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Abstract

In this paper we describe an approach to represent-
ing, using, and improving sensory skills for physical
domains. We present ICARUS, an architecture that rep-
resents control knowledge in terms of durative states
and sequences of such states. The system operates in
cycles, activating a state that matches the environmen-
tal situation and letting that state control behavior un-
til its conditions fail or until finding another matching
state with higher priority. Information about the prob-
ability that conditions will remain satisfied minimizes
demands on sensing, as does knowledge about the dura-
tions of states and their likely successors. Three statis-
tical learning methods let the system gradually reduce
sensory load as it gains experience in a domain. We
report experimental evaluations of this ability on three
simulated physical tasks: flying an aircraft, steering a
truck, and balancing a pole. Our experiments include
lesion studies that identify the reduction in sensing due
to each of the learning mechanisms and others that ex-
amine the effect of domain characteristics.

Introduction

Autonomous physical agents interact with the environ-
ment through sensors and effectors, and Al research
on physical control has focused on taking the proper
actions under the right perceptual conditions. Most
work on execution and sensing employs a closed-loop
approach that samples all available sensors on every
time step. However, such work typically assumes that
there is no cost to sensing and that the agent has un-
limited perceptual resources.
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Clearly this assumption does not hold for humans
in many domains. Information overload is a common
difficulty in tasks like flying an aircraft, and we believe
AT systems will encounter similar problems on tasks
of equivalent complexity. We hold that the standard
closed-loop scheme makes sense only in domains where
the results of sensor tests are unpredictable and where
the sensing process is cheap. Given an environment
where test results change infrequently or where sensing
is expensive, a strategy that senses only occasionally is
both possible and desirable.

In this paper, we describe ICARUS, an architecture
for physical agents that addresses the issue of selective
sensing. Rather than sampling sensors on each time
step, the system checks them only if this seems likely
to provide useful information. As in other areas of en-
deavor, intelligent sensing must rely on knowledge of
the domain. This in turn suggests a role for learning,
since we would prefer to avoid the task of encoding such
knowledge manually. Instead, we would like ICARUS
agents to acquire their strategies for selective sensing
from experience with domains in which they operate.

In the following sections, we present the architecture
and illustrate its behavior in a simple sensori-motor do-
main. First we consider ICARUS’ representation of con-
trol knowledge, then turn to the ways that it uses that
knowledge to operate in the environment. After this,
we examine the architecture’s learning mechanisms and
the manner in which they alter performance with expe-
rience. Next we present experimental evidence of the
system’s learning ability in three simulated domains,
and examine the components and domain characteris-
tics responsible for the improvement. In closing, we
review ICARUS’ relation to other work on agent archi-
tectures and suggest some directions for future research.

Representation of Control Knowledge

Before we can describe the mechanisms that underlie
Icarus’ performance and learning, we must first ex-
plain the knowledge structures on which these processes
operate. The basic structure in long-term memory is
the state, which describes a duration of time during
which certain characteristics of the environment hold.
This idea corresponds closely to the notion of a quali-
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tative state in research on qualitative physics (Forbus,
1985; Kuipers, 1985), though here the characteristics
may be either qualitative or quantitative in nature.
Each state includes a name and a set of arguments that
denote objects in the state, a set of activation conditions
that must hold for the state to apply, and the expected
duration of the state. Optionally, the state may also
specify a set of actions, a set of effects these actions
have on the state, and a set of successor states that are
likely to follow the current one. The last feature also
gives the flavor of a finite-state machine.

Consider a simple control task that involves balanc-
ing a pole hinged to a cart that moves only horizon-
tally. Our formulation assumes three sensory variables:
the pole’s angle and angular velocity, in the activation
conditions, and the pole’s angular acceleration, in the
effects field. This particular system does not sense the
cart’s position or velocity, though naturally these vari-
ables influence the simulation. Two actions are possible

pushing the cart to the left and pushing it to the right
with the same force setting.

Figure 1 depicts graphically six states from this do-
main. One of these states, named push-right-when-
falling, describes situations in which the pole is lean-
ing to the right and falling downward in that direction.
The single action for this state is push-right, which
applies a force to the right, and the expected result
is an increase in the pole’s angular velocity. Another
state, push-right-when-rising, has the same action
and expected effects, but the angular velocity is nega-
tive, indicating that the pole is leaning to the right but
rising rather than falling.

