
2 Scaling to Domains with Irrelevant FeaturesPat Langley and Stephanie Sage2.1 Introduction and BackgroundOne of the central problems in machine induction involves discriminatingbetween features that are relevant to the target concept and ones that are ir-relevant. Presumably, many real-world learning tasks contain large numbersof irrelevant terms, and for such tasks, one would prefer to use algorithmsthat scale well along this dimension. More speci�cally, one would like thenumber of training instances required to reach a given level of accuracy togrow slowly with increasing numbers of irrelevant features.Some theoretical results of this sort are available for particular inductionalgorithms. For instance, Littlestone (1987) has shown that the number ofclassi�cation errors made by his Winnow method grows only logarithmi-cally with the number of irrelevant features. However, his results were worstcase and focused on linearly separable concepts. Pazzani and Sarrett (1992)have presented an average-case analysis for the Wholist algorithm, andLangley and Iba (1993) have reported similar analyses for simple Bayesianclassi�ers and nearest neighbor algorithms. Taken together, these anal-yses suggest that, when many irrelevant attributes are present, methodsfor inducing logical descriptions like Wholist scale the best, probabilisticmethods fare next best, and nearest neighbor methods scale the worst.However, both Pazzani and Sarrett's and Langley and Iba's analyses heldonly for conjunctive concepts, and most of the algorithms they analyzedmake strong assumptions about the nature of the target concept. To seeif their conclusions carried over to more robust algorithms and to morechallenging target concepts, we designed an experimental study to extendthe previous results. The next section reviews two induction algorithms andmotivates their selection for this comparative study. The subsequent sectiondescribes our experimental design before we go on to report and discuss theresults we obtained. After this, we describe a third algorithm designedto overcome weaknesses revealed in these studies, followed by additionalexperiments that evaluate its behavior. Finally, we discuss related work onirrelevant attributes and some directions for future research.



18 Langley and Sage2.2 Review of Two Induction AlgorithmsWe decided to examine the behavior of two well-known induction algorithms{ Quinlan's (1993) C4.5 and the simple nearest neighbor method (Cover &Hart, 1967; Aha, Kibler, & Albert, 1991) { in domains involving increasingnumbers of irrelevant features. Let us briey review these algorithms.Quinlan's C4.5 represents instances as attribute-value pairs. Classi�cationconsists of sorting a test instance through a decision tree. Each node in thetree speci�es one attribute, with the branches from that node correspondingto the values of the attribute. Starting at the root node, the test instanceis sorted down the branch for its value on the given attribute. The leaves ofthe tree are labeled with class names, so that once an instance is sorted toa leaf, the label is used to predict its class.A decision tree is constructed for a set of training data by �rst choosingthe attribute that best discriminates among the classes evident in the data.In particular, C4.5 uses a measure of information gain to make the selection,though other metrics are possible. The system uses the selected attribute asthe root of the decision tree and creates a branch for each value. C4.5 thensorts the observed instances down the branches according to their values onthe root attribute. Finally, the algorithm calls on itself recursively to builddecision trees rooted at each of the children, terminating when all instancesat a given node have the same class. This class becomes the label for theleaf.The nearest neighbor algorithm also represents instances as attribute-value pairs. In this case, classi�cation begins by measuring the distanceof a test instance from each of a set of stored instances. In principle, onecan use any distance measure; in a Boolean domain, a natural measure isthe number of attribute values that di�er between the test instance andthe stored instance (sometimes called the city-block metric). The class ofthe nearest stored instance is used to predict the class of the test instance.Learning consists of storing each training instance in memory.This choice of algorithms let us contrast a system that uses a subset of(presumably) relevant features to classify data (C4.5) with a system thatuses information about all features, including irrelevant ones (nearest neigh-bor). We predicted that classi�cation accuracy for the two methods wouldbe comparable when the number of irrelevant features was small. We be-lieved that C4.5 would scale well with the addition of irrelevant attributes,



