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Abétract

In recent years, researchers have made con-
siderable progress on the worst-case analysis
of inductive learning tasks, but for theoreti-
cal results to have impact on practice, they
must deal with the average case. In this pa-
per we present an average-case analysis of a
simple algorithm that induces one-level deci-
sion trees for concepts defined by a single rel-
evant attribute. Given knowledge about the
number of training instances, the number of
irrelevant attributes, the amount of class and
attribute noise, and the class and attribute
distributions, we derive the expected clas-
sification accuracy over the entire instance
space. We then examine the predictions of
this analysis for different settings of these do-
main parameters, comparing them to exper-
imental results to check our reasoning.

1 INTRODUCTION

In recent years, machine learning has made consider-
able progress in both the theoretical analysis of learn-
ing tasks (e.g., Kearns, Li, Pitt, & Valiant, 1987; Haus-
sler, 1990) and in the experimental evaluation of spe-
cific algorithms (Kibler & Langley, 1988). However,
most theoretical work has remained disconnected from
practical algorithms, and the worst-case predictions of
the PAC learning framework have been strikingly dif-
ferent from results obtained in experiments.

Recently, a few researchers have presented average-
case formulations of particular algorithms. Pazzani
and Sarrett (1991) analyzed a simple conjunctive
learning method, whereas Hirschberg and Pazzani
(1991) studied an algorithm for inducing k-CNF con-
cepts. In these two studies, the authors used analy-
ses of the algorithms’ behavior under various condi-
tions, along with information about the domain, to
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predict average-case learning curves. They also com-
pared these predictions to the methods’ actual behav-
ior on the same domain.

We believe that this work constitutes an excellent ex-
ample of analytical evaluation, and we hope that oth-
ers will follow its approach. However, the results to
date have been drawn from analyses of algorithms that

" make little contact with ones that are used in the prac-

tice of machine learning. In this paper, we follow a
similar path with respect to a more relevant algorithm,
first reporting our theoretical treatment and then its
predictions to experimental results.

Our long-term goal is an average-case analysis of meth-
ods for decision-tree induction, but here we focus on
a simpler algorithm that constructs one-level decision
trees, or ‘decision stumps’. Although these may seem
trivial at first glance, they force one to address issues
that arise in the induction of full decision trees, and
we anticipate that many of the lessons learned will
transfer to an average-case analysis of this more gen-
eral problem. In addition, previous work in theoret-
ical psychology has addressed the learning of “single

" attribute discriminations” in humans (Levine, 1966).

Also, Holte (1991) reports experimental results sug-
gesting that, in many domains, decision stumps are
nearly as accurate as full decision trees. Thus, despite
its simplicity, the algorithm has some potential as a
practical induction method. Now let us turn to our
analysis of the algorithm.

2 ANALYSIS OF THE ONE-LEVEL
ALGORITHM

Consider a simple algorithm ONE-LEVEL that induces
a one-level ‘decision tree’ from a set of preclassified
training instances. In this scheme, one selects a single
attribute for predicting class membership. To simplify
matters, we consider only Boolean concepts where in-
stances are represented as a set of Boolean attributes;
in particular, we focus on concepts consisting of a sin-
gle relevant attribute A°, and g¢ irrelevant attributes
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Ai,..., A, For the purposes of our analysis, we define
an attribute A; to be irrelevant if the logical descrip-
tion of the target concept (in this case A°) does not
contain A;. We also assume that the irrelevant at-
tributes are independently drawn from the same prob-

ability distribution P(4;).

For each attribute A, ONE-LEVEL computes a score
measuring how well A separates the classes. Since the
concept and attributes are Boolean, we can count the
number of times, over a training set of size n, an at-
tribute and the concept have the same values (both
true or both false) and the number of times they have
different values (one true and the other false). If we
loosely refer to these counts as |A = C| and |A £ C|,
respectively, the score is computed by the expression
n

and has the range 1/2 < score(A) < 1. Mingers
(1989) presents an excellent review of measures that
have been used in inducing decision trees, including
Quinlan’s (1986) original information gain metric. Al-
though our function is considerably simpler than these
measures, it gives the same ordering on attributes in
domains that involve only Boolean attributes, and it
is more amenable to analysis. As in more complex al-
gorithms, ONE-LEVEL prefers the attribute with the
best score. In case of ties, the algorithm randomly
selects one of the best-scoring attributes.

