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IntroductionThe current popularity of data mining, data ware-housing, and decision support, as well as the tremen-dous decline in the cost of disk storage, has led tothe proliferation of terabyte data warehouses. Min-ing a database of even a few gigabytes is an arduoustask, and requires either advanced parallel hardwareand parallelized data-mining algorithms, or the useof sampling to reduce the size of the database to bemined.Data analysis and mining always take place withinthe context of solving some problem for a customer (do-main expert or data owner), and thus many decisionsmust be made jointly by the customer and the dataminer. The analyst's job is to present the samplingdecision in a comprehensible form to the customer.The PCE (Probably Close Enough) criterion we in-troduce is a criterion for evaluating sampling methods.If we believe that the performance of our data-mining

algorithm on a sample is probably close to what itwould be if we ran it on the entire database, then weshould be satis�ed with the sample. The question ishow to quantify close enough and probably. For sim-plicity, we consider only accuracy in supervised classi�-cation methods, although the PCE framework is moregeneral. This focus lets us leverage existing learningtheory and make the discussion more concrete by de�n-ing close in terms of accuracy.Dynamic sampling refers to the use of knowledgeabout the behavior of the mining algorithm in orderto choose a sample size | its test of whether a sam-ple is suitably representative of a database depends onhow the sample will be used. In contrast, a static sam-pling method is ignorant of how a sample will be used,and instead applies some �xed criterion to the sam-ple to determine if it is suitably representative of theoriginal large database. Often, statistical hypothesistests are used. We compare the static and dynamicapproaches along quantitative (sample sizes and ac-curacy) and qualitative (customer-interface issues) di-mensions, and conclude with reasons for preferring dy-namic sampling.Static Sampling CriteriaThe aim of static sampling is to determine whethera sample is su�ciently similar to its parent database.The criteria are static in the sense that they are usedindependently of the following analysis to be performedon the sample. Practitioners of KDD sometimes speakof \statistically valid samples" and this section repre-sents one attempt to make this precise. Our approachtests the hypotheses that each �eld in the sample comesfrom the same distribution as the original database.For categorical �elds, a �2 hypothesis test is usedto test the hypothesis that the sample and the largedatabase come from the same distribution. For nu-meric �elds, a large-sample test (relying on the centrallimit theorem) is used to test the hypothesis that thesample and the large database have the same mean.



a) BT FA T 50 50 100F 50 50 100100 100 b) BT FA T 10 0 10F 0 10 1010 10Table 1: a: Counts of a database containing 50 copiesof records <TT>, <TF>, <FT>, <FF>. b: Sample contain-ing 10 copies of records <TT>, <FF>. These both lookthe same to univariate static sampling.Note that hypothesis tests are usually designed tominimize the probability of falsely claiming that twodistributions are di�erent (Casella & Berger 1990). Forexample, in a 95% level hypothesis test, assuming thetwo samples do come from the same distribution, thereis a 5% chance that the test will incorrectly reject (typeI error) the null hypothesis that the distributions arethe same. However, for sampling we want to minimizethe probability of falsely claiming they are the same(type II error). We used level 5% tests, which liberallyreject the null hypothesis, and are thus conservativein claiming that the two distributions are the same.(Directly controlling Type II error is more desirablebut complicated and requires extra assumptions.)Given a sample, static sampling runs the appropriatehypothesis test on each of its �elds. If it accepts allof the null hypotheses then it claims that the sampledoes indeed come from the same distribution as theoriginal database, and it reports the current samplesize as su�cient.There are several shortcomings to the static sam-pling model. One minor problem is that, when runningseveral hypothesis tests, the probability that at leastone hypothesis is wrongly accepted increases with thenumber of tests. The Bonferroni correction can adjustfor this problem. More important, the question \isthis sample good enough?" can only be sensibly an-swered by �rst asking \what are we going to do withthe sample?" Static sampling ignores the data-miningtool that will be used. The tests we describe are onlyunivariate, which is problematic (see Table 1). Onecould as well run bivariate tests but then there is ofcourse no guarantee that the three-way statistics willbe correct. It is also unclear how the setting of the con-�dence levels will e�ect sample size and performance,so this is a poor framework to present to a customer.Dynamic SamplingSampling a database is a scary prospect. It involvesa decision about a tradeo� that many customers arerightfully hesitant to make. That decision is how muchthey are willing to give up in accuracy to obtain a de-