Scaling to Domains with Irrelevant Features 19as the evaluation function would tend to select relevant attributes and ignoreirrelevant ones. However, we believed that performance of the nearest neigh-bor method would degrade as the number of irrelevant dimensions increased.Far from ignoring irrelevants, this method makes equal use of informationabout all attributes.2.3 Experimental DesignOne of the primary goals of machine learning research is to match real-world induction problems with appropriate techniques for solving them. Inorder to make such matches, one must understand how the characteristicsof domains and algorithms interact to produce good (or poor) behavior. Ar-ti�cial domains are an invaluable tool for helping us to achieve this end. Bysystematically varying domain characteristics, such as the number of irrel-evant attributes, we can measure the e�ect of these variables on behavior.Thus, for our purposes the domains of choice were arti�cial. We focused ontwo-class domains involving three Boolean attributes. From the 223 = 256possible concepts in this instance space, we selected three concepts to repre-sent a range of expected di�culty. At �rst glance, this may seem to be a tinysample of the possible concepts in the space. However, the 256 concepts canbe collapsed into only 19 equivalence classes based on attribute and valuename substitution (Schlimmer, 1987). By class name substitution we canfurther reduce this number to 12. Since we wanted to hold the number ofrelevant dimensions constant as we added irrelevants, we retained only thoseconcept types with exactly three relevant features. This left us with eightconcept types from which to choose our representative sample. Below wedescribe the three concept types we selected.The �rst of the concepts we chose was the simple three-feature conjunct(A ^ B ^ C). Another concept, known as an \m of n" concept, can bestated as ((A ^ B) _ (A ^ C) _ (B ^ C)). Although linearly separable,this concept is not conjunctive and we expected it to represent a somewhatmore di�cult problem than the �rst. As our third task, we chose ((A ^ B^ C) _ (:A ^ :B ^ :C)). This case resembles a parity concept, in thatnone of the relevant features (A, B, and C) in isolation can be distinguishedfrom irrelevant ones. Figure 2.1 displays the extension of these concepts inthe absence of irrelevant attributes.



20 Langley and Sage
A

B

C

CA

B

A

B

C

CA

B

A

B

C

CA

B(a) (b) (c)Figure 2.1Extensional de�nitions of the three target concepts used in our experiments, after remov-ing irrelevant features, corresponding to the Boolean combinations (a) ((A ^ B ^ C)),(b) ((A ^ B) _ (A ^ C) _ (B ^ C)), and (c) ((A ^ B ^ C) _ (:A ^ :B ^ :C)). Ablack sphere represents a positive instance, whereas a white sphere indicates a negativeone.We examined the behavior of C4.5 and the nearest neighbor method inthe presence of zero through nine irrelevant dimensions for each of the threeconcept types. Thus, we tested each algorithm in 30 di�erent experimentalconditions. For each condition, we trained the two algorithms until theyreached at least 95% accuracy on a test set of 200 instances. We requiredthat this level of accuracy be maintained for 50 subsequent instances be-fore declaring that the accuracy criterion was met (at the �rst of those 50instances).We ran C4.5 without pruning and with them parameter set to one; defaultsettings were used for all other parameters. These choices were based onpilot studies indicating that these conditions produced the best learningcurves. The di�erence between the pruned and unpruned versions of C4.5was small. The nearest neighbor algorithm was applied using the city-blockdistance metric to determine the nearest stored instance.Each algorithm was tested on the same training and test data for a givenexperimental condition. For each condition, we created twenty training setsand one test set using random sampling with replacement from the instancespace. Thus, the data were uniformly distributed and the relative frequenciesof positive and negative instances reected their distribution in the instancespace. An irrelevant feature took on a value of 0 or 1 with equal likelihood.Each data point reported in the next section is an average over twenty runs.