The goal of our analysis is to predict P(R),, the prob-
ability that the induced ‘decision stump’ will make a
correct classification on a test instance after n train-
ing instances. We will consider the effects of four fac-
tors: the number of irrelevant attributes; the amount
of class and attribute noise; the class and attribute dis-
tributions (frequencies); and the number of training
instances observed. To make our analysis tractable,
we will also assume the above evaluation function for
measuring the discriminating power of each attribute.

2.1 THE NUMBER OF IRRELEVANT
ATTRIBUTES

We begin our analysis by examining how the num-
ber of irrelevant attributes influences the probability
of selecting the relevant one. Suppose we present ONE-
LEVEL with training data from a domain in which
there is one relevant attribute A° and g irrelevant at-
tributes Ay,..., 4,.

We want to determine the probability that, over a
training set of n instances, exactly ¢ of the ¢ irrele-
vant attributes will distinguish the class label as well
as the relevant attribute and the remaining q — ¢ irrel-
evant attributes score worse; we use P(Y;), to denote
the probability of this event. Let £ be the observed
score of the relevant attribute A° on the n training in-
stances, and let § be the analogous score for a partic-

ular irrelevant attribute.! In the noise-free case, # = 1
and P(T) therefore depends on the likelihood of an

- irrelevant attribute perfectly partitioning the training

set into positive and negative instances. Given q irrel-
evant attributes, there are many ways in which exactly
i of the ¢ irrelevant attributes will score as well as the
relevant attribute A°, and in which each of the re-
maining ¢ — ¢ attributes scores worse than A°. If we
assume that all irrelevant terms follow a product dis-
tribution (i.e., they are sampled from the same proba-
bility distribution), we can compute the probability of
this event as

Pty = (1) Pa=aPa<a ,

where P(§ < &) = 1 — P(g = &) for the noise-free
condition. This expression is analogous to the bino-
mial distribution obeyed by a sequence of flips with a
biased coin.

Recall that, given two or more attributes with equal
scores, the ONE-LEVEL algorithm selects one of these
at random and uses this feature in classifying test in-
stances. With this strategy, the probability that the
single relevant attribute A° will be selected after ex-
actly n training instances is

q
1
S(A%), = —P(Y; . 2
(49 = 2 737 POTO @
This expression incorporates the case in which the rel-
evant term wins outright (¢ = 0) and the situation in
which it ties with one or more irrelevant terms but is

selected anyway (i > 0).

2.2 NOISE AND FREQUENCY

An issue central to the above analysis was the fact
that £, the score of the relevant attribute, was always
equal to 1. This will not be the case in the presence of
noise. Because ONE-LEVEL uses the evaluation func-
tion score to select the attribute on which to base
its predictions, we would like to know the expected
score(A;) for a given attribute. For this we must cal-
culate P(A; = C), the expected probability that at-
tribute A; has the same value as the class label C. For
an irrelevant attribute A;, this probability is

P(A; = C) = P(C)P(4;) + P(C)P(&;) ,

where P(C) and P(A;) are the probabilities of a pos-
itive instance and a positive value for an irrelevant

- attribute, respectively, and where P(C) = 1 — P(C)

and P(A;) = 1 — P(4;). However, since the probabil-
ity for the relevant attribute A° is not independent of
the class label, we must handle it separately; if there is
no noise in the training data, we have P(A° = C) = 1.

Tn this analysis, most values of interest are dependent
on the number of training instances, n, but we will omit
the subscript for £ and § in order to reduce clutter.