crease in running time of a data mining algorithm. Dy-namic sampling and the PCE criterion address this de-cision directly, rather than indirectly looking at statis-tical properties of samples independent of how they willbe used. Ultimately, the costs of building the model(disk space, cpu time, consultants' fees) must be amor-tized over the period of use of the model and balancedagainst the savings that result from its accuracy. Thiswork is a step in that direction.The PCE CriterionThe Probably Close Enough criterion is a way of evalu-ating a sampling strategy. The key is that the samplingdecision should occur in the context of the data miningalgorithm we plan to use. The PCE idea is to thinkabout taking a sample that is probably good enough,meaning that there is only a small chance that themining algorithm could do better by using the entiredatabase instead. We would like the smallest samplesize n such thatPr(acc(N )� acc(n) > �) � � ;where acc(n) refers to the accuracy of our mining algo-rithm after seeing a sample of size n, acc(N ) refers tothe accuracy after seeing all records in the database, �is a parameter to be speci�ed by a customer describingwhat \close enough" means, and � is a parameter de-scribing what \probably" means. PCE is similar to thethe Probably Approximately Correct bound in compu-tational learning theory.Given the above framework, there are several dif-ferent ways to attempt to design a dynamic samplingstrategy to satisfy the criterion. Below we describemethods that rely on general properties of learning al-gorithms to estimate acc(N ) � acc(n). But �rst, inorder to test the PCE framework, we must select alearning algorithm.We chose the naive Bayesian classi�er, which has anumber of advantages over more sophisticated tech-niques for data mining, such as methods for decision-tree and rule induction. The algorithm runs in timelinear with the number of attributes and training cases,which compares well with the O(n logn) time for basicdecision-tree algorithms and at least O(n2) for meth-ods that use post-pruning. Also, experimental studiessuggest that naive Bayes tends to learn more rapidly, interms of the number of training cases needed to achievehigh accuracy, than most induction algorithms (Lang-ley & Sage 1994). Theoretical analyses (Langley, Iba& Thompson 1992) point to similar conclusions aboutthe naive Bayesian classi�er's rate of learning. A thirdfeature is that naive Bayes can be implemented in anincremental manner that is not subject to order e�ects.



Sampling through Cross ValidationDespite the inherent e�ciency of naive Bayes, wewould like to reduce its computational complexity evenfurther by incorporating dynamic sampling. There areseveral problems to solve in deciding whether a sam-ple meets the PCE criterion, but each of them is well-de�ned in terms of our goal. We examine samples ofincreasing larger size n, adding a constant number ofrecords to our sample repeatedly until we believe thePCE condition is satis�ed.First, we must estimate acc(ni). In our algorithm,we used leave-one-out cross-validation on the sampleas our estimate of acc(ni). Then we must estimateacc(N ). For a �rst attempt, we assume that wheneveracc(ni+1) � acc(ni), the derivative of accuracy withrespect to training set size has become non-positiveand will remain so for increasing sample sizes. Thusacc(N ) � acc(ni) and we should accept the sample ofsize n.In initial experiments on UCI databases we foundthat this method for putting a bound on acc(N ) is sen-sitive to variance in our estimates for acc(ni), and of-ten stops too soon. On average, accuracy was reducedabout 2% from the accuracy on the full database, whilethe sample size was always less than 20% of the size ofthe original database.Extrapolation of Learning CurvesPerhaps this sensitivity could be overcome by the useof more information to determine acc(N ) rather thanjust the last two estimated accuracies. One methodis to use all available data on the performance of themining algorithm on varying-sized training sets, anduse these to �t a parametric learning curve, an esti-mate of the algorithm's accuracy as a function of thesize of the training sample. Extrapolation of LearningCurves (ELC) can predict the accuracy of the miningalgorithm on the full database.But �rst, we must estimate acc(n). In our algo-rithm, when considering a sample of size n we takeK more records from the large database and classifythem and measure the resulting accuracy. This is ourestimate of acc(n). Then we must estimate acc(N ).We use the history of sample sizes (for earlier, smallersamples) and measured accuracies to estimate and ex-trapolate the learning curve.Theoretical work in learn-ing, both computational and psychological, has shownthat the power law provides a good �t to learning curvedata: dacc(n) = a� bn�� :The parameters a; b; � are �t to the observed accuraciesusing a simple function optimization method. We used

