggested it
was a good match for this problem. However, near-
est neighbour is actually a class of algorithms, and we
needed to make other decisions before we could apply
it to our problem. For example, we decided to set the



LEARNING TO PREDICT AUTOMOBILE TRIP DURATION

number of neighbours & to 3, since preliminary studies
suggested that higher k£ values did not aid prediction.

The choice of features was less easy, since a number
of them had intuitive appeal. Features that were read-
ily available from our data included the time of day, the
day of week, whether it was a weekday or the weekend,
and the current sensor values. The latter were really a
collection of attributes, one for each sensor on the route,
reflecting the 30-second average for traffic speed that
the sensor reported at the date and time when the trip
started. One representational complication was that
different routes could have different numbers of associ-
ated sensors. Thus, we modeled each of the 66 routes
with a separate set of stored cases, which limited gener-
alization but ensured an unambiguous feature mapping.

Finally, nearest neighbour is often combined with a
normalization scheme that maps the values of numeric
attributes into a common range; the idea here is to
prevent some features from dominating others in the
distance metric through accidental choices like differ-
ences in measurement scale. Because we did not know
whether normalization would aid learning in this do-
main, we considered three alternatives: no normaliza-
tion, mapping the instance space onto a unit cube, and
transforming each feature to have a mean of zero and
variance of one.

The choices about predictive features and normaliza-
tion schemes give 2* x 3 = 48 combinations of model
parameters. Rather than exploring this space manually,
we automated the process by using ten-fold cross valida-
tion to estimate the performance for each combination
of parameters, but ruling out parameter combinations
that made no sense. For example, if there is only one
feature then normalizations have no effect. This elimi-
nated 11 possibilities, resulting in 37 parameter settings
for 3-nearest neighbour.

The Control Predictor

We decided to compare the behavior of our learned pre-
dictors with that of a control predictor that uses speed
information available from digital maps to estimate a
trip’s duration. This information takes the form of a
single ‘typical’ speed for each road segment. This con-
trol predictor operates in a manner similar to the route
planners currently used by in-car navigational devices,
except that it does not use all of the available speed
annotations in the digital map.

The control predictor only uses the speeds that are
attached to road segments adjacent to the sensors. For
example, if a route consists of road segments A-B-C-
D-E-F-G and the sensors in the road are located at
segments A, D and G, then it uses only the speeds at-
tached to segments A, D, and G. Although we could
probably improve the control method’s performance by
including more road segments (such as B, D, E, and F
in the above example), this also holds for the learning
method and would only weaken the comparison.

This scheme has a number of advantages as a con-
trol condition. The method is conceptually simple and

it differs from the learning methods only in ways that
are important for the comparison (the incorporation of
learning). Moreover, it is sufficiently similar to current
trip duration predictors to permit meaningful and rel-
evant comparisons.

Experimental Evaluation

In order to compare our trip duration estimators exper-
imentally, we needed some way to measure their perfor-
mance. Since the estimators would be used by humans
to plan trips, we desired some measure of their use-
fulness to drivers. Of course, this will depend on both
the driver and the trip, but lacking real drivers and real
trips, we needed to make some simplifying assumptions.
In particular, we assumed that the cost of errors was
independent of the driver and that overprediction and
underprediction had equal costs. We also assumed that
relative error (in relation to the actual trip time) was
more appropriate than absolute error.

However, we expected that drivers would care not
only about the average error, but also about its varia-
tion. To this end, we decided to use a single measure
that bounds the relative error from above 84.1% of the
time. That is, we defined our performance measure to
be |u|+ o, where p is the mean relative error and o
is the standard deviation. Hereafter, we refer to this
performance metric as the mean+ sigma or p+o bound.

We estimated the p+o0 bounds of the predictors by
ten-fold cross validation on the 6,600 trips described
earlier. For the cross validation to be useful, we needed
to guarantee that each trip in the training set did not
overlap (in either space or time) any trip in the test set
and vice versa. We implemented this constraint using
a greedy algorithm, which rejected about 25% of the
examples normally used during cross validation. We
replaced each discarded trip with another one, to keep
the same number of trips in each partition.

