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Learning to Predict the Duration of an Automobile TripSimon HandleyPat LangleyDaimler-Benz Research and Technology Center1510 Page Mill Rd., Palo Alto, CA 94304 USAfhandley,langleyg@rtna.daimlerbenz.com Folke A. RauscherDaimler-Benz AGResearch & Technology { FT3/KLP.O. Box 2360, D-89013 Ulm, Germanyfolke.rauscher@dbag.ulm.daimlerbenz.comAbstractIn this paper, we explore the use of machine learningand data mining to improve the prediction of traveltimes in an automobile. We consider two formulationsof this problem, one that involves predicting speedsat di�erent stages along the route and another thatrelies on direct prediction of transit time. We focuson the second formulation, which we apply to datacollected from the San Diego freeway system. We re-port experiments on these data with k-nearest neigh-bour combined with a wrapper to select useful fea-tures and normalization parameters. The results sug-gest that 3-nearest neighbour, when using informationfrom freeway sensors, substantially outperforms pre-dictions available from existing digital maps. Analysesalso reveal some surprises about the usefulness of otherfeatures like the time and day of the trip.IntroductionFuture drivers will expect accurate estimates of the timeit will take them to travel along a given route, bothfor purposes of route planning and for deciding whento start. Of course, existing digital maps provide suchtime estimates, but these are usually based on the speedlimit for each route segment, and thus ignore many in-formation sources that, potentially, could greatly im-prove accuracy.Some cities are already collecting data on tra�cspeeds that could serve as the basis for more informedpredictions. Typically, this information comes fromsensors embedded in the freeway that measure averagevelocity and tra�c density over short time spans. Forexample, the freeway system for San Diego, California,includes some 116 such sensors, the values for which areavailable on the World Wide Web.Our aim is to use such data to discover useful knowl-edge about the behavior of tra�c. Speci�cally, given anorigin location O , a desired location D , a route from Oto D , and possibly other information such as tra�c loadand starting time, we want to predict the time it willCopyright c
 1998, American Association for Arti�cial In-telligence (www.aaai.org). All rights reserved.

take to drive that route from O to D . The correspond-ing data-mining task involves learning such a predictorfrom available tra�c data.We hypothesize that techniques from machine learn-ing, if carefully applied to such data, can improve theprediction of travel times over that are currently avail-able from digital maps. However, as with previous ap-plied e�orts in machine learning and data mining (Lan-gley & Simon, 1995), we expect this will require signif-icant e�orts in formulating the problem, in collectingand processing the data, and in crafting a representa-tion. We present our responses to these issues in thesections that follow, along with our selection of an in-duction method. After this, we report experiments ondata from San Diego freeways and a detailed analysisof our results. In closing, we discuss related research onpredicing travel time and consider directions for futurework on this topic.Problem FormulationBefore we could make progress on our problem, we �rsthad to reformulate it in some way that would let us ap-ply existing techniques for machine learning and datamining. One straightforward way of viewing the prob-lem was as a regression task in which the performanceelement takes as input attribute values that representa trip and produces an estimate of that trip's duration.This formulation has the advantage of being simple andmapping readily onto well-understood induction tech-niques. However, treating trips as atomic entities wouldlimit the ability to generalize between trips. For exam-ple, if we were to estimate that the trip A-B-C-D takes10 minutes and that the trip B-C-D-E takes 15 min-utes, then we would also like to estimate accurately theduration of the trip B-C-D. With this formulation, theknowledge learned about trips A-B-C-D and B-C-D-Edoes not carry over to the trip B-C-D.We attempted to address this limitation by treatingeach trip not as a monolithic object but rather by con-sidering the intermediate speeds that constitute them.That is, we tried rede�ning the task as that of pre-dicting the speed of tra�c at a particular time and aparticular place, from which we could then computethe desired estimates of trip duration. This formula-



