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Abstract

In this paper we compare the relative costs
of a systematic problem-solving method -
depth-first search — and a nonsystematic
method - iterative sampling. An average-
case analysis reveals that, for a well-specified
class of domains, depth-first search always re-
quires less effort when there exists a single so-
lution, and is generally superior on tasks with
shallow solution paths and few solutions. In
contrast, iterative sampling is superior on
tasks with deep solution paths and many so-
lutions. Depth-first search scales better to
cases with high branching factors if the num-
ber of solutions remains the same, but ran-
dom search scales better when the density of
solutions remains constant. The search costs
predicted by the analysis closely fit the costs
observed in experiments with artificial search
tasks. We also relate iterative sampling to
other methods, including iterative broaden-
ing, which is based on similar intuitions.

1. Introduction

Most AI problem-solving systems employ systematic
methods such as depth-first, breadth-first, and best-
first search, which retain information about states they
have considered to avoid duplication of effort. In con-
trast, humans are remarkably nonsystematic in their
problem solving, using methods that may cover the
same ground many times. Typically, researchers have
assumed that such behavior resulted from limitations
in human short-term memory, and that when such lim-
its are not present, the systematic approach should al-
ways be preferred. However, in this paper we argue
that this intuition is incorrect, and that there are sit-
uations in which nonsystematic methods are superior
to systematic ones.

Our analysis will deal with a problem space that has
a uniform branching factor 4, and in which one or more
solutions lie exactly at depth d. We also assume that
information about success or failure is not available
until one reaches level d. Finally, we assume that the
search space is a tree rather than a directed graph, so

the node-branching and edge-branching factors (Korf,
1985) are equal. One simple problem of this type in-
volves cracking a safe with b settings that requires d
turns. One can also formulate some constraint satis-
faction tasks (e.g., scheduling) in these terms.

At each branch point in the search tree, one must se-
lect from among b alternative children. We will use e to
refer to the expected number of nodes one must try at
each branch point before selecting a node that lies on a
solution path, provided the path one has traversed so
far also leads to a solution. In some domains, heuris-
tics are available to bias this selection and reduce e to
a reasonable level. For instance, a skilled safe cracker
might occasionally hear a click that suggests a likely
setting, significantly reducing her expected amount of
search. In other domains, e may be low because many
solutions exist. We will focus on this latter issue, al-
though we will return briefly to the effects of heuristics
in the final section.

2. Analysis of Two Search Algorithms

We will consider two algorithms that handle the class
of problems described above. The first method, depth-
first search, systematically explores each node and its
associated subtree in turn, without duplicating any ef-
fort. However, one disadvantage of this strategy is
that, having selected a node N, it does not return and
consider N’s siblings unless it has expanded the entire
subtree below N and found no solution. Thus, a se-
lection error high in the tree can lead to considerable
unnecessary search.

We will call the second algorithm iterative sampling,
though we will sometimes refer to random or nonsys-
tematic search. At each branch point in the search,
iterative sampling selects a node at random and then
recurses until it reaches the depth limit. Thus, the
method is similar to a greedy technique in that it se-
lects a single option without backtracking, though it
need not use an evaluation function. If the generated
path does not lead to a solution, iterative sampling
begins again at the initial state. The method contin-
ues in this fashion until it finds a path that solves the
problem. Unlike depth-first search, the nonsystematic
algorithm retains no memory of the states it has vis-



ited, so it can retrace entire paths. However, decisions
made high in the tree cannot lock the method into
a ‘wild goose chase’ as in the depth-first scheme, so it
seems possible that iterative sampling may outperform
the more systematic strategy.

2.1 Overall Cost of the Algorithms

In order to determine the relative cost of these algo-
rithms, we will analyze their average-case behavior as
a function of the branching factor b, the solution depth
d, and the expected number of nodes e considered at
each branch point before selecting the correct one, if it
exists in the set of alternatives. Later we will ground e
in other factors, but for now we assume it as a separate
parameter of the domain and method. We will mea-
sure cost as the total number of nodes generated dur-
ing search, assuming that, at each branch point, one
generates all children before any are expanded them-
selves. We use this metric because it is biased in favor
of the systematic strategy, which generates each node
only once.