Noise in the training instances modifies the expected
scores for both relevant and irrelevant attributes. Let
z be the level of class noise — the probability that the
actual value of the class attribute will be replaced with
the opposite value. Similarly, let w be the level of
attribute noise — the probability that the actual value
of a particular attribute (relevant or irrelevant) will be
replaced with its opposite.? We use P(B) to denote
the probability of some event B before noise has been
added and P’(B) to denote the probability after noise
has been inserted.

Thus, to determine the expected score for an irrelevant
attribute A; in a noisy domain, we must compute

P'(A; = C) = P'(C)P'(A;) + P'(C)P'(4;)

Using our definitions of class and attribute noise, we
can express the post-noise probability of C as

P'(C) (1= 2)P(C) + 2(P(C))
= P(C)1-2z]+2

and the post-noise probability of A; as

P'(4) = (1-w)P(4)+w(P(4))
= P(4;)[1—2uw]+w

Note that these expressions include both the case in
which the attribute was actually true and noise has
not corrupted this value, and the case in which it was
actually false and noise has replaced it with true as
the observed value.

In contrast, we know that, for the noise-free case, we
have P(A° = C) = 1. Thus, the relevant attribute A°
can have the same value as C' in the presence of class
noise z and attribute noise w only if neither or both
of A° and C are corrupted by noise. In the presence
of noise, we have

PA=C)=01—-w)(l—-2)+wz

Note that this probability is independent of the class
frequency and depends only on the noise levels.

2.3 THE NUMBER OF TRAINING
INSTANCES

Our goal in this endeavor was to predict the estimated
score for a particular attribute, and we now nearly
have the tools to accomplish this. Let us define the
term Equ(A, n,m) as the probability that a given at-
tribute A will have the same value as the class label

2Qur treatment of noise owes much to discussions with
Michael Pazzani, who made a number of helpful sugges-
tions. Quinlan (1986) uses an alternate definition in which
the noise level equals the probability that a value will be
replaced with one selected randomly from the set of possi-
ble values (including the original). Pazzani {personal com-
munication, 1991) has revised our analysis to handle this
formulation of noise.
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on exactly m instances in a training set of size n. This
probability is simply

Equ(A,n,m) =P (A=C)"P'(A£CO)"™ ™

Recall that & denotes the estimated score for the rel-
evant attribute based on a sample of n instances, and
that ¢ indicates the estimated score for irrelevant at-
tribute A; on the same instances. We can express the
probability distributions for & and § using the bino-
mial and the terms developed above, which gives

P(e= %) - (’;) [Equ(4°, n, k) + Equ(A°, n, n—k)]
and
P(§= i—) = (Z) [Equ(Ai, n, k) + Equ(A;, n,n—k)]

Note that these expressions give different values for
different numbers of training instances.?

Now we are ready to generalize equation (1) from Sec-
tion 2.1, which calculates the probability P(Y;), that
exactly ¢ irrelevant attributes will score the same as
the relevant attribute A° and that the remaining ¢ —1
irrelevant attributes will score worse than A°. In the
noise-free case, there was only one possible score for
A®°, but now we must consider all possible scores for
A°. Furthermore, with the presence of noise there is
the possibility that an irrelevant attribute may actu-
ally score better than the relevant attribute; the fol-
lowing equations do not include the likelihood of this
occurrence. For each possible score # for the relevant
attribute, we must consider the probability that ¢ ir-
relevant attributes score § = & and that the remaining
ones score § < &. This expands to

Pt = 3 Pe=5)(1)Pa=yPa<ar

k=[%]
where
m m—1 ]
P(I<—)= ) P(I=1)
i=l%]

By substituting P’/(Y;), for P(Y;), in equation (2),

" we obtain a means for predicting the correctness of

the ONE-LEVEL algorithm for different levels of class
and attribute noise, for different numbers of irrelevant
attributes, and for different numbers of training in-
stances.