IcARUS states also associate numbers with each de-
scriptive literal. For activation conditions, these indi-
cate the probability that the literal will continue to be
satisfied on any given time step once the state is ac-
tive. For the effects field, the numbers likewise show
the probability that, if the actions are carried out while
the state is active, they will have the specified effects.
The numbers associated with each successor indicate
the probability that the specified state will be active
following the current one. A final field specifies the
mean and standard deviation for the state duration.!

The figure also shows some successor relations for
this domain. The state push-right-when-falling is
typically followed by either push-right-when-rising
or no-push-when-fallen-right, which has no suc-
cessors. Similarly, push-right-when-rising is suc-
ceeded by the state push-left-when-falling, which
in turn comes before either push-left-when-rising
or no-push-when-fallen-left, another terminating
state. Finally, state push-left-when-rising precedes
push-right-when-falling, closing the control loop.

'"The architecture’s inclusion of state durations consti-
tutes an important difference from the framework of Markov
decision processes, which models duration by letting states
be their own successors. ICARUS neither allows self tran-
sitions nor requires them, since it models state durations
directly.

IcARUS’ state representation has much in common
with STRIPS operators (Fikes, Hart, & Nilsson, 1971)
in that they specify application conditions, actions, and
effects; they also bear a close kinship to production rules
(e.g., Anderson, 1983; Langley, 1987). However, recall
that, in our framework, both actions and effects are op-
tional. When the effects are absent, ICARUS states are
more similar to the entries in the state-action tables
used in reinforcement learning. When actions are ab-
sent, they have more in common with the states used
in qualitative physics. The inclusion of information
about successors is consistent with the latter’s notion of
envisionment, but it diverges from standard operator,
production-rule, or state-action representations, none
of which store sequential knowledge.

In addition to its long-term state memory, ICARUS
also includes a perceptual short-term memory that con-
tains information about the attributes of objects in the
perceptual field. For the pole-balancing domain, this is
where the system retains information about angle, ve-
locity, and acceleration. We assume that this memory
is updated only when the architecture invokes a sensor
for a particular object; otherwise the contents remain
unchanged from time step to time step.

Finally, a goal memory stores information about the
relative desirability of certain states. This memory con-
tains elements that specify state names and their in-
stantiated arguments, along with their desirability on
the current time step, which corresponds roughly to
the state-action tables used in reinforcement learning
to specify expected rewards. We store this information
apart from states themselves because different orders
are appropriate for different tasks (e.g., balancing the
pole vs. making it fall over to the left), thus giving
the architecture more flexibility. Moreover, different
instantiations of a state may have different priorities.
The current architecture requires the programmer to
provide these priorities, though future versions should
be able to learn this ordering.

Sensing and Execution in ICARUS

Now that we have examined ICARUS’ representation of
knowledge, we can turn to its use of that knowledge.
The basic process operates in cycles, as in architectures
for both production systems and reactive agents. On
each cycle, the system senses the environment, deter-
mines which states match the current situation, selects
one of these matched states, and executes its associated
actions. However, once ICARUS has activated a state S,
it continues to keep S active until its activation condi-
tions or expected effects become false, or until it finds
a successor state that matches and that has a higher
priority than S. This constitutes an important differ-
ence from most other architectures, which reconsider all
possibilities on each cycle.

Another essential difference is that sensing, although
closely intertwined with execution, does not occur by
default. On most cycles, ICARUS checks at most only
those sensors that relate to conditions in the currently
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Figure 1: Six states for the pole-balancing domain that differ in the direction in which the pole leans, in the direction
the pole is moving (light arrow), and in the direction of the applied force (dark arrow).

active state or those in its immediate successors. Nor
does the system check the activation conditions of suc-
cessor states on every time step. Instead, it carries out
the sensing necessary for this process only when knowl-
edge about the state’s duration suggests that succes-
sors are likely to match. In particular, it assumes that
the state duration obeys a normal distribution (an un-
likely but convenient model) and uses the stored mean
and standard deviation to compute the probability that
successors are satisfied. When this quantity exceeds a
system parameter (set to 0.84 in our studies), ICARUS
invokes the sensors needed to test the conditions on the
current state’s successors.