Learning to Predict Automobile Trip Duration 2tion can be viewed as a form of time-series problem, inthat each location has a speed, st, which is a functionof the previous speeds, st�1; : : : ; s0, as well as the datafrom other locations. In the time-series community, thisapproach is known as conditional forecasting (Pindyck& Rubinfeld, 1991), that is, forecasting that bases itspredictions on other unknown variables that must alsobe predicted.Unfortunately, preliminary experiments with thistime-series formulation encountered di�culties, the rea-sons for which emerged after simple analysis. Considerthe steps involved in calculating the duration of a tripfrom a collection of speed estimates. We assume thatthe route is divided into a series of segments and thatwe estimate the car's speed at the start of each suchsegment. These estimated speeds are functions of timeand we compute the total duration by successively esti-mating the time at which the car enters each segment.However, the estimate for the car's speed when enter-ing segment i derives from the sum of estimated timestaken to traverse segments 0 through i � 1, which inturn derive from the estimated speeds when enteringsegment 0 through i � 2, etc. This routine is unstablein that errors in the speed estimations are magni�ed bythe successive estimations, until the resultant estimatefor trip duration has a much higher error than the speedestimates from which it is derived.Our understanding about how errors are likely topropagate through this prediction method, coupledwith the large errors in speed estimates, led us to con-clude that the time-series formulation was not a promis-ing approach for this domain. Consequently, we havefocused on the simpler regression formulation that in-volves directly predicting the durations of trips.Collecting and Processing the DataHaving formulated the problem, our next step was tocollect and process tra�c data. Because we lacked alarge database of observed trip durations on which totest our system, we created one from available data ontra�c speeds. We collected these data from 116 sen-sors, updated periodically, at �xed locations in the SanDiego freeway system, that are available through theWorld Wide Web (www.maxwell.com/caltrans/sd/sd_transnet.html).Each sensor reports four numbers every minute:1the 30-second average for tra�c speed, the 360-secondspeed average, the 30-second average for 
ow, and the360-second 
ow average. The distances between adja-cent sensors ranged from 0.2 to 9.5 miles with a distribu-tion of 1:6� 1:8 miles. We used an automated script todownload these sensor readings from the web site overa period of 21 days (September 9, 1997, to October 1,1997), resulting in about 1.3 million readings.1For one sensor we examined, the actual time betweenreadings was 61:1 � 20:6 seconds, with a median of 60 anda minimum of 30.

We processed the sensor readings in three ways.First, if a sensor reported all zeros, we copied the speedsand 
ows from the previous sample for that sensor. Sec-ond, we could not determine accurately the locationfor one sensor (#148), so we discarded all readings forit. Finally, the data contained many entries in whicha sensor reading at, say, `11:58:00PM 09/12/97' wasfollowed by a reading at, say, `12:00:30AM 09/12/97'.The most likely cause of these anomalies was that thedate was not being updated correctly, so we incre-mented the date for the second reading by one day.Now that we had a database of average tra�c speedsat certain locations and times, we proceeded to build adatabase of trips and durations. We started by enumer-ating all routes that began and ended at one of the 116sensors. We then selected just the routes on Interstate 5southbound, as this was both the longest stretch of free-way available and contained the most sensors. This in-strumented section of Interstate 5 is approximately 25miles in length, starts at Encinitas Boulevard, �nishesat 6th Avenue, and contains 12 sensors. We then usedavailable route-planning software to compute the dis-tance between each pair of adjacent sensors. Finally,for each of these 12(12�1)=2 = 66 routes we uniformlyand randomly generated 100 start dates and times.For each of the computed 6,600 trips, we next com-puted an `observed' duration. Since each route is a con-tiguous subsequence of the 12 sensors on Interstate 5,S1 : : : Sn, we determined the speed of an average cardriving that route and then the duration of the tripfrom those speeds. Each sensor Si has a speed, si(t),that is a function of date and time. From these we es-timated the time, ti, that the car took to drive fromsensor Si to sensor Si+1 by choosing n�1 pairs of timeand speed, (ti; ŝi), that together minimize P error(i)where error(i) = jŝi � si(t0 +Xj<i tj)jand t0 is the start date and time. The duration of theentire trip is just P ti.We discarded a trip if it required sensor readings out-side of the selected dates or if it coincided with a gapof more than ten minutes in the readings for one ormore of the required sensors. We replaced each suchdiscarded trip with another trip so that, after discard-ing malformed trips, there were still 6,600 in total.Feature Selection and InductionHaving de�ned the performance task (estimating theduration of an individual trip), as well as the collectionand processing of the data, we next chose an inductionalgorithm and applied it in this context. We selectedthe k nearest neighbour method because of its algorith-mic simplicity and because our intuitions suggested itwas a good match for this problem. However, near-est neighbour is actually a class of algorithms, and weneeded to make other decisions before we could applyit to our problem. For example, we decided to set the