2.4 PREDICTIVE ACCURACY OF THE
INDUCED TREE

If we hope to determine the predictive accuracy of de-
cision stumps generated by the ONE-LEVEL algorithm,

3The equations as given here hold only for numbers & >
5. When k = Z (i.e., the lowest possible score an attribute
may have), only one Equ(A,n, k) term should be included
in the expression.
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we need more than the probability that it will select
the relevant attribute. We also need to understand
the accuracy that results when this occurs and when
it does not.

Whether the attribute A that ONE-LEVEL selects is
relevant or irrelevant, there are two possible ways that
A can split the decision stump. In one case, the pres-
ence of the feature A indicates class membership (i.e.,
the presence of C); in the other case, the absence of
A is associated with class membership. If one has se-
lected the relevant attribute by associating A° with C
and A° with C, which we denote with a subscript “+7,
the probability of correct classification R4 (A4°) = 1,
provided one assumes that test cases are free of noise.
Conversely, if one has selected A° with its absence pre-
dicting C, then the probability of correct classification
R_(A°) = 0. To compute R(A°), the overall proba-
bility of correct classification for A°, we must multiply
the probability of selecting A°® in both associations by
their respective accuracies. For the relevant attribute,
this gives the expression

RA)=(1) )

k=T3]

since the term for R_(A°) cancels to zero.

(Z) Equ(A®,n, k)

If instead one has selected the irrelevant attribute A;
and associated its presence with C, the probability of
correct prediction is the probability that A4; and C are
both either present or absent in the test instance, or

Ri(4i) = P(C)P(4;) + P(C)P(4;)

In contrast, if one has selected A; and associated its
absence with C, the probability of correct prediction
is
R_(4;) = P(C)P(&;) + P(C)P(4:)

Note that these are simply the noise-free probabilities
that an irrelevant attribute and the class label will
have the same value in any given instance. To compute
the overall probability of correct classification when
one has selected A4;, we must multiply these two terms
by the probability of selecting A; with the respective
associations, which gives

R(A) = Ry(4) i (Z)Eqv(Ai,n,k)

k=T3]

+ R_(4) f: (Z)Eqv(A,-,n,n—k)

b=T4]

Finally, we can compute the overall probability of cor-
rectly classifying a given test case after n training in-
stances, whether ONE-LEVEL has selected the relevant
attribute or some irrelevant attribute. Using terms
from the above analyses, we have

P(R), = R(A°)S(A°)n + R(4:)[1 - S(A°%),]

This expression describes the probability of correct
prediction on a test instance using the ‘decision stump’
constructed by the ONE-LEVEL algorithm. From this
equation, one can predict the effect on accuracy of
the number of training instances, the amount of class
and attribute noise, the class and attribute frequen-
cies, and the number of irrelevant attributes. Thus,
we have accomplished our original goal.

3 BEHAVIOR OF THE ONE-LEVEL
ALGORITHM

Developing equations that relate domain characteris-
tics to an algorithm’s behavior is only the first step
toward understanding. We are also interested in the
practical implications of these equations for the algo-
rithm, and in whether the behavior predicted by the
equations corresponds to the algorithm’s actual behav-
ior. In this section we graphically depict the effects
of the factors we considered in the analysis, including
the number of training instances, irrelevant attributes,
noise, and frequency.

3.1 THE EFFECTS OF TRAINING
INSTANCES

The independent variable most frequently manipu-
lated in machine learning papers is the number of
training instances. A performance measure such as ac-
curacy, when plotted as a function of this variable, pro-
duces a learning curve.* The primary characteristic of
interest in learning curves is whether performance im-
proves with the number of training instances.

Our analysis of the ONE-LEVEL algorithm shows that

" its probability of a correct prediction increases with

this factor. Later in this section, we present this ef-
fect graphically for different numbers of irrelevant at-
tributes, noise levels, and attribute frequencies. We
also show that, for noise-free test instances, the asymp-
totic accuracy for the ONE-LEVEL algorithm is always
perfect. In each of our graphs, we include both the
predicted learning curves (shown as lines) and the ac-
tual accuracies (using 95% confidence intervals) ob-
tained by running ONE-LEVEL in the specified do-
mains. Each interval on the curves represents an av-
erage over 500 runs on randomly generated training
instances, in which the accuracy of the resulting de-
cision stump was measurered on a single set of 100
randomly generated, noise-free test instances. These
experimental results correspond quite well with the
learning curves predicted by the analysis, thus pro-
viding a check on our reasoning and supporting our
claims about average-case behavior.