Another strategy for reducing sensor load goes into
effect once the system has activated a new state. Re-
call that each activation condition C has an associated
probability S¢ of being satisfied once the state has be-
come active. ICARUS assumes that each time step con-
stitutes an independent coin toss, letting it compute the
probability Fc r that the condition will still be satisfied

after T steps as Sc”. The architecture carries out the
sensing needed to test a condition C' only when F¢ 1
drops below another global parameter (set to 0.5 in our
runs). The system uses the same strategy for checking
expected effects. For cycles on which a sensor is not
called, ICARUS assumes the value in short-term mem-
ory, which comes from the most recent invocation, is
sufficiently accurate.

For example, the state push-right-when-falling
contains four activation conditions. Two literals simply
posit that the pole has an associated angle and angular
velocity; thus, they have an associated probability of
one. The two other literals state that the angle and
velocity are greater than zero. These have an estimated
probability of 0.4, so that if the parameter is 0.5, they

would produce sensing on every cycle.? In contrast,
if a condition had an estimated probability of 0.8, it
would produce sensing only on every fourth cycle, since
0.8 < 0.5 < 0.83. Thus, ICARUS senses no more than
necessary to be reasonably sure that the conditions and
effects of the current state are still satisfied.

In some cases, the architecture finds that either the
activation conditions or the expected effects of the state
S are not matched on the current time step, and that no
known successor states are satisfied. In this situation,
the system does apply its sensors exhaustively to all
objects in the environment in an attempt to find an ap-
propriate state. (ICARUS uses the same scheme on the
first cycle, since it has no expectations to guide it.) If
one or more states match, the system selects the state
with the highest goal priority score and makes it ac-
tive; these scores also resolve conflicts among different
instantiations of the same state. However, in our ex-
perience the system seldom encounters such situations,
provided it has states that accurately describe the do-
main. To date, we have tested the system only using
noise-free sensors, but we anticipate that averaging sen-
sor values across a number of cycles will produce similar
behavior even when noise is present.

To summarize, ICARUS’ behavior on each cycle in-
volves carrying out the actions associated with the cur-
rently active state and, if the probability is low that
the state’s activation conditions or effects are still sat-
isfied, invoking the associated sensors. If these liter-
als no longer hold, or if the state’s expected duration
has been exceeded, the architecture examines the likely

?Because a literal like (> 7a 0) requires that the vari-
able ?7a be bound, a decision to sense it can lead instead to
sensing another literal like (angle 7pole 7a), even when
the latter is guaranteed to be satisfied.
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successors for another state to activate. These strate-
gies should reduce the system’s sensing costs in domains
with predictable tests and states of long duration, but
they rely on accurate information about conditions, du-
rations, and successors. Let us now consider the origin
of these statistics.

Sensory Learning in [CARUS

There exist many places within the ICARUS architec-
ture where learning might occur. However, our cur-
rent work assumes that the basic control states and
priorities are already in place, and that learning oc-
curs within this context. This approach follows a long
tradition, widespread within the machine learning com-
munity, that relies on background knowledge to con-
strain the learning process. Rather than attempting to
acquire control knowledge, we have focused on three
forms of statistical learning aimed at reducing the de-
mand for sensing. These processes, which we describe
below, learn about which states follow others, durations
of states, and reliability of state conditions.

Learning about Successor States

Earlier we saw that states can include information
about which states may succeed them, along with the
probability of each option. This knowledge determines
the states that ICARUS checks to see if their activation
conditions hold, and thus indirectly influences decisions
about sensing. Although the programmer can provide
the system with information about likely successors, it
can also revise this information with experience.

This learning process operates in a straightforward
manner. Each state S retains a count C for every suc-
cessor that has occurred immediately following S, along
with the total number of times T that S has been ac-
tive. ICARUS updates these counts each time a state
stops being active and its successor has been identified.
From these counts, the system estimates the probability
for each state’s successor as

C+Cy
T+T] ’

where C'; and T are initial counts that correspond to a
prior probability for each state-successor pair given at
the outset.