The mean percentage error for the control predictor,
calculated over the ten cross-validation runs, was 22.8
and the standard deviation was 19.5. This translates to
a pto bound of 22.8419.5 = 42.3, which means that, on
84.1% of novel trips, the control method will have a rela-
tive error of less than 42.3%. To facilitate comparisons,
we used the same ten test sets for the wrapper-extended
nearest neighbour method. This produced a mean per-
centage error of only 2.2, with a standard deviation of
4.8. This results in a g+0o bound of 2.2 + 4.8 = 7.0,
which means that, on 84.1% of novel trips, the learned
predictor will be off by less than 7.0 percent. In this
domain, nearest neighbour gives much tighter bounds
on travel time than speeds available from digital maps.

However, examination of the learning method’s out-
puts revealed some unexpected behavior. In seven of
the ten folds, the wrapper chose not to normalize the
predictor variables, it incorporated day of the week in
only two folds, and it never elected to use information
about the time of day. In contrast, the system decided
to include current sensor information about traffic con-
ditions in all ten folds of the study. Although we ex-
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Figure 1: Errors for the control predictor and for four representative sets of model parameters, broken down by
(a) the length of the trip and (b) the time of day at which the trip started.

pected online traffic data to prove useful, we assumed
that information about the time (e.g., whether it was
rush hour) and day (whether it was a weekend) would
also have predictive power. These findings suggested
the need for further analysis.

Analysis of the Experiments

To better understand the factors that led to the above
results, we reexamined the predictive accuracies at a
finer level of granularity. Also, instead of using the
wrapper scheme, we selected manually some parameter
settings of interest, then used ten-fold cross validation
on the 6,600 examples to estimate the u+o bound for
each one. In addition to the control method, we ex-
amined nearest neighbour using only readings from the
traffic sensors to describe instances, only the time of
day, and both sensor and time information. We also
included a variant of nearest neighbour that used none
of the predictor variables; since this viewed all stored
cases as equidistant from the test case, it used the av-
erage trip duration (for each route) as its prediction.
One plausible hypothesis was that the attribute for
time of day might prove more useful on longer trips.
Figure 1 (a) shows the behavior of the five prediction
methods, in terms of their y+o bounds, broken down
by the trip length. All of the predictors, including the
control method, fare better on longer trips, but sensor
information about traffic still dominates even on trips
of 25 miles. Moreover, including the time of day pro-
vides no predictive ability above that available from the
sensor readings alone, independent of trip length.
Figure 1 (b) presents similar results, except that it
partitions behavior by the time of day. For this partic-
ular stretch of freeway (southbound on Interstate 5 to
San Diego), the primary rush hour occurs in the morn-
ing. Surprisingly, the control method’s performance is
nearly constant: its g+ o bound hovers between 30
and 50 throughout the day, with no obvious pattern.

Because the control predictor’s estimates are indepen-
dent of time, we would expect it to be inaccurate at
rush hour, but the learned predictors are much more
affected. One likely explanation is that the control pre-
dictor consistently over-estimates trip times, improving
its accuracy at rush hour at the expense of other times.
In fact, the learned predictor that uses just time of
day does spectacularly badly during rush hour, with
a pu+o bound of 70 to 90 between 7 and 9 AM. The
other three learned predictors consistently have pu+o
bounds of 5 to 20 outside rush hour and 20 to 50 during
rush hour. One reason that time of day fares so poorly
may be that speed during rush hour is inherently unpre-
dictable. In our 6,600-trip data set, the mean duration
is about 500 % 400 seconds, but the mean during rush
hour (7 to 9 AM) is about 650 + 550 seconds. Since
the duration for rush-hour trips has a higher variance
than for others, a prediction based on these trips will
also have higher variance. Using traffic sensors sidesteps
this problem by basing predictions on trips with similar
driving conditions, rather than similar times of day.

Related Work on Predicting Trip Times

There exists considerable literature in the area of traffic
management and intelligent highways, some of which
pertains to predicting the duration of trips. We focus
on the most closely related work here, although work
in other areas of data mining, such as regression for
financial prediction, also bears on our approach.