Learning to Predict Automobile Trip Duration 3number of neighbours k to 3, since preliminary studiessuggested that higher k values did not aid prediction.The choice of features was less easy, since a numberof them had intuitive appeal. Features that were read-ily available from our data included the time of day, theday of week, whether it was a weekday or the weekend,and the current sensor values. The latter were really acollection of attributes, one for each sensor on the route,re
ecting the 30-second average for tra�c speed thatthe sensor reported at the date and time when the tripstarted. One representational complication was thatdi�erent routes could have di�erent numbers of associ-ated sensors. Thus, we modeled each of the 66 routeswith a separate set of stored cases, which limited gener-alization but ensured an unambiguous feature mapping.Finally, nearest neighbour is often combined with anormalization scheme that maps the values of numericattributes into a common range; the idea here is toprevent some features from dominating others in thedistance metric through accidental choices like di�er-ences in measurement scale. Because we did not knowwhether normalization would aid learning in this do-main, we considered three alternatives: no normaliza-tion, mapping the instance space onto a unit cube, andtransforming each feature to have a mean of zero andvariance of one.The choices about predictive features and normaliza-tion schemes give 24 � 3 = 48 combinations of modelparameters. Rather than exploring this space manually,we automated the process by using ten-fold cross valida-tion to estimate the performance for each combinationof parameters, but ruling out parameter combinationsthat made no sense. For example, if there is only onefeature then normalizations have no e�ect. This elimi-nated 11 possibilities, resulting in 37 parameter settingsfor 3-nearest neighbour.The Control PredictorWe decided to compare the behavior of our learned pre-dictors with that of a control predictor that uses speedinformation available from digital maps to estimate atrip's duration. This information takes the form of asingle `typical' speed for each road segment. This con-trol predictor operates in a manner similar to the routeplanners currently used by in-car navigational devices,except that it does not use all of the available speedannotations in the digital map.The control predictor only uses the speeds that areattached to road segments adjacent to the sensors. Forexample, if a route consists of road segments A-B-C-D-E-F-G and the sensors in the road are located atsegments A, D and G, then it uses only the speeds at-tached to segments A, D, and G. Although we couldprobably improve the control method's performance byincluding more road segments (such as B, D, E, and Fin the above example), this also holds for the learningmethod and would only weaken the comparison.This scheme has a number of advantages as a con-trol condition. The method is conceptually simple and

it di�ers from the learning methods only in ways thatare important for the comparison (the incorporation oflearning). Moreover, it is su�ciently similar to currenttrip duration predictors to permit meaningful and rel-evant comparisons.Experimental EvaluationIn order to compare our trip duration estimators exper-imentally, we needed some way to measure their perfor-mance. Since the estimators would be used by humansto plan trips, we desired some measure of their use-fulness to drivers. Of course, this will depend on boththe driver and the trip, but lacking real drivers and realtrips, we needed to make some simplifying assumptions.In particular, we assumed that the cost of errors wasindependent of the driver and that overprediction andunderprediction had equal costs. We also assumed thatrelative error (in relation to the actual trip time) wasmore appropriate than absolute error.However, we expected that drivers would care notonly about the average error, but also about its varia-tion. To this end, we decided to use a single measurethat bounds the relative error from above 84.1% of thetime. That is, we de�ned our performance measure tobe j�j+�, where � is the mean relative error and �is the standard deviation. Hereafter, we refer to thisperformance metric as the mean+sigma or �+� bound.We estimated the �+� bounds of the predictors byten-fold cross validation on the 6,600 trips describedearlier. For the cross validation to be useful, we neededto guarantee that each trip in the training set did notoverlap (in either space or time) any trip in the test setand vice versa. We implemented this constraint usinga greedy algorithm, which rejected about 25% of theexamples normally used during cross validation. Wereplaced each discarded trip with another one, to keepthe same number of trips in each partition.The mean percentage error for the control predictor,calculated over the ten cross-validation runs, was 22.8and the standard deviation was 19.5. This translates toa �+� bound of 22:8+19:5 = 42:3, which means that, on84.1% of novel trips, the control method will have a rela-tive error of less than 42.3%. To facilitate comparisons,we used the same ten test sets for the wrapper-extendednearest neighbour method. This produced a mean per-centage error of only 2.2, with a standard deviation of4.8. This results in a �+� bound of 2:2 + 4:8 = 7:0,which means that, on 84.1% of novel trips, the learnedpredictor will be o� by less than 7.0 percent. In thisdomain, nearest neighbour gives much tighter boundson travel time than speeds available from digital maps.However, examination of the learning method's out-puts revealed some unexpected behavior. In seven ofthe ten folds, the wrapper chose not to normalize thepredictor variables, it incorporated day of the week inonly two folds, and it never elected to use informationabout the time of day. In contrast, the system decidedto include current sensor information about tra�c con-ditions in all ten folds of the study. Although we ex-