By convention, we typically provide ICARUS with no
information about the successors of each state. Thus,
for each state S it assumes initially that every state (ex-
cept S itself, since self transitions cannot occur) may
follow with equal probability, leading it to check the
activation conditions for each one. As it gains expe-
rience in a given domain, the system obtains reliable
statistics about the sequence of states that tend to oc-
cur in practice. ICARUS ignores successors for which
the estimated probability is below a certain threshold
(set to 0.05 in the runs described later). As a result,
for domains in which some successors are unlikely, such
learning can reduce sensing costs, in that fewer succes-
sor states (and thus fewer activation conditions) must

be checked. However, for domains in which successors
are less predictable, the system will continue to check
all candidates.

Learning about State Durations

We have also noted that states include information
about their duration, and that the architecture uses this
in determining when to consider possible successors.
ICARUS uses another simple updating scheme for this
state parameter, retaining the total number of times
the state has been active, the sum of its durations, and
the sum of squares. Together, these let the system de-
termine the mean and standard deviation of the state
duration from experience.

Again, the effect of this learning depends on the do-
main. By default, we set each state’s prior mean to 1.0
and its standard deviation to 0.1, which causes ICARUS
to check likely successor states on every time step. If
the state’s actual mean duration is low or its standard
deviation is high, the system will continue this strategy
regardless of the amount of experience with that state.
In contrast, if the mean duration is high and the devia-
tion low, then learning will gradually lead the agent to
make ever longer delays before checking the successor
states, thus reducing the number of activation condi-
tions checked and decreasing the sensing load; this pro-
cess will continue until the estimated mean approaches
the actual one.

Learning about State Conditions

We have also mentioned that, during execution of an
active state, ICARUS uses the probability of success as-
sociated with each activation condition to determine
how often to sense that condition, and that it uses a
similar scheme for expected effects. Although the pro-
grammer specifies the initial probabilities for each con-
dition, a third learning process revises these estimates
in the light of experience.

In support of this activity, ICARUS retains two counts
for each condition and effect in a state: the number of
times K it has been sensed during execution and the
number of times H it has held when sensed. Every
time the system carries out the sensing needed to test a
literal, it increments K, but it increments H only if the
literal is satisfied. As with successors, ICARUS is also
given a prior probability in terms of initial counts K;
and H;. From these numbers it computes

H+ H;
K+ Kr'’

the estimated probability that a condition will remain
satisfied on a time step if that test was satisfied on the
previous one.

By convention, we set the sensing threshold to 0.5
and initialize the probabilities for each condition and
effect to 0.4, which guarantees ICARUS will sense them
on each time step, as this should produce the most rapid
learning. For a literal that is seldom satisfied, the as-
sociated probability will remain low and sensing will
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continue to be frequent. However, for literals that tend
to remain satisfied for many time steps, the probability
will increase and the system will gradually sense it less
and less often.

Experiments with Sensory Learning

Although the intuitions behind our approach to sen-
sory learning seem reasonable, we would prefer stronger
evidence that ICARUS’ mechanisms lead to improved
performance in practice. To this end, we constructed
knowledge bases for three simulated control problems
and carried out a number of experiments to evaluate
the system’s behavior. In this section we describe these
domains, our experimental design, and our findings.

Three Simulated Control Domains

We selected three domains for our study that varied in
their characteristics, in an attempt to ensure general-
ity in our results. We have already described the pole-
balancing task, which has been widely used in studies of
reinforcement learning (e.g., Anderson, 1989; Selfridge,
Sutton, & Barto, 1985). Our formulation of this do-
main uses only three sensory variables and one control
variable, which exerts force to the left or right. The
knowledge base we encoded for the task incorporates
the six states shown in Figure 1, which are sufficient to
balance the pole indefinitely before any sensory learning
occurs. On each run, the pole starts with zero angular
velocity and a randomly selected angle between —0.1
and 0.1 radians.

