
From Proceedings of the Tenth Conference on Uncertainty in Arti�cial Intelligence (1994). Seattle, WA: Morgan Kaufmann.Induction of Selective Bayesian Classi�ersPat Langley (Langley@flamingo.stanford.edu)Stephanie Sage (Sage@flamingo.stanford.edu)Institute for the Study of Learning and Expertise2451 High Street, Palo Alto, CA 94301AbstractIn this paper, we examine previous work on the naiveBayesian classi�er and review its limitations, which in-clude a sensitivity to correlated features. We respondto this problem by embedding the naive Bayesian in-duction scheme within an algorithm that carries out agreedy search through the space of features. We hy-pothesize that this approach will improve asymptoticaccuracy in domains that involve correlated featureswithout reducing the rate of learning in ones that donot. We report experimental results on six naturaldomains, including comparisons with decision-tree in-duction, that support these hypotheses. In closing, wediscuss other approaches to extending naive Bayesianclassi�ers and outline some directions for future re-search.IntroductionIn recent years, there has been growing interest inprobabilistic methods for induction. Such techniqueshave a number of clear attractions: they accommo-date the exible nature of many natural concepts; theyhave inherent resilience to noise; and they have a solidgrounding in the theory of probability. Moreover, ex-perimental studies of probabilistic methods have re-vealed behaviors that are often competitive with thebest inductive learning schemes.Although much of the recent work on probabilisticinduction (e.g., Anderson & Matessa, 1992; Cheese-man et al., 1988; Fisher, 1987; Hadzikadic & Yun,1989; McKusick & Langley, 1991) has focused on un-supervised learning, the same basic approach appliesequally well to supervised learning tasks. SupervisedBayesian methods have long been used within the �eldof pattern recognition (Duda & Hart, 1973), but onlyin the past few years have they received attentionwithin the machine learning community (e.g., Clark& Niblett, 1989; Kononenko, 1990, 1991; Langley, Iba,& Thompson, 1992).In this paper we describe a technique designed to im-prove upon the already impressive behavior of the sim-plest approach to probabilistic induction { the naive

Bayesian classi�er. Below we review the representa-tional, performance, and learning assumptions thatunderlie this method, along with some situations inwhich they can lead to problems. One central assump-tion made by the naive approach is that attributes areindependent within each class, which can harm theclassi�cation process when violated.In response to this drawback, we describe a revisedalgorithm { the selective Bayesian classi�er { thatdeals with highly correlated features by incorporatingonly some attributes into the �nal decision process.We present experimental evidence that this schemeimproves asymptotic accuracy in domains where thenaive classi�er fares poorly, without hurting behaviorin domains where it compares to other induction algo-rithms. We close the paper with some comments onrelated work and directions for future research.The Naive Bayesian Classi�erThe most straightforward and widely tested methodfor probabilistic induction is known as the naiveBayesian classi�er .1 This scheme represents each classwith a single probabilistic summary. In particular,each description has an associated class probability orbase rate, p(Ck), which speci�es the prior probabilitythat one will observe a member of class Ck. Each de-scription also has an associated set of conditional prob-abilities, specifying a probability distribution for eachattribute. In nominal domains, one typically stores adiscrete distribution for each attribute in a description.Each p(vj jCk) term speci�es the probability of valuevj , given an instance of class Ck. In numeric domains,one must represent a continuous probability distribu-tion for each attribute. This requires that one assumesome general form or model, with a common choice be-ing the normal distribution, which can be convenientlyrepresented entirely in terms of its mean and variance.1. We have borrowed this term from Kononenko (1990);other common names for the method include the sim-ple Bayesian classi�er (Langley, 1993) and idiot Bayes(Buntine, 1990).