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Figure 1: Errors for the control predictor and for four representative sets of model parameters, broken down by(a) the length of the trip and (b) the time of day at which the trip started.pected online tra�c data to prove useful, we assumedthat information about the time (e.g., whether it wasrush hour) and day (whether it was a weekend) wouldalso have predictive power. These �ndings suggestedthe need for further analysis.Analysis of the ExperimentsTo better understand the factors that led to the aboveresults, we reexamined the predictive accuracies at a�ner level of granularity. Also, instead of using thewrapper scheme, we selected manually some parametersettings of interest, then used ten-fold cross validationon the 6,600 examples to estimate the �+� bound foreach one. In addition to the control method, we ex-amined nearest neighbour using only readings from thetra�c sensors to describe instances, only the time ofday, and both sensor and time information. We alsoincluded a variant of nearest neighbour that used noneof the predictor variables; since this viewed all storedcases as equidistant from the test case, it used the av-erage trip duration (for each route) as its prediction.One plausible hypothesis was that the attribute fortime of day might prove more useful on longer trips.Figure 1 (a) shows the behavior of the �ve predictionmethods, in terms of their �+� bounds, broken downby the trip length. All of the predictors, including thecontrol method, fare better on longer trips, but sensorinformation about tra�c still dominates even on tripsof 25 miles. Moreover, including the time of day pro-vides no predictive ability above that available from thesensor readings alone, independent of trip length.Figure 1 (b) presents similar results, except that itpartitions behavior by the time of day. For this partic-ular stretch of freeway (southbound on Interstate 5 toSan Diego), the primary rush hour occurs in the morn-ing. Surprisingly, the control method's performance isnearly constant: its �+� bound hovers between 30and 50 throughout the day, with no obvious pattern.

Because the control predictor's estimates are indepen-dent of time, we would expect it to be inaccurate atrush hour, but the learned predictors are much morea�ected. One likely explanation is that the control pre-dictor consistently over-estimates trip times, improvingits accuracy at rush hour at the expense of other times.In fact, the learned predictor that uses just time ofday does spectacularly badly during rush hour, witha �+� bound of 70 to 90 between 7 and 9 AM. Theother three learned predictors consistently have �+�bounds of 5 to 20 outside rush hour and 20 to 50 duringrush hour. One reason that time of day fares so poorlymay be that speed during rush hour is inherently unpre-dictable. In our 6,600-trip data set, the mean durationis about 500� 400 seconds, but the mean during rushhour (7 to 9 AM) is about 650 � 550 seconds. Sincethe duration for rush-hour trips has a higher variancethan for others, a prediction based on these trips willalso have higher variance. Using tra�c sensors sidestepsthis problem by basing predictions on trips with similardriving conditions, rather than similar times of day.Related Work on Predicting Trip TimesThere exists considerable literature in the area of tra�cmanagement and intelligent highways, some of whichpertains to predicting the duration of trips. We focuson the most closely related work here, although workin other areas of data mining, such as regression for�nancial prediction, also bears on our approach.Oda (1990) reports one e�ort, which we discoveredafter obtaining our results, that predicts travel timesusing an approach similar to our time-series formula-tion. He compared his method's predictions to observedtravel times on a single stretch of freeway, achievingslightly lower mean error than the best of our predic-tors, but he did not report the variance of his method.In later work, Oda, Takeuchi, and Niikura (1996) re-port results in which they predicted trip times using