Our second task involves backing up a truck, com-
posed of a cab and trailer, to a dock while moving at
constant speed. Anderson and Miller (1991) describe
the differential equations for this domain, whereas
Nguyen and Widrow (1989) report an approach to
learning control knowledge in this context. Anderson
and Miller’s formulation assumes four sensory variables
— two coordinates for the back of the trailer and the
angles for the trailer and cab. We have altered this
slightly, using the cab’s angle with respect to the trailer
and adding a sensor variable for the wheel angle. The
single control variable lets the agent increment or decre-
ment the angle of the cab’s wheels. Our control pro-
gram for this domain incorporates 11 distinct states.
On each run, the truck starts with the trailer between
10 and 30 degrees, with the cab angle between 5 and
—5 degrees, and with the x coordinate between 50 and
70 meters from the dock, all sampled randomly from
the uniform distribution.

The third control problem involves flying a simulated
airplane through a three-dimensional slalom course; the
plane must traverse a sequence of rectangular gates that
occur at different angles and elevations from the plane’s
starting position in mid-air. The simulator supports
sensors for the roll and pitch of the aircraft, its alti-
tude, and a variety of other variables, including first
derivatives of many measures. The agent also has infor-
mation about the position of each gate, G, with respect

to the plane, in terms of the apparent horizontal angles
to the left and right sides of G, the vertical angles to the
top and bottom of G, and the distance to G. For the
two-gate courses used in our experiments, this gives a
total of 14 sensors. Controls include the ability to repo-
sition the control stick forward and sideways.® This
slalom task may appear straightforward to the reader,
but Goettl (1993) has found that most human subjects
take hours to become proficient enough to go through
all the gates without error. Our knowledge base for this
task contains some nine durative states.

Basic Learning Results

Our main hypothesis was that the learning mechanisms
described above can lead to a reduction in sensory load
with little increase in error, and our first experiment
was designed to test this prediction. Our main de-
pendent measures were the probability of invoking each
sensor on a given time step, augmented by the domain-
specific measures of error discussed below. The primary
independent variable, apart from the domain, was the
number of training or practice runs the agent had car-
ried out. Our aim was to generate learning curves that
plotted sensory load as a function of experience. Here
we assume that matching contributes little cost once
the sensing process is complete, so that reduction in
sensor load corresponds to potential increase in speed;
this view contrasts with most work on ‘speedup’ learn-
ing (e.g., Minton, 1990), which emphasizes reduction in
matching and search costs.

For each domain, we provided ICARUS with the con-
trol states mentioned earlier and ran the system a num-
ber of times. To maximize sensing at the outset, we
initialized each knowledge base with 0.4 probabilities
for sensor conditions, with mean durations of 1.0 and
deviations of 0.1, and with uniform probabilities for suc-
cessor states. We turned all learning off for the first run
to establish a baseline, then alternated between prac-
tice runs with learning and test runs without, the latter
to obtain measures of performance for a given experi-
ence level.* For each domain, we repeated this process
20 times and combined the results to obtain an average
learning curve.

Figure 2 (a) shows the average results, with 95% con-
fidence intervals, for three sensors on the pole-balancing
task, using 100 cycles for both practice and test runs.
ICcARUS initially calls the sensors for pole angle and an-
gular velocity on nearly every time step, but after ten
practice runs, this has dropped to less than a two-thirds
probability. The reduction for the angular acceleration
is even more significant; its initial probability of being

3This task is distinct from the flight-control domain re-
ported by Sammut, Hurst, Kedzier, and Michie (1992),
which includes takeoff, traversal of a specified path, and
landing on the runway.

“Because the tasks themselves can require alternation
among states and sensors, this approach seemed more ap-
propriate than tracking online learning, as typically done
with reinforcement methods.
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Figure 2: Learning curves for the pole-balancing domain: (a) the probability of invoking three sensors; and (b) error
measured as the absolute angle of the pole from vertical. The results are averaged over 20 runs; the error bars

represent 95% confidence intervals.