Dynamic Hill Climbing (Yuret 1994), which seems towork well.We know N , the total size of the database. Givendacc(N ) as our estimate for the accuracy of our datamining algorithm after seeing all N cases in thedatabase, we can check the di�erence between this ex-pected value and the current accuracy on our sampleof size n, and if the di�erence is not greater than �, weaccept the sample as being representative.If the di�erence is greater than �, we reject the sam-ple and add the additional K records (sampled previ-ously, to get an estimate of the accuracy of our model)to our sample, updating the model built by our miningalgorithm. For this to be e�cient, the mining algo-rithm must be incremental, able to update itself givennew data in time proportional to the amount of newdata, not the total amount of data it has seen.Experiments: ELC vs Static SamplingPreliminary studies with ELC sampling for naive Bayesgave good results relative to the non-sampling versionof this algorithm, which encouraged us to carry outa fuller comparison with the static approach to sam-pling. To this end, we selected 11 databases from theUCI repository that vary in the number of featuresand in the proportion of continuous to nominal fea-tures. Since our goal was to learn accurately from asmall sample of a large database, and since the UCIdatabases are all quite small, we arti�cially inatedeach database by making 100 copies of all records, in-serting these into a new database, and shu�ing (ran-domizing their order). Very large real databases alsohave high redundancy (Moller 1993), so we do believethe results of these experiments will be informative, al-though real large databases would obviously have beenpreferable.For each new inated database, we shu�ed therecords randomly and ran �ve-fold cross-validation |we partitioned it into �ve disjoint and equal-size parts,and repeatedly trained on four out of the �ve, whiletesting on the held-out part. For each training step,we �rst sampled the database using either no sampling(taking all records), static sampling, or dynamic sam-pling (ELC). We then recorded the number of samplesused and the accuracy on the held-out piece. We re-peated this entire procedure �ve times, getting a totalof 25 runs of sampling and 25 estimates of accuracy.We initialized both sampling algorithms with a sam-ple of size 100. For the static scheme, we used a 5%con�dence level test that each �eld had the same dis-tribution as the large database. For dynamic sam-pling, we �t the learning curve and checked whetherdacc(N ) � acc(n) < 2%. In either case, if the sample



Table 2: Sample size (n) and accuracy for 25 runs.Naive Static DynamicData set Acc. Acc. n Acc. nBreast Cancer 95.9 95.9 300 95.9 300Credit Card 77.7 77.0 500 77.2 1180German 72.7 63.8 540 71.8 2180Glass2 61.9 60.0 100 61.9 720Heart Disease 85.1 83.2 180 85.1 900Hepatitis 83.8 83.2 100 83.8 540Horse Colic 76.6 76.1 240 76.6 640Iris 96.0 96.0 100 96.0 560Lymphography 69.1 67.1 100 68.5 600Pima Diabetes 75.3 75.7 420 75.5 1080Tic-tac-toe 69.7 69.2 620 71.1 620was ruled insu�cient we increased the size by 100 andrepeated.Table 2 shows the results on the 11 inateddatabases from the UCI repository. Note that extrapo-lated learning curve sampling meets the PCE criterionwith � = :02: in no case was the accuracy on the en-tire database more than .9% higher than the extrapo-lated sample accuracy. Static sampling, while approv-ing much smaller samples, did worse at matching theaccuracy on the entire database: in two cases, its ac-curacy was 1.9% worse than the accuracy on the entiredatabase, and on one domain (German) its accuracywas nearly 10% lower.Related and Future WorkPerhaps the best examples of dynamic sampling are thepeepholing algorithm described by Catlett (1992) andthe \races" of Moore & Lee (1994). In both approachesthe authors identify decisions that the learning algo-rithm must make and propose statistical methods forestimating the utility of each choice rather than fullyevaluating each.The form of our parametric learning curve comesfrom Kohavi (1995), who discusses learning curve ex-trapolation during model selection. Kadie (1995) pro-poses a variety of methods for �tting learning curves.In the future we intend to apply PCE to di�erentdata mining tools, such as Utgo�'s (1994) incrementaltree inducer. The tradeo�s e�ecting variance in theestimated learning curves should also be addressed.ConclusionData mining is a collaboration between a customer (do-main expert) and a data analyst. Decisions about howlarge of a sample to use (or whether to subsample atall) must be made rationally. The dynamic sampling
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