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Learning from experience involves three distinct components-generating 

behavior, assigning credit, and modifying behavior. We discuss these com- 

ponents in the context of learning scorch heuristics, olong with the types of 

learning that con occur. We then focus on SAGE, o system that improves its 

search strategies with practice. The program is implemented OS o production 

system, and learns by creating and strengthening rules for proposing moves. 

SAGE incorporates five different heuristics for assigning credit and blame, and 

employs a discrimination process to direct its search through the space of 

rules. The system has shown its generality by leorning heuristics for directing 

search in six different task domoins. In oddition to improving its search 

behavior on practice problems, SAGE is able to tronsfer its expertise to 

scaled-up versions of o task, and in one case. transfers its acquired search 

strategy to problems with different initial and goal stotes. 

INTRODUCTION 

The ability to search is central to intelligence, and the ability to direct search 
down profitable paths is what distinguishes the expert from the novice. 
However, since all experts begin as novices, the transition from one to 
the other should hold great interest for Artificial Intelligence (AI). In this 
paper, we examine the process by which general but weak methods are 
transformed into powerful, domain-specific search heuristics. Readers 
should be able to detect two main themes. In the early sections of the paper, 
we have attempted to classify the types of heuristics learning that can occur, 
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as well as the components that contribute to such learning. After these pre- 
liminaries have been completed, we explore a particular learning system- 
SAGE.2-in some detail, both in terms of its structure and in terms of its 
behavior in different domains. We close with a discussion of some direc- 
tions in which the system should be extended. 

Within any system that improves its search strategies with experience, 
we can identify three distinct components. First, such a system must be able 
to search, so that it can generate behaviors upon which to base its learning. 
Second, the system must be able to distinguish desirable from undesirable 
behaviors, and to determine the components of the system that were respon- 
sible for those behaviors; in other words, it must be able to assign credit and 
blame. Finally, the system must be able to use this knowledge to modify its 
search strategies, so that behavior improves over time. Since so much AI re- 
search has revolved around the notion of search, it is not surprising that the 
first of these components is the best understood. Many alternative search 
strategies have been explored, ranging from very general but weak methods, 
like depth-first and breadth-first search, to much more powerful methods 
that incorporate knowledge about specific domains. It is precisely the trans- 
ition between weak, general methods and specific, powerful methods with 
which we are concerned. Thus, it is appropriate that a strategy learning sys- 
tem start with some weak search scheme that can be applied to many dif- 
ferent domains. However, it is also important that the search control can be 
easily modified to take advantage of domain-dependent knowledge that is 
acquired with experience. The areas of credit assignment and modification 
are less well understood, and we discuss them in some detail in later sec- 
tions. However, before turning to these matters, let us consider the problem 
of learning search heuristics in the context of a simple puzzle. 

Over the years, the Tower of Hanoi puzzle has been used as a testbed 
for many different AI systems. We have chosen this task for our example 
because it is so well-known to the AI community, and because it poses a 
challenging problem to humans despite its small search space. In this puzzle, 
one is presented with three pegs on which are placed N disks of decreasing 
size. Initially, all disks are placed on a single peg, and the goal is to get all of 
these disks onto one of the other pegs. This task would be trivial except for 
two constraints on the types of moves that are allowed. First, one can only 
move the smallest disk from a given peg. Second, one cannot move a disk 
onto another peg if a smaller disk is already resting on that peg. Taken to- 
gether, these restrictions considerably constrain the set of legal moves, and 
make for a challenging problem. 

Figure 1 presents the state space for the three-disk Tower of Hanoi 
problem, originally formulated by Nilsson (1971), while Figure 2 shows 
two of these states in more detail. Note that although only 27 states exist in 
the space, the number of connections between these states is very large. One 
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s20 521 s22 S23 s24 S26 S26 S27 

Figure 1. State space for the three-disk Tower of Hanoi puzzle 

result of this high density of connections is that loops are very easy to gen- 
erate.’ Another result is that while many paths to a goal are possible, only a 
few are optimal. In other words, within the state space for the three-disk 
problem, considerable search may be necessary to find an optimal solution 
path. Suppose Sl is given as the initial state (in which all disks are on a 
single peg), and the goal is to reach either state S20 or state S27 (in which the 
disks are all on another peg).2 Further assume that we employ a very 
general but weak search strategy such as depth-first or breadth-first search 
to solve this problem. Given such weak search control, many nonoptimal 
moves yrill be considered before the best set of moves is discovered. For ex- 
ample, a breadth-first search scheme would consider moving from state S2 
to S3, as well as the optimal move from. S2 to S4. The goal of a strategy- 
learning system is to discover a set of heuristics that will propose moves ly- 
ing on the solution path, while avoiding those leading off the path. In the 
following sections, we consider some of the ways in which such search heu- 
ristics can be acquired. 