Let us first examine the behavior of depth-first
search. Even if the algorithm selects the right node
on its first attempt at each branch point, it will gener-
ate a total of bd nodes. In addition, recall that depth-
first search expands the entire subtree below each node
that it selects incorrectly. If the search has reached a
node N at level j out of d, then there remain d — j
levels to explore, and the total number of nodes below
(but not including) N is Zd_’ bk. If we let eqps be
the expected number of nodes required for depth-first
search to make the right selection at each branch point,
then for each level j, on the average it will consider
(eafs — 1) 077 b¥ nodes in following fruitless paths
before it selects a good child. This recurs at each of d
levels, giving

d—-1d-j

tage = (eas — 1O D ) +bd

j=1lk=1

as the expected number of nodes that depth-first
search will generate before finding a solution. Fur-

thermore, since E:"j b* = (325)(3%77 — 1), we can
7 out of the remaining summation, giving

)(Z(bd‘

factor 325

tys = (eans — 13— = 1)) +bd

One can rewrite the summation in this expression as
-1 d-1 d-1
Qv ) -3 Q_o¥)-(@-1)
ji=1 j=1 j=1

b — b b4 —1
T -1 —d+1 = b—1 —d
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Substituting this into the second expression for g4,
we have
b b1

_ _ .(bd+1—db2+db—b)
= (eqps —1) G0

(eass —

tafs

+bd

as the expected number of nodes the depth-first
scheme will examine during its search. Note that eqf,
is much less significant than b in this expression.

The analysis for the iterative sampling algorithm
is more straightforward. Let p be the probability of
selecting a good node (one on a solution path) at a
given branch point. We know that, if one is sampling
with replacement, the expected number of attempts
until one selects a good node is 1/p. We refer to this
expected value as e;; to distinguish it from that for
depth-first search. The proba.bility that the algorithm
w1ll solve the problem on any given pass is p?, giving
1/p% = €2 as the expected number of attempts before
finding a solution. Finally, since there are exactly b-d
nodes generated on each pass, we have t;; = b-d- e as
the expected number of nodes that iterative samplmg
will generate.

2.2 The Expected Number of Nodes

The above analysis referred to e, the expected num-
ber of nodes one must try at each branch point of the
search tree before selecting one on a solution path.
This number is simple to compute for problems with a
single solution. For a systematic strategy like depth-
first search, which samples states without replacement,
we have eqr; = (b + 1)/2. In contrast, for a nonsys-
tematic strategy that randomly samples states with
replacement, we simply have e;; = b.

However, we are also concerned with problems that
have multiple solutions, so that eqf < (b+1)/2 for the
systematic case and e;; < b for the nonsystematic one.
Following Ginsberg and Harvey (1990), we will assume
there exists some integer s such that, if a node lies on
a solution path, exactly s of its b children also lie on
a solution path. If a problem with branching factor b
and depth d can be solved, then its initial state lies
on such a path, and there will be exactly s¢ solutions.
These solutions will not be evenly distributed in the
space, but will be ‘clustered’ near one another.

Because a nonsystematic strategy samples with re-
placement, the probability of selecting a good node is
s/b on each pass. This gives e;; = b/s as the expected
number of nodes examined by iterative sampling at
each branch point. This term can vary from b, for
problems with a single solution, to 1, for problems in
which all paths lead to a solutlon Substltutmg for e;;
in the earlier analysis gives t;; = b-d - ({ 2)4 as the total
number of nodes that we expect iterative sampling to
generate before finding a solution.



Computing egs for a systematic strategy is more
complicated. Given a finite set of outcomes with values
from 1 to n, the expected value is simply Y ¢_, kps.
Since depth-first search samples without replacement,
we know that it will never select more than b — s + 1
nodes at any branch point. If we let p, be the proba-
bility of selecting a good node on the n;, attempt, then
p1 is simply s/b. However, to compute later terms we
must multiply the probability of failure on the previ-
ous passes by the probability of success on the current
one. Each time the algorithm fails to select a node on
a solution path, there is one fewer child in competition.
Thus, we have (1-3)(327) for p2, (1-$)(1-:27)(3%3)
for ps3, and so forth.

Multiplying these terms by the respective values of
k, we get the general expression

s b—s+1 s k-2 s
3T ;_;2 kb—k+lg(1_ 5=

(b—s)
(s+1)
as the expected number of nodes examined by a sys-
tematic method at each branch point before finding
one on a solution path. This reduces to (b + 1)/2 in
the case where s = 1 and there is a unique solution.
Substituting for eqfs in the earlier analysis gives

o (b—s) (b4t — db%+ db—b)
R (6-1)?

as the total number of nodes that we expect depth-first
search to generate before finding a solution.