Scaling to Domains with Irrelevant Features 21
0 50 100 150 200 250 300

Number of training instances

0.
6

0.
7

0.
8

0.
9

1

P
re

di
ct

iv
e 

ac
cu

ra
cy

9 Irrelevants
6 Irrelevants
3 Irrelevants
0 Irrelevants

0 50 100 150 200 250 300

Number of training instances

0.
6

0.
7

0.
8

0.
9

1

P
re

di
ct

iv
e 

ac
cu

ra
cy

9 Irrelevants
6 Irrelevants
3 Irrelevants
0 Irrelevants(a) (b)Figure 2.2Learning curves for di�erent numbers of irrelevant attributes, on the Boolean target con-cept ((A ^ B ^ C)), for (a) decision-tree induction using C4.5 and (b) the simple nearestneighbor algorithm.2.4 Experimental ResultsWe �rst examined the learning curves generated by the two induction al-gorithms. Since the results for the two concepts ((A ^ B ^ C)) and ((A^ B) _ (A ^ C) _ (B ^ C)) were virtually identical, we have omittedgraphs for the latter. Learning curves for the two other concepts appearin �gure 2.2 and �gure 2.3. The four curves in each graph depict behaviorwhen the target concept contains zero, three, six, and nine irrelevant fea-tures. The results for one, two, four, �ve, seven, and eight irrelevants arenot presented for the sake of readability, but they are consistent with thecurves shown. Although no error bars are displayed, we did compute the95% con�dence intervals for predictive accuracy. These ranged from 0.022to 0.061 after ten instances and decreased, roughly monotonically, towardzero with increasing numbers of instances.Figure 2.2 shows the learning curves for each algorithm on the concept ((A^ B ^ C)). As expected, the two methods perform comparably when no ir-relevant features are present, but as irrelevant dimensions are added, theperformance of the nearest neighbor method degrades signi�cantly. Theseresults are consistent with our understanding of the C4.5 algorithm, whichprefers more discriminating attributes for use in its decision tree. For thistarget concept, each of the three relevant features is more discriminatingthan the irrelevant features, and their combination is su�cient to discrim-



22 Langley and Sage
0 50 100 150 200 250 300

Number of training instances

0.
6

0.
7

0.
8

0.
9

1

P
re

di
ct

iv
e 

ac
cu

ra
cy

9 Irrelevants
6 Irrelevants
3 Irrelevants
0 Irrelevants

0 50 100 150 200 250 300

Number of training instances

0.
6

0.
7

0.
8

0.
9

1

P
re

di
ct

iv
e 

ac
cu

ra
cy

9 Irrelevants
6 Irrelevants
3 Irrelevants
0 Irrelevants(a) (b)Figure 2.3Learning curves for di�erent numbers of irrelevant attributes, on the Boolean target con-cept ((A ^ B ^ C) _ (:A ^ :B ^ :C)), for (a) decision-tree induction using C4.5 and(b) the simple nearest neighbor algorithm.inate the classes completely. As a result, the irrelevant dimensions are notincluded in the decision tree and are ignored in the classi�cation process.Figure 2.3 presents the learning curves for the parity-like concept. In thiscase, C4.5 degrades almost as severely as nearest neighbor. Apparently, thenature of the target concept interacts with the number of irrelevant variables.An examination of this target concept reveals that only the conjunction ofthe three relevant features is su�cient to discriminate the classes. Startingat the root of the tree, there is no information gain no matter which singlefeature is tested. As a result, a truly irrelevant feature is as likely to be in-cluded in the decision tree as a relevant one, e�ectively reducing the amountof training data lower in the tree. This can lead to the omission of relevantfeatures in the �nal tree. Indeed, as more irrelevant dimensions are addedto such a target concept, the probability of adding an irrelevant test to thedecision tree increases.Although the learning curves described above reveal the e�ect of irrelevantattributes on the two algorithms' behavior, they do not explicitly relate aperformance measure to this factor. However, we can use them to generatesuch a relationship in a straightforward manner. First, one selects a desiredlevel of classi�cation accuracy. Next, one �nds the number of training in-stances at which each learning curve �rst exceeds that level and maintainsit for a speci�ed number of instances. Finally, one plots this number as afunction of the number of irrelevant attributes, producing a scaling curve.