Selective Bayesian Classifiers 400To classify a new instance I, a naive Bayesian clas-si�er applies Bayes' theorem to determine the proba-bility of each description given the instance,p(CijI) = p(Ci)p(IjCi)p(I) :However, since I is a conjunction of j values, one canexpand this expression top(Cij^ vj) = p(Ci)p(V vjjCi)Pk p(V vj jCk)p(Ck) ;where the denominator sums over all classes and wherep(V vjjCi) is the probability of the instance I given theclass Ci. After calculating these quantities for eachdescription, the algorithm assigns the instance to theclass with the highest probability.In order to make the above expression operational,one must still specify how to compute the termp(V vjjCk). The naive Bayesian classi�er assumes in-dependence of attributes within each class, which letsit use the equalityp(^ vj jCk) =Yj p(vj jCk) ;where the values p(vj jCk) represent the conditionalprobabilities stored with each class. This approachgreatly simpli�es the computation of class probabili-ties for a given observation.The Bayesian framework also lets one specify priorprobabilities for both the class and the conditionalterms. In the absence of domain-speci�c knowledge,a common scheme makes use of `uninformed priors',which assign equal probabilities to each class and tothe values of each attribute. However, one must alsospecify how much weight to give these priors relative tothe training data. For example, Anderson andMatessa(1992) use a Dirichlet distribution to initialize proba-bilities and give these priors the same inuence as asingle training instance. Clark and Niblett (1989) de-scribe another approach that does not use explicit pri-ors, but instead estimates P (Ck) and p(vj jCk) directlyfrom their proportions in the training data. Whenno instances of a value have been observed, they re-place the zero probability with p(Ci)=N , where N isthe number of training cases.2Learning in the naive Bayesian classi�er is an almosttrivial matter. The simplest implementation incre-ments a count each time it encounters a new instance,along with a separate count for a class each time itobserves an instance of that class. These counts letthe classi�er estimate p(Ck) for each class Ck. Foreach nominal value, the algorithm updates a count for2. This technique has no solid basis in probability theory,but it avoids arbitrary parameters and it approximatesother approaches after only a few instances; thus, wehave used it in our implementations.

that class-value pair. Together with the second count,this lets the classi�er estimate p(vjjCk). For each nu-meric attribute, the method retains and revises twoquantities, the sum and the sum of squares, which letit compute the mean and variance for a normal curvethat it uses to �nd p(vj jCk). In domains that can havemissing attributes, it must include a fourth count foreach class-attribute pair.In contrast to many induction methods, the naiveBayesian classi�er does not carry out an extensivesearch through a space of possible descriptions. Thebasic algorithm makes no choices about how to par-tition the data, which direction to move in a weightspace, or the like, and the resulting probabilistic sum-mary is completely determined by the training dataand the prior probabilities. Nor does the order of thetraining instances have any e�ect on the output; thebasic process produces the same description whetherit operates incrementally or nonincrementally. Thesefeatures make the the learning algorithm both simpleto understand and quite e�cient.Bayesian classi�ers would appear to have advantagesover many induction algorithms. For example, theircollection of class and conditional probabilities shouldmake them inherently robust with respect to noise.Their statistical basis should also let them scale well todomains that involve many irrelevant attributes. Lan-gley, Iba, and Thompson (1992) present an average-case analysis of these factors' e�ect on the algorithm'sbehavior for a speci�c class of target concepts.The experimental literature is consistent with theseexpectations, with researchers reporting that the naiveBayesian classi�er gives remarkably high accuraciesin many natural domains. For example, Cestnik,Kononenko, and Bratko (1987) included this methodas a straw man in their experiments on decision-treeinduction, but found that it fared as well as the moresophisticated techniques. Clark and Niblett (1989) re-ported similar results, �nding that the naive Bayesianclassi�er learned as well as both rule-induction anddecision-tree methods on medical domains. And Lan-gley et al. (1992) obtained even stronger results, inwhich the simple probabilistic method outperformeda decision-tree algorithm on four out of �ve naturaldomains.However, the naive Bayesian classi�er relies on twoimportant assumptions. First, this simple schemeposits that the instances in each class can be sum-marized by a single probabilistic description, and thatthese are su�cient to distinguish the classes from oneother. If we represent each attribute value as a fea-ture that may be present or absent, this is closely re-lated to the assumption of linear separability in earlywork on neural networks. Other encodings lead to amore complex story, but the e�ect is nearly the same.Nevertheless, like perceptrons, Bayesian classi�ers are