“This term is typically used in describing the learn-
ing behavior of incremental methods, but one can measure
analogous effects for nonincremental techniques.
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Figure 1: Three learning curves showing predicted (lines) and experimental (95% confidence intervals) results for
ONE-LEVEL’s accuracy as a function of the number of training instances for three different number of irrelevant

attributes.

3.2 THE EFFECTS OF IRRELEVANT
ATTRIBUTES

The analysis in Section 2.1 suggests that the number of
irrelevant attributes in a domain will affect the ONE-
LEVEL algorithm’s learning curves. Specifically, the
more irrelevant attributes that describe the instances,
the lower the probability that the method will select
the relevant attribute A° to predict the class name of
the test instances. That is, as the number of irrelevant
attributes ¢ increases, so does the probability that a
fixed number ¢ of them will split the training instances
as well as, or better than, the relevant attribute.

Figure 1 shows the predicted and observed learning
curves for three levels of irrelevant attributes ¢ when
other domain parameters are held constant. In partic-
ular, these curves represent a noise-free domain where
the class frequency is 50% and the attribute frequency
is 50%.

The first result to note is the peculiar ‘S’ shape of the
curves. Most learning curves previously reported in
the literature immediately begin to improve and then
level off. We believe this occurs because most induc-
tive learning research has focused on domains with rel-
atively few irrelevant attributes. In contrast, the ‘S’
shape arises from the disparity between the number of
relevant and irrelevant attributes. As one increases the
number of irrelevant features from one to 10 to 100,
the ‘S’ shape becomes more and more pronounced.

As we noted above, the number of irrelevant attributes
has no affect on the level of asymptotic accuracy; our
intuition suggests that domains with more irrelevant

features would require more instances to reach this
asymptote. However, inspection of the curves in Fig-
ure 1 show a second interesting result — that the num-
ber of training instances required to reach a given level
of accuracy increases only logarithmically with the
number of irrelevant attributes. Littlestone (1988) has
demonstrated a similar effect for another algorithm.

3.3 THE EFFECTS OF CLASS AND
ATTRIBUTE NOISE

Like the number of irrelevant attributes, we expect
that noise of various types will also have significant

. effects on classification accuracy. As we described in

the analysis, the level of noise is simply the probability

. that a value will be reversed.

Here we focus primarily on class noise. In unreported
experiments, we have observed that class noise and
attribute noise have identical affects on ONE-LEVEL’s
learning rates. This should not be surprising, since our
analysis assumes a single relevant attribute; a partic-
ular noise level in either the class label or each of the
attributes has the same effect on P(A° = C), the prob-
ability that the relevant attribute and the class label
will have the same value. The change in P(A° = C) is
the primary effect of noise, and since there is only one
relevant attribute, attribute noise changes this prob-
ability the same amount as class noise. Note that
the conditional probability P(C|A;) remains P(C) for
each irrelevant attribute regardless of attribute noise.
The influence of noise in these attributes is relatively
minor, as we discuss shortly.
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Figure 2: Predicted and experimental accuracy as a function of training set size for four levels of class noise.

Figure 2 shows the predicted and observed effects
of training instances and class noise on classification
accuracy and learning rate. As with irrelevant at-
tributes, noise has no ultimate effect on the asymp-
totic accuracy. The algorithm converges on the perfect
score for all levels of noise less than 50%.5 Another in-
teresting point to observe is that, unlike the number
of irrelevant attributes, the noise level mainly affects
the overall rate of improvement. That is, increasing
the number of irrelevant attributes shifts the learn-
ing curves somewhat to the right, but increasing the
noise level flattens or stretches the S shape. In sum-
mary, ONE-LEVEL is robust with respect to class and
attribute noise, but its behavior is more seriously al-
tered by this factor than by the number of irrelevant
features.