€dfs =

+1

+ bd

3. Behavior of the Search Algorithms

The above analysis makes specific predictions about
the amount of search required by the random and
depth-first algorithms under various conditions. In
particular, it predicts the effects of the branching fac-
tor, the solution depth, and the number of solutions.
For any search task within the space analyzed, com-
paring t4s to t;, will let us predict the more efficient
method. However, to gain better intuitions about the
relative costs of the algorithms, we will examine their
behavior across a range of settings for the three do-
main parameters. '

Figure 1 (a) shows the predicted behavior of the
two search algorithms for ten settings of the depth d
when only one solution exists and when the branching
factor b is two. The dependent measure is the number
of nodes generated before finding a solution, presented
in logarithmic scale to counter the exponential growth
inherent in search.

The figure also shows experimental results obtained
for the two methods using artificial search problems.
We implemented versions of iterative sampling and
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depth-first search that accepted parameters for the
breadth b, depth d, and good children s, and that ex-
plored search trees with these characteristics. If a node
selected by an algorithm lay along a solution path,
then s out of b of its children also lay along solution
paths. The nonsystematic method selected one child
at random, whereas the depth-first technique ordered
them randomly and considered each in turn.

Each experimental point in Figure 1 (a) represents
an average of 1000 runs for one of the algorithms on a
specific setting of the parameters b, d, and s. Note that
the theoretical values typically fall within the 99% er-
ror bars that bound the observed means. The close fit
between the predictions and observations lends confi-
dence that the overall analysis is correct, though com-
putational constraints limited our experimental runs
to problems that involved under 300,000 nodes.

The basic results are somewhat discouraging. In
the absence of multiple solutions, depth-first search
always outperforms iterative sampling. The system-
atic nature of the former algorithm, which reduces
the expected number of nodes one must consider at
each branch point, more than compensates for the ex-
tra search it carries out when it strays down a useless
path. At first glance, this suggests that our intuitions
were incorrect, and that one should prefer systematic
methods to nonsystematic ones.

However, the curves in Figure 1 (b) reveal a quite
different story when multiple solutions are present.
When the branching factor is four and two children
at each branch point lead to solutions, we again find
that iterative sampling requires more search than the
depth-first scheme on problems in which the depth d is
low. But as d increases, the difference between the two
methods decreases, until their curves cross over each
other near d = 7. Beyond this point, random search
outperforms depth-first search, and its relative advan-
tage increases with the depth. Recall that the curves
present cost on a logarithmic scale; thus, for d = 12,
the analysis predicts that depth-first search will take
20 times as long as iterative sampling. In the pres-
ence of sufficient numbers of solutions, nonsystematic
search scales to longer solution paths much better than
the systematic technique. The experimental points in
the figure are consistent with these predictions.

The results change again when we hold the depth
and solutions constant and vary the branching factor
b. Figure 2 (a) shows that the systematic method
initially fares slightly worse than the nonsystematic
one, but as b increases, depth-first search pulls slightly
ahead. When the depth is five and each good node
has three good children, the crossover occurs when the
branching factor is around ten. After this point, the
depth-first algorithm requires less search than iterative
sampling, and its advantage increases with the setting
for b. Thus, the systematic method scales better to
problems with higher branching factors than does it-
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Figure 1: Nodes generated by depth-first search and iterative sampling for different depths d (a) when there is
a unique solution and the branching factor b is two, and (b) when the number of good nodes s is two and the
branching factor b is four. The lines represent theoretical behavior; the error bars indicate experimental results.

erative sampling, but the difference is small compared  the nonsystematic method outperforms the systematic
to other factors we have examined. In fact, the ex- one. Thus, iterative sampling scales to higher branch-
perimental points in the graph are so close that the ing factors better than does depth-first search, pro-
difference is barely detectable. Interestingly, nearly vided that the number of good nodes at each branch
indistinguishable behavior also occurred for a number  point keeps pace, and thus the density of solutions re-
of other settings for d and s that we examined. mains constant. Whether there exist real-world tasks