Selective Bayesian Classifiers 401typically limited to learning classes that can be sep-arated by a single decision boundary.3 Although wehave addressed this limitation in other work (Langley,1993), we will not focus on it here.Another important assumption that the naiveBayesian classi�er makes is that, within each class,the probability distributions for attributes are inde-pendent of each other. One can model attribute depen-dence within the Bayesian framework (Pearl, 1988),but determining such dependencies and estimatingthem from limited training data is much more di�-cult. Thus, the independence assumption has clearattractions. Unfortunately, it is unrealistic to expectthis assumption to hold in the natural world. Corre-lations among attributes in a given domain are com-mon. For example, in the domain of medical diagnosis,certain symptoms are more common among older pa-tients than younger ones, regardless of whether theyare ill. Such correlations introduce dependencies intothe probabilistic summaries that can degrade a naiveBayesian classi�er's accuracy.To illustrate this di�culty, consider the extreme caseof redundant attributes. For a domain with three fea-tures, the numerator we saw earlier becomesp(Ci)p(v1jCi)p(v2jCi)p(v3jCi) :If we include a fourth feature that is perfectly corre-lated (redundant) with the �rst of these features, weobtain p(Ci)p(v1jCi)2p(v2jCi)p(v3jCi) ;in which v1 has twice as much inuence as the othervalues. The emphasis given to the redundant informa-tion reduces the inuence of other features, which canproduce a biased prediction. For example, consider alinearly separable target concept that predicts class Ais any two of three features are present and that pre-dicts class B otherwise. A naive classi�er can easilymaster this concept, but given a single redundant fea-ture, it will consistently misclassify one of the eightpossible instances no matter how many training casesit encounters.Surprisingly, many of the domains in which the naiveBayesian classi�er performs well appear to contain sig-ni�cant dependencies. This evidence comes in partfrom Holte's (1993) studies, which show that one-leveldecision trees do nearly as well as full decision treeson many of these domains. In addition, Langley andSage (1994) found that the behavior of a simple nearestneighbor algorithm does not su�er in these domains,3. The main exception involves numeric domains; Dudaand Hart (1973) present a simple situation in whichtwo decision boundaries emerge from the use of normaldistributions.

as one would expect if there were many irrelevant at-tributes. Since one attribute is su�cient for high accu-racy and the remaining ones do not degrade a nearestneighbor method, then many of the attributes wouldappear to be highly correlated.The strong performance of the naive Bayesianmethod despite violation of the independence assump-tion is intriguing. It suggests that a revised methodwhich circumvents dependencies should outperformthe naive algorithm in domainswhere dependencies oc-cur, while performing equally well in cases where theydo not. In the following section, we discuss a variantBayesian algorithm that selects and uses a subset ofthe known features in an attempt to exclude highlycorrelated attributes. This should let one continueto make the convenient assumption of independencewhile minimizing its detrimental e�ects on classi�ca-tion accuracy.The Selective Bayesian Classi�erOur goal was to modify the naive Bayesian classi�erto achieve improved accuracy in domains with redun-dant attributes. The selective Bayesian classi�er isa variant of the naive method that uses only a sub-set of the given attributes in making predictions. Inother words, the performance component of the algo-rithm computes p(V vjjCk) as the product of condi-tional probabilities, p(vj jCk), for selected attributes vjfrom the original feature set. The learning componentof the selective classi�er augments the original algo-rithm with the ability to exclude attributes that intro-duce dependencies. This process consists of a searchthrough the space of attribute subsets.We made a number of choices in designing the searchprocess. First, the direction of search could proceedin a forward or backward manner. A forward se-lection method would start with the empty set andsuccessively add attributes, while a backward elimina-tion process would begin with the full set and removeunwanted ones. A potential problem with backwardsearch is that, when several attributes are correlated,removing any one of them may not improve perfor-mance since redundant information will still exist. Wechose to use forward selection since it should immedi-ately detect dependencies when a harmful redundantattribute is added.A second decision dealt with the organization of thesearch. Clearly, an exhaustive search of the space isimpractical, since there are 2a possible subsets of a at-tributes. A more realistic approach, commonly used inmachine learning algorithms, is to use a greedy methodto traverse the space. That is, at each point in thesearch, the algorithm considers all local changes to thecurrent set of attributes, makes its best selection, andnever reconsiders this choice. This gives a worst-casetime complexity of O(a2).