called is 0.8, but after two runs it has dropped to 0.2,
having been reduced by a factor of four. Our measure
of error here was the pole’s average angular distance, in
radians, from the upright position, which ranges from
zero to £1.571 (when the pole has fallen); Figure 2 (b)
shows that this error appears unaffected by the reduc-
tion in sensing. Moreover, additional test runs of 1000
cycles after the tenth practice trial showed that the sys-
tem could balance the pole reliably for this period.
We observed very similar behavior (not shown here)
in the truck-steering domain, with both practice and
test runs lasting 90 cycles, for the wheel-angle, trailer-
angle, and cab-angle sensors. On this task, each sensor
was initially invoked on nearly every time step, but the
probabilities for the trailer angle and cab angle dropped
more rapidly than the wheel angle, which appeared to
be less predictable. For this domain, we defined error as
the final angle of the trailer, after the truck has reached
the dock. As before, sensory learning did not seem to
increase this performance measure; behavior was more
erratic than for pole balancing but the angular error
remained small (around three degrees). The important
point is that, qualitatively, the system had no trouble
aligning the trailer with either full or selective sensing.
Again, the learning curves for the flight-control do-
main (based on 70-cycle practice and test runs) reveal
a similar picture. Here the sensors associated with the
plane typically have a higher probability of invocation
than those concerning gates, because the system focuses
on the nearest gate, but in all cases the sensing proba-
bility generally decreases with experience. Figure 3 (a)
shows the results for the plane’s pitch and roll, as well
as the left angle of the first gate. Other sensors have
different slopes and intercepts but follow the same pat-
tern. The measure of error here is the distance from
the gate’s center as the plane passes through the gate’s

x coordinate. Figure 3 (b) indicates this quantity re-
mains unaffected with increased practice and reduced
sensing; more important, the system continues to suc-
cessfully thread gates throughout the learning process.

Sources of Power

The above experiments gave evidence that ICARUS’
learning processes can reduce sensory load without se-
rious increase in errors, but it did not identify which
mechanisms were responsible for the shift. Reason-
ing suggests that revising condition probabilities will
have no effect without increases in expected duration,
and that altering durations will not change behavior
unless successor checking becomes selective. To test
this hypothesis, we ran a ‘lesion’ study in which we ex-
cised some processes but retained others. We examined
three experimental conditions: one in which all learn-
ing mechanisms were active, one in which only successor
and duration learning operated, and one in which only
successor learning occurred. Thus, our main indepen-
dent variable besides experience level was the type of
learning that took place, while our dependent measure
was again the probability of sensing.

Figure 4 (a) gives the learning curves for angular ve-
locity in the pole-balancing domain under these three
situations. They indicate that all three learning pro-
cesses must operate for reduction in sensing to occur
on this task. We found similar results for the truck-
steering domain, though here the combination of suc-
cessor and duration learning gives minor improvement
(not shown) on some sensor variables. However, the
situation was very different for the flight-control task.
As Figure 4 (b) shows for the roll sensor, learning only
about likely successors still provides some improvement,
revising the expected duration leads to additional re-
duction, and altering condition probabilities gives fur-
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Figure 3: Learning curves for the flight-control domain: (a) the probability of invoking three sensors; and (b) error
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ther benefit. We can explain this behavior in terms of
this domain’s states, which tend to employ different sen-
sors; in the absence of condition learning, delayed and
selective checking of successors should reduce sensing
under such circumstances. In contrast, they should not
help in domains for which states typically contain the
same sensors, such as pole balancing and truck steering.

Effect of Domain Characteristics

As Kinny, Georgeff, and Hendler (1992) have shown,
the optimal sensing rate varies with a domain’s charac-
teristics. For tasks in which the environment changes
slowly and the effects of actions are predictable, infre-
quent sensing is sufficient to produce effective behav-
ior; but for rapidly changing or unpredictable domains,
more frequent sensing is needed. Our final experiments
were designed to show that ICARUS’ learning mecha-
nisms responded appropriately to such characteristics,
so that they reduce sensing only to the level proper for
the domain.

To this end, we systematically varied two aspects of
the pole-balancing task, the simplest of our three do-
mains. For one comparison, we altered the simulator
parameter (tau) that specifies the length of each time
step, giving conditions under which the simulator ran at
different rates than in our previous studies. In another
comparison, we modified the simulator to insert ran-
domly a force twice the amount exerted by the agent,
in a randomly selected direction. We intended this to
mimic a malicious observer attempting to upset the bal-
ancing act. Here we varied the probability of force in-
sertion to influence domain uncertainty.