TYPES OF STRATEGY LEARNING 

Throughout the history of science, the first step in understanding a set of 
phenomena has involved the construction of taxonomies or classification 
schemes. Thus, the early chemists formulated classes such as acids, alkalis, 
and salts before they began to discover quantitative laws for reactions. 
Similarly, in biology the acceptance of the Linnaean classification system 

’ Loops are possible because all moves are reversible. For example, one can move from 

State S2 to Sl as easily as from Sl to S2. though longer loops can also occur. 
z In most versions of this task, the goal involves moving all disks to a single peg: we will 

discuss the reason for allowing multiple solutions later in the paper. 
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preceded Darwin’s recognition of similarities between classes and his expla- 
nation of their evolutionary relations. By analogy, it would seem useful to 
attempt to categorize the various types of strategy improvement before at- 
tempting to explain the processes responsible for them. 

Ohlsson (1982) has distinguished between improvement, in which 
search decreases on a single practice problem, and transfer, in which prac- 
tice on one set of problems leads to a reduction in search on a second set of 
problems. Building upon this distinction, it is possible to subdivide the class 
of transfer learning still further. One type of transfer involves the scaling up 
of simple problems into more complex ones. We have seen that for puzzles 
such as the Tower of Hanoi, one can draw a state space diagram represent- 
ing the possible states and the moves connecting them. The state space for 
the four-disk puzzle is very similar to that for the simpler problem, and can 
be generated by replacing each state in Figure 1 by a triangle of states. Given 
this similarity of structure, one might expect that heuristics learned for solv- 
ing the three-disk problem would easily transfer to the four-disk problem. 
However, more steps would be involved in reaching a solution, so this prob- 
lem is a scaled-up version of the three-disk problem.3 

state Sl state S2 

Figure 2. Moving disk-l from peg-A to peg-C on the Tower of Hanoi puzzle 

A second type of transfer occurs when one practices on one problem, 
and then is presented with another problem that involves the same state 
space, but has a different initial state or a different goal state. For example, 
one might learn a set of heuristics for moving from state Sl to S20 or S27 in 
the three-disk problem, and then be asked to find a path between state S7 
and S14. In general, this type of transfer would appear to be more difficult 
than scaled-up transfer, since one must take goal information into account 
while constructing one’s heuristics. 

In domains such as algebra and integration, the state spaces for differ- 
ent problems bear little similarity to one another, since only a few of the 
many possible operators come into play on a given problem. However, the 
goals always have very similar forms-to simplify an expression or to solve 
for some variable. As a result, the above two types of transfer seldom occur 
in such domains. In these cases, one usually practices on one set of prob- 

’ The difficulty of a problem can sometimes be altered in multiple ways. For example, 
one can formulate a variation of TOH puzzle that involves three disks and four pegs. In fact, 

this problem can be solved in fewer steps than the standard version, but the point is that dif- 
ficulty can sometimes be affected in more than one way. 
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lems, and then is tested on a different set of problems that, while they differ 
in the structure of their state spaces, have approximately the same cornplex- 
iry. This type of transfer constitutes the third member in our classification 
scheme. 

Finally, one may sometimes attempt to use knowledge learned in an 
area that is only loosely related to the current situation. In such cases, only 
some of the operators used earlier may be applicable to the space currently 
being searched, and others that were not applicable before may come into 
play. Still, one may be able to take advantage of some of the heuristics that 
were acquired in the first class of problems and apply them to the task at 
hand; this form of transfer is usually called learning by analogy. Taken 
together, these four classes would seem to cover the ways in which transfer 
of learning can occur, though one might propose alternate divisions based 
along other dimensions. 