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Selective BayesFigure 1. Learning curves for the selective Bayesian classi�er, the naive Bayesian classi�er, and C4.5 with pruning on (a)Congressional voting records and (b) the mushroom domain. The error bars represent 95% con�dence intervals based ona two-sided t test.Third, we needed some metric to evaluate alterna-tive subsets of attributes. We considered the leave-one-out technique for estimating accuracy from thetraining set, since this is the most accurate method ofcross validation. Moreover, it can be applied e�cientlyto a Bayesian classi�er since one can simply `subtract'a given instance from the stored attribute frequencies,measure the accuracy of the resulting classi�er, andadd the instance back. In spite of this, we opted tosimply measure accuracy on the entire training set,since we achieved better results with that method inpreliminary studies.Finally, we considered two criteria for halting thesearch process. One could stop adding attributes whennone of the alternatives improves classi�cation accu-racy, or one could adopt a more conservative strategyof continuing to select attributes as long as they donot degrade accuracy. One argument for the latterapproach is that higher dimensional spaces are morelikely to allow separation of classes with a single de-cision boundary, which favors the inclusion of moreattributes. Because initial experiments favored thisscheme, we incorporated it into the system.To summarize, the algorithm initializes the subsetof attributes to the empty set, and the accuracy of theresulting classi�er, which simply predicts the most fre-quent class, is saved for subsequent comparison. Oneach iteration, the method considers adding each un-used attribute to the subset on a trial basis and mea-sures the performance of the resulting classi�er on thetraining data. The attribute that most improves (or atleast maintains) the accuracy is permanently added tothe subset, with ties broken randomly. The algorithmterminates when addition of any attribute results inreduced accuracy, at which point it returns probabilis-tic summaries based on the current attribute set.

Experiments with Bayesian Classi�ersPrevious comparative studies have shown that thenaive Bayesian classi�er outperforms more sophisti-cated methods such as decision-tree induction in somedomains, but that it performs signi�cantly worse inothers (Langley et al., 1992). We hypothesized thatthe �rst result reects decision trees' reliance on axis-parallel splits, which poorly mimic the actual decisionboundaries in some domains. In contrast, we positedthat the naive Bayesian classi�er did poorly in domainscontaining redundant attributes. Since the selectiveclassi�er should not su�er from the latter problem, wepredicted that it would improve upon the performanceof the naive classi�er in the latter domains, perhapsequaling the accuracy of decision-tree methods, whileremaining superior in the former domains.To test this idea, we compared the behavior ofthe selective Bayesian classi�er to that of the naiveBayesian classi�er and Quinlan's (1993) C4.5 decision-tree algorithm in six domains from the UCI reposi-tory of machine learning databases. We knew thatthe naive classi�er outperforms C4.5 in the soybeandisease, breast cancer, and DNA promoter domains,whereas the reverse is true for the mushroom, Congres-sional voting, and chess endgame domains. Therefore,these domains seemed to provide a good testbed forevaluating the new algorithm.Each data set contains a set of classi�ed instancesdescribed in terms of numeric or nominal attributes.For example, the soybean disease data consists of 47instances described in terms of climate conditions,crop history, and plant symptoms, each labeled withone of four disease classes. The Congressional vot-ing domain describes the 435 members of the 98thCongress by their votes on 16 key issues and labeled
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Selective BayesFigure 2. Learning curves for the selective Bayesian classi�er, the naive Bayesian classi�er, and C4.5 with pruning on (a)chess endgames and (b) breast cancer.as Democrat or Republican. The breast cancer dataincludes 699 instances of malignant and benign tissuesamples described by nine numeric attributes such asclump thickness, marginal adhesion, and mitoses. De-tailed information about these six domains, and manyothers, is available from the UCI repository via anony-mous ftp to ics.uci.edu.For each domain, we randomly generated 20 setsof separate training and test cases. The dependentvariable in our experiment was classi�cation accuracyon the test cases after processing a sample of trainingcases, averaged over the 20 runs. The classi�cationaccuracy of an algorithm is the percentage of test casesfor which it correctly predicts the class. Since we wereinterested in the rate of improvement as well as theasymptotic accuracy of the algorithms, we measuredaccuracy for di�erent numbers of training samples.Figure 1 (a) and (b) present the resulting learn-ing curves for the Congressional voting and mushroomdomains, respectively, with 95% con�dence intervalsshown for each point. In both cases, asymptotic ac-curacy for the selective Bayesian classi�er is notice-ably higher than for the naive method, approachingthe level of C4.5 in the voting domain, but remainingslightly lower for the mushroom data. Figure 2 (a)shows an even greater increase in accuracy for the do-main of chess endgames, but again the selective clas-si�er does not quite reach the C4.5 level.Experimental results for the other three domainspresent a very di�erent picture. Figure 2 (b) showsthat the selective algorithm reproduces the supe-rior performance of the naive Bayesian classi�er overdecision-tree induction in the breast cancer domain.Analogous results appear in Figure 3 (a) and (b) forboth the soybean and DNA promoter data. The oddC4.5 behavior on the soybean data occurs with bothpruning and non-pruning versions of the program.