The results of the first study appear in Figure 5 (a),
which shows that when tau is higher than the default
(0.005), the system continues to sense frequently (with
nearly 0.9 probability), as it realizes the need for more
updates to keep the pole balanced in the rapidly chang-

ing world. In contrast, when tau is low, ICARUS senses
less often (with only 0.4 probability) than in the default
situation. The experimental results for unpredictable
environments also agree with our expectations. Fig-
ure 5 (b) shows that increasing the probability of an
external force raises the asymptotic sensing rate, which
is appropriate given that the presence of outside influ-
ence requires more monitoring to avoid disaster.

In both the more rapid and the less predictable vari-
ants of the task, ICARUS retained the ability to balance
the pole, though naturally the average error was higher
for the more difficult tasks, even with full sensing. In
summary, our statistical learning mechanisms tend to
acquire sensing rates that are appropriate for the task
at hand, effectively taking into account the speed and
uncertainty of the domain.

Related Work on Learning and Control

IcARUS holds many features in common with previous
approaches to building intelligent agents, but it also
differs from them in important ways. One common
framework for modeling intelligent behavior is known as
a production system. Like ICARUS, such architectures
contain both short-term and long-term memories, with
the latter consisting of condition-action rules. A pro-
duction system also operates in cycles, on each round
matching rules’ conditions against the literals in short-
term memory, selecting a rule for application, and using
that rule’s action side to determine behavior. Ander-
son’s (1983) ACT and Laird and Rosenbloom’s (1990)
SOAR are two well-known production-system architec-
tures that include learning components, and much of
the work on learning search heuristics (e.g., Langley,
1987; Minton, 1990) assumes a similar framework.
However, most research in this paradigm has focused
on planning and problem solving rather than sensing
and execution. The contents of short-term memory,
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Figure 4: The effect of lesioning learning mechanisms for condition satisfaction and state duration on (a) the angular-
velocity sensor in the pole-balancing domain and (b) the roll sensor in the flight-control domain. (The curves for

successor only and successor/duration in (a) are identical.)

against which rules match, contain inferences rather
than sensory information, and rules’ actions gener-
ate such inferences rather than alter the environment.
Learning typically involves changing the conditions on
rules, composing multiple rules, or changing their rela-
tive priorities. Although this work emphasizes speeding
up processing, it focuses on reducing search and match-
ing costs during problem solving rather than reducing
sensing costs during execution.

In contrast, research on reactive behavior directly ad-
dresses issues of sensing and execution. The standard
reactive system operates in cycles, much like a produc-
tion system. However, rather than matching against
literals in short-term memory, it matches against per-
ceptions of the environment, and rather than altering
the contents of short-term memory, its actions affect
the environment. Work on reinforcement learning (e.g.,
Watkins, 1989; Kaelbling, 1993) incorporates the same
basic control scheme, but also stores priorities with
state-action pairs for use in selecting actions. Such sys-
tems typically invoke all sensors on each cycle, making
decisions locally with no notion of planning or projec-
tion. Within this paradigm, our work comes nearest to
that by Grefenstette, Ramsey, and Schultz (1990), in
that our states closely resemble their control rules.

ICcARUS approximates a reactive system when its
state descriptions contain probabilities that force sens-
ing on every cycle. However, it differs from them in
that, having entered a state S, it keeps S active until
its conditions no longer hold, or until a successor link
directs its attention to an active successor state. More-
over, the system invokes only those sensors associated
with the state during this period. The architecture’s
use of state priorities to select among successor states
shares some features with strategies used in reinforce-
ment learning, but its selective sensing strategies are

quite different from the exhaustive approach to sensing
commonly assumed in that framework.

Nilsson’s (1994) approach to reactive behavior, which
he calls teleoreactive systems, has the greatest similarity
to our own. His scheme incorporates rules that match
against sensory information, that execute actions which
alter the environment, and that are durative in nature.
The main differences are that Nilsson’s framework as-
sumes sensors should be checked on each cycle, and that
it includes no statistical information about conditions,
durations, or successor states to support selective sens-
ing. Nevertheless, the two architectures share many
basic assumptions and techniques, and Nilsson’s work
has influenced our stance on the integration of percep-
tion, action, and cognition. Benson (1995) describes an
extension that learns models of states’ conditions and
effects, but that does not alter the sensing strategy.