Scaling to Domains with Irrelevant Features 23
0 1 2 3 4 5 6 7 8 9

Number of irrelevant features

0
20

0
40

0
60

0
80

0
10

00

T
ra

in
in

g 
in

st
an

ce
s

NN
C4.5

0 1 2 3 4 5 6 7 8 9

Number of irrelevant features

0
20

0
40

0
60

0
80

0
10

00

T
ra

in
in

g 
in

st
an

ce
s

NN
C4.5(a) (b)Figure 2.4The number of training instances required for decision-tree induction and nearest neighborto reach 95% accuracy on a separate test set, as a function of the number of irrelevantfeatures, for the target concepts (a) (A ^ B ^ C) and (b) ((A ^ B ^ C) _ (:A ^ :B^ :C)).The shape of this curve (e.g. linear or exponential) corresponds roughly tothe notion of sample complexity in computational learning theory.Figure 2.4(a) reports the scaling curve for the target concept (A ^ B ^ C)at the 95% level of accuracy. We required that this accuracy be maintainedfor at least 50 instances after the criterion level is �rst reached. The resultingcurve for C4.5 appears constant or at most logarithmic, whereas that fornearest neighbor seems to grow exponentially with the number of irrelevantfeatures. Similar results hold for the \m of n" target concept ((A ^ B) _(A ^ C) _ (B ^ C)), which we have not shown.These results contrast sharply with those shown in �gure 2.4(b) for thetarget concept ((A ^ B ^ C) _ (:A ^ :B ^ :C)). Here the number oftraining cases needed to reach a given level of accuracy appears to growexponentially with the number of irrelevants for both algorithms, thoughthe constant for C4.5 is smaller. This suggested that extending the C4.5curves for the other concept might also reveal exponential growth, but ad-ditional runs on the conjunctive concept with 16 irrelevant features showedno detectable increase over the results for nine irrelevants.In summary, the experiment revealed a clear di�erence in the e�ect ofirrelevant attributes on the behavior of the two induction algorithms. Therate of learning for the nearest neighbor method decreases with the numberof irrelevant dimensions, regardless of the target concept. In contrast, the



24 Langley and Sagee�ect of irrelevant attributes on C4.5 depends on the nature of the targetconcept. As long as single relevant features discriminate among the classes,C4.5's learning rate is una�ected by the introduction of irrelevant dimen-sions. However, when features interact, that is, when none of the relevantattributes in isolation has any power to discriminate the classes, the rate oflearning slows signi�cantly.2.5 Induction of Oblivious Decision TreesThe reason for C4.5's di�culty with the parity-like concept is that it buildsits decision tree in a top-down manner, adding the best single feature ateach node. Due to the interaction of the relevant features in this concept,none of them distinguishes the classes any better than an irrelevant feature.As a result, this method is likely to add irrelevant features to the tree.One way to overcome the problem of interacting features is to allow testsof more than one feature at a node. However, this results in an exponen-tial increase in the number of tests to consider. Moreover, when many ofthe features are irrelevant, this leads to much wasted e�ort. An alternativeapproach starts with a tree containing all of the features and removes theirrelevant ones. In contrast to the top-down approach, it is easy to iden-tify relevant features since removing a single one, even if it interacts withother features, reduces the predictive accuracy of the tree, but removing anirrelevant feature does not.The latter insight provides the basis for our algorithm. In order to imple-ment this method, we must �rst specify how to construct the initial tree.One could apply a variant of C4.5 to build a decision tree containing allthe features. However, pruning each subtree separately would be computa-tionally expensive. Also, it is awkward to remove irrelevant features testedin the middle of the tree. Although this could be achieved by translatingthe tree into rules and then dropping tests from the rules, there is a muchsimpler method.We describe our approach in terms of an abstract data structure called anoblivious decision tree (Kohavi, 1994), which tests the same feature acrossan entire level of the tree. For example, we might test feature a at the topnode, feature b at each of its children, feature c at each of its grandchildren,and so on. The beauty of this data structure is that it allows one to removean entire level of the tree at one time. In addition, the order of the tests



Scaling to Domains with Irrelevant Features 25is arbitrary, so irrelevant features that are embedded in the tree can be\sliced" out without a�ecting tests of relevant features lower in the tree.For purposes of prediction, a probability distribution over the classes maybe associated with each leaf.For our purposes, classi�cation in an oblivious decision tree consists ofsorting an instance to a leaf and predicting the most likely class associatedwith that leaf. If no class distribution exists at a given leaf, then the nearestleaf with a distribution is used. In case of ties, the distributions from thenearest leaves are combined. Note that if all of the features are included inthe tree, this classi�cation scheme is functionally equivalent to the simplenearest neighbor method. In fact, the algorithm we are about to describeis implemented as a variant of nearest neighbor in which irrelevant featuresare ignored in computing the distance metric. However, we will continue touse the oblivious decision tree analogy throughout this paper, since we �ndit more helpful for descriptive purposes.Oblivion carries out greedy backward elimination of features from obliv-ious decision trees. The method begins with a full oblivious tree (containingall features) and obtains a conservative estimate of its classi�cation accu-racy using n-way cross validation on the training set. The system thenremoves each attribute in turn, estimates the accuracy of the resulting treein each case, and selects the most accurate. If this best tree makes no moreerrors than the current one, Oblivion replaces the current tree with thebest one and continues the process. On each step the algorithm tentativelyprunes each of the remaining features, selects the best, and generates a newtree with one fewer attribute. This continues until the accuracy of the bestpruned tree is less than the accuracy of the current one. Oblivion's timecomplexity is polynomial in the number of features, growing with the squareof this factor.We expected that Oblivion would perform comparably to C4.5 on theconjunctive concept ((A ^ B ^ C)), but that it would learn the parity-likeconcept (((A ^ B ^ C) _ (:A ^ :B ^ :C))) more quickly. Since thesystem starts with all the relevant features and only prunes ones that areirrelevant, it should not su�er in the presence of interacting relevant features.In the next section, we examine and compare the behavior ofOblivion withthat of C4.5 and nearest neighbor.