. . with this characteristic remains an open question.
Both crossovers occur in the presence of multiple

solutions, but not when it is absent, suggesting that In comparing depth-first search to their iterative
we examine the role of this factor more closely. Fig-  broadening method, Ginsberg and Harvey (1990) ex-
ure 2 (b) reveals the effect of varying s, the number =~ amine behavior as the depth d becomes very large.
of children on a solution path at each branch point, In a similar manner, we can compare systematic and
given a branching factor of six and a solution depth  nonsystematic search in the ‘large depth limit’. To de-
of five. For low settings of s, iterative sampling car-  termine the conditions under which iterative sampling

ries out substantially more search than the depth-first will outperform depth-first search, we set t;; < ta
approach. However, this difference decreases as the and solve for s. As Ginsberg and Harvey note, one
number of solutions increases, and around s = 3 the  can simplify ¢4, for large d, giving us the inequality
curves intersect. Past this point, the nonsystematic

method outperforms the systematic one, except in the b\*? (b—s) bt

degenerate case where s = b, where neither requires b-d- ") (s+1) ’ (b—1)?

any search. Thus, iterative sampling benefits more

from multiple solutions than does depth-first search, Dividing both sides of this expression by b%t! produces
making the former more desirable in domains where
they are present. d (b—s)

L
This result suggests an alternative treatment of the s (s +1)(b—1)?
effect of the branching factor b. In some classes of  and taking both sides to the limit as d approaches
domains, as one increases the branching factor, the infinity gives the inequality
number of solutions increases as well. To model this
situation, we examined the effect when we varied b (b—s)

but held the depth d at four and held the ratio b/s at 0 < (s+1)(6-1)2 °

the constant two. Figure 3 (a) shows the curves that

result. Under these conditions, we again find that it-  provided s > 1, since in this case the denominator s¢
erative sampling starts off requiring more search than ~ dominates the numerator d. Finally, adding to both
the depth-first organization, but that a crossover oc-  sides and then dividing gives the relation

curs near b = 8 or s = 4, and that after this point, <b
s
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Figure 2: Predicted and observed search for the depth-first and iterative sampling algorithms (a) on different
branching factors b when the number of good nodes s is three and the depth of the solution d is five, and (b) for
different numbers of good nodes s when the branching factor b is six and the depth of the solution d is five.

In other words, in the large depth limit, iterative sam-
pling requires less effort to find a solution than depth-
first search whenever the number of good children s is
greater than one and less than the branching factor b.

This result is similar to the one that Ginsberg and
Harvey report for their iterative broadening method,
which outperforms depth-first search for large depths
whenever s¢ > 2(b — 1)/(b — 2). One conclusion they
draw is that when b > 3, their method will be more
efficient (for large d) even when there exist only three
terminal goal nodes. However, this result follows from
an extension of their analysis to nonintegral values of
s between one and two. This range of values is crucial,
since it seems unlikely that many real-world domains
have 2¢ or more solutions.

Our equations do not cover the nonintegral case for
iterative sampling, but we have carried out experimen-
tal studies of this condition. Figure 3 (b) presents
curves for systematic and nonsystematic search when
b = 2 and the expected value of s = 1.5. In this ex-
periment, half of the nodes along solution paths had
one child that also led toward a solution (s = 1) and
half had two such children (s = 2). In general, non-
integral s values can follow other distributions, but
this one is analogous to that in Ginsberg and Harvey’s
analysis. As for integral values, the random method
starts out worse than depth-first search, but eventu-
ally a crossover occurs, in this situation around d = 10.
Additional experiments show that this effect recurs for
other nonintegral s values.

Although our analysis has focused on a specific class
of domains, we hoped that iterative sampling would
have advantages in other search tasks as well. To this

end, we compared the behavior of iterative sampling
with that of depth-first search on the eight puzzle.
One can reach nodes in the eight puzzle through many
paths, which clearly violates our assumption about
tree structure. In one experiment, we ran both algo-
rithms on problems that could be solved in a minimum
of four steps, but we varied the depth limit used to
control backtracking and iteration. The idea here was
that, lacking knowledge of minimal solution length,
one might overestimate this factor. Under these condi-
tions, we found that depth-first search carried out pro-
gressively more search as one increases the depth limit,
whereas random search was nearly unaffected by the
parameter. In this study, crossover occurred when the
depth limit exceeded ten. However, in another experi-
ment with the eight puzzle, we varied the length of the
minimal solution path while setting the depth cutoff
equal to this minimum. In this case, depth-first search
consistently outperformed iterative sampling even for
problems with 20 steps in their solutions.