Learning to Predict Automobile Trip Duration 5`sensor' information uploaded from cars driving alongthe route. In this case, the prediction errors had botha low mean and a low variance, suggesting that currentspeed information from other cars is highly useful.Three other e�orts also have similar research goals.Ho�mann and Janko (1990) describe a system thatlearns the average speed per road segment in Berlin forone of four time periods (such as morning rush hour),but they did not report their predictor's performance.Taylor and Meldrum (1995) used learning in multi-layerneural networks to predict the tra�c volume at an in-dividual sensor; their work is similar to our own exceptfor its focus on volume rather than travel time. Finally,Fu and Rilett (1995) used learning in neural networksto improve prediction of trip times in an arti�cial en-vironment; their formulation was very similar to ours,using features like the origin, the destination, and thestart time as the basis for predictions.Concluding RemarksAlthough we have made clear progress toward betterpredictors for trip duration, there remain many avenuesfor improvement. Recall that we estimated our travel-time data from readings of highway sensors, rather thanfrom measured durations of individual trips. In orderto test our approach on actual trip times, we are col-lecting data from automobiles in Silicon Valley that areequipped with a global positioning system, which letsus compute their time on each segment of a route. Thiswill also let us predict trip durations for a given driver,which should be more accurate than predictions for anaverage driver. The availability of detailed trace datawill also let us incorporate additional features from dig-ital maps, such as the presence of intersections and roadtopology, in the learned predictors.Other directions for future research focus on di�erentformulations of the problem. Our breakdown of predic-tion errors by time of day showed that all the learningmethods, even when using sensor readings, did worseduring rush hour than during other times. The factthat tra�c speed is less predictable during rush hoursuggests that we also try predicting tra�c volume. Thisvariable may be less erratic during rush hour, and it canalso play a role in route planning, since drivers typicallyprefer to avoid routes with high congestion.Also, to date we have assumed that the predictiontask occurs just before the user intends to start a trip,since one major use for trip duration estimates is withinautomated route planners. However, making predic-tions further in the future can also useful. For example,a driver may want to know in advance how long a tripto the airport will take, so he can plan when to pack.Changing the time of the prediction task should reducethe predictive utility of tra�c sensors. The worst-casescenario is given by the `just time of day' curve in Fig-ure 1 (b), which shows that performance without sen-sors is two to �ve times worse than when using sensors.A model of the degradation in predictive accuracy withincreasingly delayed start times would be useful.

Another limitation is that our approach to learningduration predictors does not handle long-term trends.Suppose the same trip at 9 AM Monday morning onconsecutive weeks takes ever increasing amounts oftime; our current use of nearest neighbour will miss thistrend, since it will average the durations across di�erentweeks. One response would be to formulate the problemdi�erently, so as to incorporate information about tripson previous weeks; this scheme bears a resemblance tomethods used in the �nancial prediction community.In summary, we have explored the use of inductionmethods to predict the duration of trips in an automo-bile. In the process, we built a database of trips andtheir durations from actual tra�c speeds on San Diegofreeways, and we tested our learned predictors againsta control method that uses speeds encoded in digitalmaps. Our experiments revealed that the learned pre-dictors were generally better than the control predic-tor, in that they place tighter bounds on the predictionerrors. We also noted that the most useful featuresinvolved tra�c speeds available from sensors along forthe route; surprisingly, the time of day and day of weekwere much less useful. Finally, we found that longertrips support more accurate predictions and that rushhour is less predictable than other times of day. Al-though there remains room for improvement, the ex-isting results show the promise of machine learning forpredicting the duration of automobile trips.AcknowledgementsWe thank Jerome Friedman, David Moriarty, and SethRogers for useful discussions that helped us formulatethe approach we have reported in this paper.ReferencesFu, L., & Rilett, L. R. (1995). Dynamic O-D travel timeestimation using an arti�cial neural network. Proceedingsof the Vehicle Navigation & Information Systems Confer-ence (pp. 236{242). Seattle: IEEE Press.Ho�mann, G., & Janko, J. (1990). Travel times as a basicpart of the LISB guidance strategy. Proceedings of theInternational Conference on Road Tra�c Control (pp. 6{10). London: IEE.Langley, P., & Simon, H. A. (1995). Applications of ma-chine learning and rule induction. Communications ofthe ACM, 38 , 55{64.Oda, T. (1990). An algorithm for prediction of travel timeusing vehicle sensor data. Proceedings of the InternationalConference on Road Tra�c Control (pp. 40{44). London:IEE.Oda, T., Takeuchi, K., & Niikura, S. (1996). Travel timemeasurement using infrared vehicle detectors. Proceed-ings of the International Conference on Road Tra�cMonitoring & Control (pp. 178{182). London: IEE.Pindyck, R. S., & Rubinfeld, D. L. (1991). Econometricmodels and economic forecasts (3rd edition). New York:McGraw-Hill.Taylor, C., & Meldrum, D. (1995). Freeway tra�c dataprediction using neural networks. Proceedings of the Ve-hicle Navigation & Information Systems Conference (pp.225{230). Seattle: IEEE Press.