Our approach to reactive control bears a strong re-
semblance as well to DeJong’s (1994) work, which also
uses qualitative states to represent knowledge about do-
mains with continuous variables. DeJong’s main con-
cern lies with improving the accuracy of state descrip-
tions over time, rather than with learning to sense se-
lectively, and he stores no explicit information about
succession among states. However, the qualitative rep-
resentation of control knowledge and the general spirit
of the work are much the same.

A few AI researchers have explored the idea of se-
lective sensing, motivated by the realization that mon-
itoring often incurs some cost. Chrisman and Simmons
(1991) describe an approach to static sensing policies
that, although selective, must be determined at devel-
opment time. Another line of work is represented by
Abramson (1991), Kinny, Georgeff, and Hendler (1992),
and Langley, Iba, and Shrager (1994); each presents a
formal model of plan execution that predicts the opti-
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Figure 5: The effect on sensing probability for the angular-velocity sensor in the pole-balancing domain (a) when
the rate of change is altered from the default (tau = 0.005) and (b) when there exists an outside force that affects

the cart with some probability.

mal sensing rate under different levels of sensor cost and
domain uncertainty. Their various models differ some-
what but share the assumption that a single sensing rate
holds across the entire execution process. Tan (1991)
reports work on the induction of sensing strategies, but
his goal was to determine an efficient sequence of sensor
calls, rather than to learn when sensing is necessary.

ICARUS’ association of separate statistics with each
state has more in common with the framework of
Hansen (1994), which represents the environment as
a Markov model in which different sensing rates are
optimal for different states. However, our method for
determining when to sense relies on local state in-
formation, whereas his more sophisticated dynamic-
programming scheme involves some search. Related
work by Hansen and Cohen (1993) adapts ideas from
reinforcement learning to determine sensing rates for
each state from experience; again, their motivation is
similar to our own but the details differ.

Concluding Remarks

In the previous sections we described ICARUS, an archi-
tecture designed to control physical agents in domains
where sensing resources are limited. We found that the
system represents control knowledge in terms of dura-
tive states that borrow features from research in both
planning and qualitative physics. We saw that ICARUS
can behave in purely reactive mode, but that it can
also take advantage of knowledge about the probabil-
ity of sensory conditions being unchanged, the dura-
tion of states, and likely successors. We also described
three statistical learning mechanisms that can acquire
this knowledge from experience, and we reported exper-
imental evidence that they reduce sensing load without
seriously increasing error.

Despite the progress we have made in developing and
testing the architecture, clearly more work remains. In
future research, we plan to further evaluate ICARUS’
performance and learning abilities in new control do-
mains, as additional evidence of the system’s generality.
Obvious candidates include the problems reported by
Grefenstette et al. (1990) and by Anderson and Miller
(1991), for which simulators and results with other sys-
tems are available.

We also need to better motivate the architecture’s
bias toward sensing as seldom as possible. Humans ap-
pear to have severe limits on the number of environ-
mental features that can occupy their attention, which
presumably drives their need to sense selectively. Fu-
ture versions of ICARUS should include a limit on the
number of features that can be inspected on each cycle,
so that there is a clear function for the selective sens-
ing made possible by learning. Under these conditions,
frequent sensing could actually prohibit the agent from
taking actions needed to handle the task, so that re-
duction in sensory load may reduce errors. Attaching
distinct costs to sensors also opens the way to decision-
theoretic methods for selecting the best sensors to sam-
ple on each time step.

Another research direction involves introduction of
additional learning mechanisms, which are currently
limited to altering the probability estimates on condi-
tions, durations, and successors. Given our architec-
ture’s similarity to the teleoreactive systems of Nils-
son (1994) and Benson (1995), it seems natural to bor-
row their approach to inducing action models for use in
learning state descriptions from experience. Moreover,
the system’s use of priorities on states suggests that we
should take advantage of techniques from reinforcement
learning to alter those weights dynamically. Finally, we
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should incorporate methods from Nordhausen and Lan-
gley (1993), who also represent knowledge as durative
states, to induce numeric relations between sensor vari-
ables and state duration, which could further inform
the sensing process. Taken together, these extensions
should make ICARUS a more robust and flexible archi-

tecture for controlling physical agents.
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