While we do not have the space to review earlier research on strategy 
learning in detail,’ it will useful to classify the existing work in terms of our 
categories. For instance, Anzai (1978) focused on improvement within the 
three-disk Tower of Hanoi task, but did not address the issue of transfer. In 
contrast, Brazdil’s (1978) concern with arithmetic has led him to explore 
transfer to scaled-up problems and to problems of equal complexity, and 
Neves (1978) has also examined the latter in the context of algebra learning. 
Mitchell, Utgoff, and Banerji’s (1983) research on symbolic integration and 
Anderson’s (1981) work on geometry theorem proving have also been con- 
cerned with the latter type of transfer. Langley’s SAGE. 1 (1982a, 1983)-the 
predecessor of the current system-showed both improvement on a single 
problem and transfer to scaled-up problems, while Ohlsson’s UPL2 (1983) 
showed both improvement and some ability to transfer to problems with 
different initial states and goals. Rendell’s (1983) PLSl system was able to 
transfer its heuristics to both scaled-up problems and to those with different 
initial and goal states. Like Anzai, Hagert (1982) has focused on improve- 
ment on the Tower of Hanoi task, while Korf’s (1982) macro-operator 
learning program was able to transfer its expertise to problems with differ- 
ent initial states. Finally, both Carbonell (1983) and Anderson (1983) have 
studied learning by analogy, in which knowledge gained in solving one 
problem is applied to direct search in a quite different problem. We sum- 
marize this information in Table 1. 

Later in the paper, we will examine the behavior of a particular strat- 
egy learning system called SAGE.2. To anticipate our results, we will find 
that SAGE is capable not only of improvement, but that it is also capable of 
transfer to scaled-up tasks and to problems of equal complexity. We will 

’ The interested reader is directed to Keller (1982) and Langley (1983) for reviews of 
some recent work in the area. 
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TABLE I 

Types of Leorning Addressed in Earlier Research 

ANZAI 

BRAZDIL 

NEVES 

MITCHELL 

LANGLEY 

OHLSSON 

RENDELL 

HAGERT 

KORF 

ANDERSON 

CARBONELL 

Improvement 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Scaled-up Diff. Goals Equal Camp. Analogy 

x X 

X 

X 

X 

X 

X X 

X 

X X 

X 

also find that the current system has difficulty in transferring its expertise to 
problems with different initial and goal states, but that the potential for this 
form of transfer does exist. Finally, learning by analogy appears to lie 
beyond the methods employed by the program. Hopefully, the reader now 
has a better understanding of the types of transfers that can occur and those 
types we will focus on in the following pages. Now let us move on to the 
components of the strategy learning process. 

APPROACHES TO CREDIT ASSIGNMENT 

As we have seen, the first step in learning is to distinguish desirable from 
undesirable behaviors, and to determine the parts of the system responsible 
for those behaviors. This has been called the credir assignment problem, and 
has been explored in a number of domains, ranging from puzzle solving to 
chess playing. We have arrived at a number of heuristics for assigning credit 
and blame that appear to be quite general, some of which we have borrowed 
from other researchers. All of these methods involve the same basic idea- 
that steps lying along optimal solution paths should be preferred to those 
leading off those paths. However, the various methods make judgments 
about preferable moves in quite different ways. Below, we discuss these 
heuristics in the context of the Tower of Hanoi puzzle and a few other sim- 
ple tasks. 

Complete Solution Paths 

One option for distinguishing desirable from undesirable behavior is to wait 
until a complete solution path has been found for a problem. Moves leading 
to states on the solution path are desirable, since they led to a solution, 
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while moves going off the path are undesirable, since they led elsewhere. 
Mitchell, et al. (1983) have employed this approach to their LEX system, 
while Langley (1983) has used a very similar approach in his SAGE. 1 pro- 
gram. Brazdil (1978) and Rendell (1983) have also employed the complete 
solution path heuristic. Sleeman, Langley, and Mitchell (1982) have dis- 
cussed the generality and limitations of this approach to credit assignment. 