26 Langley and Sage
0 50 100 150 200 250 300

Number of training instances

0.
6

0.
7

0.
8

0.
9

1

P
re

di
ct

iv
e 

ac
cu

ra
cy

9 Irrelevants
6 Irrelevants
3 Irrelevants
0 Irrelevants

0 50 100 150 200 250 300

Number of training instances

0.
6

0.
7

0.
8

0.
9

1

P
re

di
ct

iv
e 

ac
cu

ra
cy

9 Irrelevants
6 Irrelevants
3 Irrelevants
0 Irrelevants(a) (b)Figure 2.5Learning curves for di�erent numbers of irrelevant attributes using oblivious decision treeinduction with Oblivion, on the Boolean target concepts (a) (A ^ B ^ C) and (b) ((A^ B ^ C) _ (:A ^ :B ^ :C)).2.6 Experimental Results with OblivionWe obtained learning curves and scaling curves for Oblivion in much thesame manner as for the other induction methods. In this case, we tested thealgorithm only on the conjunctive and parity-like concepts, omitting the \mof n" concept. Thus, we tested Oblivion in twenty experimental conditionsgenerated by adding zero through nine irrelevants to the two basic targetconcepts.Figure 2.5 presents the resulting learning curves for zero, three, six, andnine irrelevants, based on the average of twenty runs. As in the previoussection, error bars are omitted for readability, but the 95% con�dence inter-vals ranged from 0.020 to 0.051 at the outset of learning, decreasing roughlymonotonically to zero in each case. As expected, Oblivion improves uponthe performance of C4.5 on the parity-like concept. Although the e�ectof irrelevant features is still visible, all four curves reach the criterion levelmore quickly. Surprisingly, C4.5 outperforms Oblivion on the conjunctiveconcept. Since the pattern of results is di�erent on this concept than onthe parity-like concept, we believe the poor performance is not directly dueto the presence of irrelevants, but the explanation remains unclear. In anycase, Oblivion still reaches high levels of accuracy within 50 instances, evenwith nine irrelevants, so this discrepancy is not of great concern.



Scaling to Domains with Irrelevant Features 27
0 1 2 3 4 5 6 7 8 9

Number of irrelevant features

0
20

0
40

0
60

0
80

0
10

00

T
ra

in
in

g 
in

st
an

ce
s

Oblivion
NN
C4.5

0 1 2 3 4 5 6 7 8 9

Number of irrelevant features

0
20

0
40

0
60

0
80

0
10

00

T
ra

in
in

g 
in

st
an

ce
s

Oblivion
NN
C4.5(a) (b)Figure 2.6The number of training instances required for decision-tree induction, nearest neighbor,and Oblivion to reach 95% accuracy on a separate test set, as a function of the numberof irrelevant features, for the target concepts (a) (A ^ B ^ C) and (b) ((A ^ B ^ C) _(:A ^ :B ^ :C)).Figure 2.6 includes scaling curves for Oblivion along with those for C4.5and nearest neighbor. Again, we present the number of instances required toreach 95% accuracy on a separate test set as a function of the number of ir-relevants. These results demonstrate the superiority of Oblivion over C4.5in scaling to increasing numbers of irrelevants on the parity-like concept.The di�erence between C4.5 and Oblivion on the conjunctive concept iscomparatively small. Indeed, the sample complexity for Oblivion appearsnearly linear on this concept. In contrast, C4.5's sample complexity on theparity-like concept is clearly exponential.In the absence of knowledge about the prevalence of irrelevant or inter-acting features in a given domain, Oblivion appears to be the algorithmof choice. Moreover, it seems likely that some natural domains will haveinteraction among their features. Oblivion's improved behavior over C4.5in the presence of interacting features outweighs its slightly poorer showingwhen no interactions are present. The algorithm's ability to scale well toincreasing numbers of irrelevants, regardless of the presence of interaction,is a clear bene�t.