3.4 THE EFFECTS OF CLASS AND
ATTRIBUTE FREQUENCY

In our analysis of Section 2.2, we showed that the
class frequency P(C) and the frequency of the irrel-
evant attributes P(A4;) directly determine P(4; = C),
the probability that an attribute and the class will
have the same value.® There are two places in the
general analysis where this probability is important.
The first involves selecting the attribute used to split
the training instances and to predict future test in-

5For this noise level, we would expect the algorithm to
perform at chance (50% accuracy), and for higher levels,
we would expect it to converge on the opposite concept
(0% accuracy).

8We ignore the frequency of the relevant attribute be-
cause, prior to the introduction of noise, it is identical to
the class frequency.

stances. When P{4; = C) is close to either one or
zero, then ONE-LEVEL is more likely to select the ir-
relevant attribute as the best discriminator for a given
set of instances. Therefore, it will need more instances
to discover the independence of the class and irrele-
vant attributes. Thus, skewed frequency distributions
for the class and irrelevant attributes tend to increase
the difficulty of selecting the relevant attribute.

- The second place in which P(4; = C) is important

concerns predicting the class label of a test instance.
Even an irrelevant attribute is reasonably good at pre-
dicting the class when the label and attribute values
are usually the same (or different). That is, indepen-
dent of the number of training instances, the further
P(A; = C) is from 0.5, the greater the probability
R(A;) that a correct prediction will be made if ONE-
LEVEL has selected an irrelevant attribute.

Figure 3 shows the influence of the attribute frequen-
cies on the learning curves for the algorithm. In this
case, we assumed ten irrelevant attributes, no noise,
and a class frequency of 10%. These curves take into
account both the greater difficulty in selecting the rel-
evant attribute and the increased accuracy inherent in
a skewed frequency distribution. Note how the curves
cross each other; the skewed frequency condition starts
with the better accuracy but takes longer to reach
asymptote. Conversely, the balanced frequency case
starts off lower but quickly discovers the relevant at-
tribute and reaches asymptote before the other.

Given these insights about the effects of frequency,
let us return to the results characterizing the effect
of noise on predictive accuracy. As we saw above, in-
troducing noise (of either type) has two main effects.



Probability of correct classification

Induction of One-Level Decision Trees 239

<
(=]
P(A) = 0.05
=050 ________
o P(A)
o
o
o ] ) ) ] 1 1
0 5 10 15 20 25 30

Number of training instances

Figure 3: Learning curves showing the effects of the frequency distributions for irrelevant attributes.

First, the conditional probability P(C|A°) is no longer
one but is reduced according to the level of noise. Sec-
ond, the frequency distributions of the class (in the
case of class noise) and irrelevant attributes (in the
case of attribute noise) are moved closer to 50%. Ear-
lier we showed that the first effect increased the num-
ber of training instances required to reach asymptote,
and here we see that the second effect makes the selec-
tion task easier, thus reducing the number of instances
to asymptote. However, our results on noise indicate
that the first factor dominates the second, so that noise
slows down learning overall.

In summary, the effect of frequency differs from that of
irrelevant attributes and noise in that it involves an in-
herent tradeoff. Skewed frequencies lead to high accu-
racies early in training but take longer to reach asymp-
tote, whereas balanced frequencies produce lower early
accuracies but reach the asymptote with less experi-
ence. The noise level also impacts frequency, indirectly
reducing the negative effects of noise but not eliminat-
ing them.