These results con�rm our predictions about thecomparative behavior of the three algorithms. In do-mains where the naive classi�er exhibits low asymp-totic accuracy, apparently due to the presence of re-dundant attributes, the selective Bayesian classi�ershows a marked improvement. At the same time, itdoes as well as the simple classi�er in domains wherethe latter already outperforms decision-tree induction.Thus, the selective Bayesian classi�er appears to over-come the weaknesses of the other two algorithms.Related Work on Bayesian InductionRecent years have seen growing interest in proba-bilistic approaches to induction, and research in thisgenre has typically followed one of two paths. Briey,one approach focuses on the introduction of new fea-tures and the creation of explicit dependency links,whereas the other emphasizes the clustering of in-stances into taxonomic hierarchies. Each frameworkattempts to improve upon the naive Bayesian classi�erby extending the basic induction algorithm in signi�-cant ways.Kononenko (1991) describes an example of the �rstapproach that tests for dependencies among attributesand creates new features based on the conjunctions ofcorrelated values. This `semi-naive Bayesian classi�er'uses the training data to compute conditional proba-bilities for these joint features, using them to classifytest cases rather than the original ones. However, ex-perimental comparisons between his algorithm and thenaive Bayesian classi�er revealed no di�erences on twomedical domains and only slight improvement on twoothers data sets. Schlimmer's (1987) Stagger con-structed features for analogous reasons and in a similarmanner, though it operated within a rather di�erentprobabilistic framework.
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Selective BayesFigure 3. Learning curves for the selective Bayesian classi�er, the naive Bayesian classi�er, and C4.5 with pruning on(a) the small soybean domain and (b) DNA promoters. Selective Bayes incorporates all attributes for the soybean data,giving an identical curve to that for the naive method.Research on the induction of Bayesian networks(Pearl, 1988) generalizes this basic approach to han-dling attribute dependence. Cooper and Herskovits'(1992) K2 algorithm carries out a greedy searchthrough the space of Bayesian networks, but it requiresthe user to specify an ordering on the attributes, and itdoes not introduce new features. More recently, Con-nolly (1993) has sidestepped this restriction by usinga probabilistic clustering method to generate hiddenattributes that render the observable ones condition-ally independent. However, only Kononenko has ex-plicitly compared the accuracy of his technique to thenaive approach on natural domains, so the usefulnessof these methods' increased sophistication remains anopen question.Langley (1993) describes a straightforward exam-ple of the hierarchy-building approach. His `recur-sive Bayesian classi�er' uses the naive algorithm togenerate a probabilistic summary for each class. Ifthese summaries correctly classify the training set, themethod halts. Otherwise, it calls the naive method re-cursively for each class to which instances from otherclasses were assigned, using all cases assigned to thatclass as training data. The method continues to re-curse until it correctly classi�es all of the training dataor gains no further improvement, then organizes theresulting classi�ers as a hierarchy of probabilistic de-scriptions, which it uses to sort novel test cases. Ex-periments on arti�cial domains showed that this al-gorithm can induce concepts that the naive Bayesianclassi�er cannot handle, but studies on natural do-mains showed no signi�cant di�erences between themethods.Most work on the induction of probabilistic concepthierarchies builds directly on Fisher's (1987) Cob-web, which deals with unsupervised training data. His