In summary, depth-first search is clearly superior to
iterative sampling in the absence of multiple solutions,
but the case is much less clear cut when there exists
more than one successful path. For tasks that involve
shallow solution paths and few solutions, depth-first
search remains the method of choice. However, the
random algorithm scales better to domains that in-
volve deep searches, and it receives greater benefits
from multiple solutions. The situation with respect to
the branching factor is even more complex. The sys-
tematic technique scales better to problems with high
branching factors when the number of solutions re-
mains constant, but the nonsystematic method scales
better when the density of solutions remains the same.
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Figure 3: (a) Predicted and observed search for the depth-first and iterative sampling algorithms for different
branching factors b when the depth of the solution d is four and the ratio b/s is two; and (b) the observed cost
for depth-first search and iterative sampling when b is two and s is 1.5.

Thus, the preferred method depends on the character-
istics of the problem-solving domain, but there exist
clear cases where random search is more desirable.

4. Discussion

Our work is not the first on nonsystematic search, and
we hope it will not be the last to explore the potential
of this intriguing class of methods. Here we briefly
review some related work and discuss open issues for
future research.

4.1 Relation to Iterative Broadening

Our intuitions about the superiority of nonsystem-
atic search over depth-first search are similar to Gins-
berg and Harvey’s (1990) arguments for the advan-
tages of their iterative broadening technique. This
method first carries out a depth-first search with a
breadth limit of two. If this fails, it repeats the search
with a breadth limit of three, and so on, until it finds a
solution. As in iterative sampling, the iterative broad-
ening method can repeat previous effort, but it does
not get locked into expanding entire subtrees because
of errors made early in its search. It differs from the
iterative sampling algorithm in its systematic nature,
but it also appears to benefit from situations in which
multiple solutions are present.

Ginsberg and Harvey’s analysis of iterative broad-
ening lets one calculate its expected performance on
particular search tasks. The results one obtains in
this manner suggest that, like depth-first search, iter-
ative broadening outperforms random search initially,
but that as the depth increases, the nonsystematic ap-

proach fares better. The theoretical crossover point
for iterative broadening and random search (around
d = 12 for b = 4 and s = 2) occurs later than that
for depth-first and random search, but otherwise the
effects of solution depth are very similar, presumably
because Ginsberg and Harvey’s method sometimes ex-
pands entire breadth-limited subtrees.

Experiments with artificial search tasks are consis-
tent with these predictions. Figure 4 (a) presents the
results for b = 4 and s = 2, which suggest that the
crossover does indeed occur near d = 12. Figure 4 (b)
shows that similar curves occur in the nonintegral case
when b = 2 and s = 1.5. However, other experiments
indicate that iterative broadening is much less affected
by higher branching factors than iterative sampling,
and that it benefits from higher values of s as well
as the nonsystematic approach. In summary, itera-
tive broadening does not scale to large depths as well
as does random search, but it outperforms iterative
sampling on other dimensions and in general is much
harder to beat than depth-first search.

4.2 Related Studies of Random Search

A number of researchers have reported methods that
incorporate some notion of random search. For in-
stance, Brassard and Bratley (1988) described a set of
nonsystematic techniques that they called Las Vegas
algorithms. One variant, which they applied to the
eight queens puzzle, is almost identical to the iterative
sampling algorithm. They reported experiments show-
ing that their method outperforms depth-first search
on the queens puzzle, but they did not systematically
explore the effect of the branching factor, search depth,
or number of solutions.
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Figure 4: (a) Observed search for iterative broadening and iterative sampling for different depths d when the
branching factor b is four and s is two; and (b) the observed search for the two algorithms when b is two and s

is 1.5. These curves do not include theoretical costs.

On the other hand, unlike our analysis, Brassard and
Bratley’s treatment included separate costs for suc-
cess and failure. This takes into account the chance
that one will abandon a path before reaching the
depth d, which seems quite possible in constraint sat-
isfaction domains where one can detect illegal partial
states. They also showed that a combination of sys-
tematic and nonsystematic search can outperform ei-
ther method in isolation, at least in the queens domain.
In closely related work, Minton, Johnston, Philips, and
Laird (1990) have also collected experimental evidence
that iterative sampling outperforms the depth-first ap-
proach on the queens task. Their explanation of this
result hinged on the presence of multiple solutions that
were clustered in the search space; this is analogous to
our assumption that s is greater than one.

Janakiram, Agrawal, and Mehrotra (1988) have ap-
plied similar ideas to parallel search methods. They
retained the idea of systematic depth-first search, but
to minimize redundancy on parallel processors, they
ordered children randomly at each choice point. For
some classes of problems, they obtained speedup that
was linear in the number of processors. More impor-
tant from our perspective, they analyzed and experi-
menally studied a number of different problem types,
including ones in which solutions were clustered and
others in which they followed a uniform distribution.
However, they did not examine nonsystematic meth-
ods like iterative sampling, despite their suitability for
parallel processing.