4 DISCUSSION

We are certainly not the first to carry out a theoreti-
cal analysis of inductive learning. Research within the
PAC paradigm has produced a wide range of results
(e.g., Kearns et al., 1987; Haussler, 1990). In many
cases, these results take the form of determining, for
a given class of concepts, the number of training in-
stances required to induce a concept having accuracy
1 — ¢ with probability 1 — 6. However, as Haussler
has noted, such analyses usually predict much slower

learning rates than observed in experimental studies of

induction. This is not surprising, given that the PAC

. approach aims for worst-case bounds that are indepen-

dent of the distribution of the training instances.

Recent research on average-case analyses has influ-
enced our work to a much greater extent. In particular,
Pazzani and Sarrett (1990) have reported such an anal-
ysis for an incremental conjunctive learning algorithm,
whereas Hirschberg and Pazzani (1991) have presented
an analogous study of inducing k-CNF concepts. As
in our work, these theoretical analyses incorporated
knowledge of the target concept and distributions of
the attributes. They have also explored the effects of
distributions and irrelevant attributes on the average-
case behavior of the algorithms, comparing predicted
and observed learning curves, as we have done. How-
ever, their treatments have not dealt with the effects
of noise, as ours has done.

Another difference from earlier work, including the two
average-case studies mentioned above, is our focus on
algorithms used by members of the machine learning
community who are interested in experimentation and
applications. Some of the most popular methods of
this sort induce decision trees (Quinlan, 1986) from
preclassified training instances, but an analysis of the
general case is beyond the scope of this paper. In-
terestingly, Holte (1991) has recently reported exper-
iments with an algorithm that induces one-level deci-
sion trees, obtaining results nearly as accurate as full
decision-tree algorithms on many of the data sets com-
monly used in studies of supervised learning. These re-
sults suggest that, despite its simplicity, an algorithm
for constructing decision stumps and its average-case
analysis can reveal interesting characteristics of the fa-
miliar data sets. Also, Holte argues that there are
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advantages to studying the behavior of simpler algo-
rithms before turning to complex ones.

The present work provides some important steps in
this direction, but it makes a number of assumptions
that should be remedied in the future. First, it posits
that only one of many attributes is relevant to predict-
ing the class, but some domains may contain redun-
dant features, any one of which can predict the class
equally well. This should increase the rate of ONE-
LEVEL’s learning, but only careful analysis will reveal
the exact effect. Second, our treatment assumes that
the target concept actually contains only one attribute,
whereas it may involve a conjunction or disjunction of
many attributes. Clearly, the current algorithm could
never achieve perfect accuracy in such a domain, but
future work should examine the details of its behavior
under such conditions. In addition, we have assumed
that the distributions of the irrelevant attributes are
independent. We can carry out experiments to de-
termine the degree to which nonindependence causes
ONE-LEVEL’s behavior to diverge from that predicted
by our equations, as Pazzani (personal communica-
tion, 1991) has done. Finally, future research should
explore behavioral interactions among the various do-
main characteristics, rather than focusing on individ-
ual aspects like noise and irrelevant attributes.

In the longer term, we intend to extend our average-
case analysis to handle the induction of full decision
trees. We believe that many of the expressions we have
derived carry over directly to the more general case.
These equations should apply recursively to each level
of the decision tree, computing the probability that
one has selected a relevant attribute and determining
the distribution of training instances that are sorted to
the next level. We must also deal with possible over-
fitting of the training data, since the trees may include
more features than the target concept. This presents
the greater challenge for extending our analysis.

Despite the simplicity of the ONE-LEVEL algorithm,
we also believe that many of its basic behaviors will
carry over to complete decision-tree algorithms. Thus,
we anticipate that average-case analysis of such meth-
ods will predict that asymptotic accuracy is per-
fect, that irrelevant attributes affect the instances to
asymptote only logarithmically, and that class noise
affects this measure more significantly. On the other
hand, the presence of multiple relevant attributes sug-
gests that attribute and class noise will not be sym-
metrical, and Quinlan (1986) has presented some ex-
perimental evidence to this effect. Undoubtedly, other
behavioral differences will also emerge, but we feel that
our experience with the induction of decision stumps
will stand us in good stead when we address more com-
plex algorithms.
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