incremental algorithm uses an information-theoreticevaluation function to determine when to incorporatea training case into an existing category and whento create an entirely new category. Gennari, Lang-ley, and Fisher (1989), Hadzikadic and Yun (1989),McKusick and Langley (1991), and others have ex-plored very similar approaches. Anderson andMatessa(1992) have adapted the same basic idea within a strictBayesian framework, though their method creates aat set of categories rather than a hierarchy. Unfor-tunately, experiments that compare these clusteringschemes to the naive Bayesian classi�er are rare, soagain one cannot tell whether their sophistication isnecessary.Clearly, the approach we have taken here di�ersfrom both of these frameworks for probabilistic in-duction. Rather than assuming a more sophisticatedknowledge structure (and thus requiring more complexmethods for using and acquiring that knowledge), theselective Bayesian classi�er retains the simplicity ofthe naive approach but ignores attributes that reduceclassi�cation accuracy. We used the assumption of in-dependence to motivate this idea, but it should alsoprove useful in domains with irrelevant features.Of course, the basic idea of restricting the attributesused for prediction is not new, nor are greedy ap-proaches for searching the attribute space. Kittler(1986) refers to the scheme we have used as sequentialforward selection and refers to search in the oppositedirection as sequential backward elimination. Brod-ley and Utgo� (1992) have used both methods in theirwork on multivariate decision trees, whereas John, Ko-havi, and Peger (in press), Caruana and Freitag (inpress), Skalak (in press), and Langley and Sage (inpress) have used similar schemes to determine relevantfeatures for decision-tree and nearest neighbor meth-



Selective Bayesian Classifiers 405ods. Our contribution lies in extending this idea toBayesian classi�ers, which typically take all attributesinto account during prediction.4Super�cially, our approach is similar to Michie andAl Attar's (1991) `sequential Bayesian classi�er', whichinspects one attribute at a time during classi�cation,selecting the most informative one at each step andhalting when the probability of a class exceeds athreshold. However, their method's behavior is bet-ter viewed as constructing a decision tree using aprobabilistic evaluation function. Our technique hasmuch more in common with the approach reported byKubat, Flotzinger, and Pfurtscheller (1993), who usedecision-tree induction to select predictive attributesfor use in a naive Bayesian classi�er. They reportpromising results with this method on an EEG clas-si�cation task that parallel our �ndings with the UCIdata sets.Concluding RemarksAlthough our own experimental results have beenencouraging, they remain preliminary, and the vari-ety of related approaches suggests many possibilitiesfor additional comparative studies. For example, weshould determine the extent to which techniques forinducing Bayesian networks and probabilistic concepthierarchies provide bene�ts beyond the simple selec-tion scheme we have used here. We should also carryout more systematic studies to explore the e�ect ofthe design decisions we made when implementing theselective Bayesian classi�er.In addition, we should consider the usefulness ofother selection techniques, such as Kubat et al.'smethod, and compare our technique to frameworkswith similar representational power that do not relyon the independence assumption, such as the LMS al-gorithm and related techniques (Widrow & Winter,1988). The simplicity of the selective Bayesian clas-si�er should also lend itself to average-case analyses(Langley et al., 1992), which would let us compareour experimental results to theoretical ones, at leastin synthetic domains.In summary, we found that a simple modi�cationto the naive Bayesian classi�er { forward selection ofattributes using estimated accuracy { increases asymp-totic accuracy on separate test sets in some domainsand does not harm accuracy in others. The selectionalgorithm appears to be bene�cial in domains thatinvolve signi�cant correlations among the predictiveattributes, which can bias the decisions of the naiveBayesian classi�er if they are not removed. The result4. Warner, Toronto, Veasy, and Stephenson (1961) pre-sented one of the earliest arguments in favor of remov-ing correlated features from the naive Bayesian classi-�er, but they carried out this process manually.
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