Oda (1990) reports one effort, which we discovered
after obtaining our results, that predicts travel times
using an approach similar to our time-series formula-
tion. He compared his method’s predictions to observed
travel times on a single stretch of freeway, achieving
slightly lower mean error than the best of our predic-
tors, but he did not report the variance of his method.
In later work, Oda, Takeuchi, and Niikura (1996) re-
port results in which they predicted trip times using
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‘sensor’ information uploaded from cars driving along
the route. In this case, the prediction errors had both
a low mean and a low variance, suggesting that current
speed information from other cars is highly useful.

Three other efforts also have similar research goals.
Hoffmann and Janko (1990) describe a system that
learns the average speed per road segment in Berlin for
one of four time periods (such as morning rush hour),
but they did not report their predictor’s performance.
Taylor and Meldrum (1995) used learning in multi-layer
neural networks to predict the traffic volume at an in-
dividual sensor; their work is similar to our own except
for its focus on volume rather than travel time. Finally,
Fu and Rilett (1995) used learning in neural networks
to improve prediction of trip times in an artificial en-
vironment; their formulation was very similar to ours,
using features like the origin, the destination, and the
start time as the basis for predictions.

Concluding Remarks

Although we have made clear progress toward better
predictors for trip duration, there remain many avenues
for improvement. Recall that we estimated our travel-
time data from readings of highway sensors, rather than
from measured durations of individual trips. In order
to test our approach on actual trip times, we are col-
lecting data from automobiles in Silicon Valley that are
equipped with a global positioning system, which lets
us compute their time on each segment of a route. This
will also let us predict trip durations for a given driver,
which should be more accurate than predictions for an
average driver. The availability of detailed trace data
will also let us incorporate additional features from dig-
ital maps, such as the presence of intersections and road
topology, in the learned predictors.

Other directions for future research focus on different
formulations of the problem. Our breakdown of predic-
tion errors by time of day showed that all the learning
methods, even when using sensor readings, did worse
during rush hour than during other times. The fact
that traffic speed is less predictable during rush hour
suggests that we also try predicting traffic volume. This
variable may be less erratic during rush hour, and it can
also play a role in route planning, since drivers typically
prefer to avoid routes with high congestion.

Also, to date we have assumed that the prediction
task occurs just before the user intends to start a trip,
since one major use for trip duration estimates is within
automated route planners. However, making predic-
tions further in the future can also useful. For example,
a driver may want to know in advance how long a trip
to the airport will take, so he can plan when to pack.
Changing the time of the prediction task should reduce
the predictive utility of traffic sensors. The worst-case
scenario is given by the ‘just time of day’ curve in Fig-
ure 1 (b), which shows that performance without sen-
sors is two to five times worse than when using sensors.
A model of the degradation in predictive accuracy with
increasingly delayed start times would be useful.

Another limitation is that our approach to learning
duration predictors does not handle long-term trends.
Suppose the same trip at 9 AM Monday morning on
consecutive weeks takes ever increasing amounts of
time; our current use of nearest neighbour will miss this
trend, since it will average the durations across different
weeks. One response would be to formulate the problem
differently, so as to incorporate information about trips
on previous weeks; this scheme bears a resemblance to
methods used in the financial prediction community.

In summary, we have explored the use of induction
methods to predict the duration of trips in an automo-
bile. In the process, we built a database of trips and
their durations from actual traffic speeds on San Diego
freeways, and we tested our learned predictors against
a control method that uses speeds encoded in digital
maps. Our experiments revealed that the learned pre-
dictors were generally better than the control predic-
tor, in that they place tighter bounds on the prediction
errors. We also noted that the most useful features
involved traffic speeds available from sensors along for
the route; surprisingly, the time of day and day of week
were much less useful. Finally, we found that longer
trips support more accurate predictions and that rush
hour is less predictable than other times of day. Al-
though there remains room for improvement, the ex-
isting results show the promise of machine learning for
predicting the duration of automobile trips.
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