28 Langley and Sage2.7 Related WorkOther researchers have addressed the issue of induction in the presence ofirrelevant features. Early approaches to this problem emphasized �lteringmethods. Under this model, feature selection is distinct from the processof constructing an intensional description (e.g. a decision tree). The rele-vant features are �rst selected and then passed to an induction algorithm.Methods taking this approach include Almuallim and Dietterich's (1990)Focus algorithm and a related technique by Schlimmer (1993), as well asKira and Rendell's (1992) Relief. Both Focus and Relief pass the se-lected features to a decision-tree algorithm, but one can use any inductiontechnique at this stage. Cardie (1993) described an approach that selectsa set of features for nearest neighbor retrieval, and Kubat, Flotzinger, andPfurtscheller (1993) used a similar �ltering scheme with a naive Bayesianclassi�er.In contrast, much of the recent work has applied a wrapper model to theproblem of feature selection. First described as a general framework byJohn, Kohavi, and Peger (1994), this approach uses the same algorithm toselect features as it does to construct the intensional description. Methodscombining the wrapper model with decision-tree induction include those ofJohn et al (1994) and Caruana and Freitag (1994), but again, one can useany induction algorithm. Moore and Lee (1994), Skalak (1994), Townsend-Weber and Kibler (1994), and Aha and Bankert (1994) have implementedthe wrapper model with nearest neighbor methods. Oblivion is anotherexample of a wrapper system, but it combines characteristics of both decisiontree and nearest neighbor techniques.Another broad class of methods retains all attributes, but places weightson them, so that some inuence the classi�cation process more than oth-ers. Examples of this approach include Rumelhart's (1986) backpropagationalgorithm for determining weights in a multi-layer neural network, Aha's(1990) method for weighting features in the nearest neighbor framework,and Gennari, Langley, and Fisher's (1989) use of conditional probabilities ina concept hierarchy. Such techniques have more representational power thanfeature selection methods, but they also have greater potential for over�t-ting the training data, and it remains unclear which scheme gives the bestscaling to domains with many irrelevant features.



Scaling to Domains with Irrelevant Features 292.8 Directions for Future WorkClearly, the experimental results we have presented are preliminary andmust be treated with caution. In future work, we hope to replicate ourresults in the presence of noise and on a broader range of target concepts,including ones that incorporate more relevant features, alternative Booleancombinations, and numeric attributes. In addition, we would like to explorealternative schemes for searching the space of oblivious decision trees thatmay further improve Oblivion's ability to scale to domains with manyirrelevant features. We also hope to supplement our studies of arti�cialdomains by applying Oblivion to some natural domains.Another direction for future work involves comparing our approach withother methods for feature selection. In particular, the current proliferationof wrapper models, for both decision-tree and nearest neighbor methods,deserves our attention. We should also study the behavior of attribute-weighting schemes. Examining the relations among these approaches andour own may lead to further development and improvement of our algorithm.Despite the work that remains, we believe our initial studies provide afoundation for evaluating methods for handling irrelevant features. Ourmethodology for comparing these algorithms, speci�cally our use of scalingcurves, allows us to directly measure their performance as a function of thenumber of irrelevants. We have applied this methodology to compare twostandard approaches to induction along with a new algorithm designed toovercome their limitations, thus providing a context for future comparativestudies along the same lines.Acknowledgments Thanks to David Aha, Je� Schlimmer, Russ Greiner,and Bharat Rao for discussions that improved the work reported in thispaper, and to Siemens Corporate Research for providing space and facilitiesduring a visit by the authors. This research was supported in part by ONRGrant No. N00014-94-1-0505, and in part by AFOSR Grant No. F49620-94-1-0118.