4.3 Nonsystematic Search in Planning

Findings in the psychology of human planning and
problem solving are also relevant to our work. For ex-

ample, De Groot (1965) has reported that chess play-
ers rely on progressive deepening, a search method in
which they repeatedly return to the initial state. From
this base position they explore a single path at ever
greater depths, considering side branches only briefly
before returning to the main path. Newell and Simon
(1972) observed similar behavior in their subjects, and
thus incorporated progressive deepening into their the-
ory of human problem solving. There is no clear ev-
idence that chess players use random selection, but
they do favor an iterative greedy approach.

More recently, Jones (1989) has described EUREKA,
a model of human problem solving that used a variant
of iterative sampling to control a means-ends planner.
The system probabilistically selected one state to ex-
pand at each branch point in its search, but if this path
did not produce a solution by a prespecified depth,
it returned to the initial state and began again from
there. This continued until the model found a solu-
tion or gave up after a number of passes. EUREKA
also used a heuristic to bias selection in favor of some
states and incorporated a simple form of reinforcement
learning that let it improve this selection process with
experience.

Minton, Drummond, Bresina, and Philips (1992)
have also used iterative sampling to generate plans.
They examined interactions between the search strat-
egy and the nature of the search space, finding the
construction of partial order plans was more efficient
than generation of total order plans when using depth-
first search, but that this difference disappeared when
using iterative sampling. From these experimental re-
sults, they concluded that solutions for their planning
tasks (the blocks world) were clustered, lending plau-



sibility to this assumption in our analysis. Although
depth-first search outperformed iterative sampling for
the problems that Minton et al. studied, they also
found that a simple heuristic — preferring the partial
plan with the fewest unmatched preconditions — com-
pletely reversed this result.

4.4 Directions for Future Work

Our analysis of nonsystematic search also makes a
variety of assumptions and omissions that we should
address in further research. In particular, our model
assumes that the branching factor, depth of search,
and number of good nodes at each branch point are
constant. We should run experiments to examine the
behavior of the algorithms when b, d, and s vary across
nodes and branches. Hopefully, the analysis will re-
main a good predictor when using the average values
of these parameters rather than constant ones. Our
experimental study of nonintegral s values provides a
reasonable start, but we must examine other forms of
variation as well. We should also extend the analysis
beyond trees to include search through graphs.

As we have noted, heuristics feature prominantly
in the work by Jones and by Minton et al., and we
should examine their role more carefully in the future.
Preliminary analyses suggest that, for certain defini-
tions, iterative sampling benefits more from heuristic
knowledge than does depth-first search. This hypoth-
esis is consistent with Minton et al.’s results on plan-
ning tasks. Moreover, it makes intuitive sense in that
heuristics reduce e, the expected number of nodes ex-
amined at each branch point, which has a greater effect
on iterative sampling than on depth-first search. How-
ever, one can imagine different formulations of heuris-
tic information, and an extended analysis should use
one that reflects characteristics of actual heuristics.

Iterative sampling bears a strong similarity to re-
active methods for interacting with the external envi-
ronment, in that the latter select one of many actions
and cannot backtrack. This connection suggests that
nonsystematic planning methods may be easier to inte-
grate with reactive executors, as Drummond (personal
communication, 1992) has noted that the former gen-
erate the same probability distribution of behaviors
as many reactive systems. The similarity of iterative
sampling to reactive methods should also let one di-
rectly apply techniques for reinforcement learning to
acquire heuristic knowledge from successful and un-
successful iterations.

Despite the research issues that remain, the re-
sults to date demonstrate that, in some circumstances,
nonsystematic methods like iterative sampling can
solve problems much more efficiently than systematic
techniques, including depth-first search and iterative
broadening. Moreover, the nonsystematic approach
appears to scale better on some dimensions of diffi-
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culty and seems better able to take advantage of mul-
tiple solutions. These results cast a different light on
the nonsystematic nature of human problem solving,
suggesting that this behavior is more adaptive than it
appears. Future work should further clarify the condi-
tions under which random search is desirable, examine
the effect and acquisition of heuristic knowledge, and
evaluate the approach on real-world problem-solving
and planning tasks.
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