Let us consider how this technique can be applied to the Tower of 
Hanoi puzzle. Figure 1 presents the state space for the three-disk puzzle, 
with the two solution paths connecting the top vertex to the two bottom ver- 
tices. Given the legal operators for solving the puzzle, many problem-solv- 
ing systems can discover the solutions by searching this space. Once the 
solution paths have been discovered, they can be used to assign credit and 
blame. For example, since both moves from the initial state Sl lie on the 
solution path, both would be labeled as good moves. Three moves are possi- 
ble from each of the resulting states S2 and S3. The moves leading to states 
S4 and S5 also lie on the solution path, and so would be marked as good 
moves. However, the moves leading to states S3 and S2 lie off the solution 
path, as do the two moves leading back to the initial state. Thus, all of 
these moves would be labeled as undesirable. 

This approach is very general, since it can be used to assign blame and 
credit to any problem that can be solved by search. However, this method is 
guaranteed to work only if all of the shortest solution paths are available. 
Since some search techniques find only a single solution path, difficulties 
can arise. For example, a system that solves problems using a form of 
depth-first search might find one of the solutions shown in Figure 1, but not 
the other. Given such incomplete knowledge, our credit assignment heuris- 
tic would mistakenly label one of the initial moves as undesirable. Mitchell, 
et al. (1983) have dealt with this problem by carrying out additional search 
before deciding that a move is bad. Another problem is that while almost 
any problem can in principle be solved purely by search, there are many 
problems with search spaces so large that some other route must be taken. 
In these cases, other credit assignment heuristics that do not require com- 
plete solution paths must be employed to enable learning to occur while the 
problem is being solved, so that the search process can become directed 
enough to reach the goal state. We now discuss a number of heuristics that 
allow credit assignment during the search process, and which open the way 
to learning while doing. 

Noting Loop Moves 

When one is attempting to solve a problem in as few steps as possible, re- 
turning to a previously visited state (or looping) may be safely considered 
undesirable. Thus, when a move leads to a state through which the problem 
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solver has already traveled, that move can be labeled as less desirable than 
another move that does not complete a loop. For example, suppose one is at 
state S4 in the three-disk Tower of Hanoi problem, and considers moving to 
states S2, S6, and S7. Since the first of these leads back to the previously 
visited state S2, it can be labeled as less desirable than the last two moves. 
Note that this form of credit assignment is relative rather than absolute, as 
was the case when complete solutions were known. There is no guarantee 
that the move leading from S4 to S7 will ultimately be deemed desirable (as 
in fact it will not, since it leads off the solution path). However, one can say 
that this move is more desirable than the one leading back to a previously 
reached state, and this information may be useful to the modification com- 
ponent of the system. Anzai (1978) has used a loop move detector to good 
effect in modeling learning on the Tower of Hanoi, but it is clear that this 
approach can be applied to any domain in which loops can occur during 
search. Ohlsson (1983) has employed a similar credit assignment technique 
in his UPL system. 

Noting Longer Paths 

In general, shorter paths to a goal are more desirable than longer ones. 
Thus, if a problem solver notes that he has reached some state by two dif- 
ferent paths, he can infer that the last move in the longer path should have 
been avoided. For example, in the three-disk Tower of Hanoi puzzle, sup- 
pose one has moved from state S4 to state S7, as well as from S4 to S6. Fur- 
ther suppose that on the next move, one moves from S6 to S7, as well as 
from S6 to SlO. Since the state S7 has been reached by two paths, the last 
move in the longer path (from S6 to S7) may be judged undesirable. The 
alternate move from S6 to SlO cannot immediately be deemed good in any 
absolute sense (though later it would be found to lie on the solution path), 
but it can be judged as more desirable than the move from S6 to S7. Thus, 
this is another case where the assignment of credit and blame takes on a 
relative aspect. The shorter-path heuristic is closely related to the loop move 
method, and appears to be another quite general technique for assigning 
credit during the search process. Anzai (1978) has applied a very similar 
technique to learning on the Tower of Hanoi task. 

Dead Ends 

In solving a problem, a path must be found from the initial to the goal state. 
However, some paths lead to dead ends from which no steps can be taken 
except to back up, and it is desirable to avoid these c&de-sacs if possible. 
Another generally useful credit assignment heuristic labels as bad the last 
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move in a path that has led to a dead end. For example, suppose in solving 
the three-disk Tower of Hanoi problem, one has moved from state S4 to S7. 
Also suppose that after this, one has tried moving from S7 to S4, from S7 to 
S6, and from S7 to S8. If the first of these moves is labeled as bad by the 
loop move heuristic, and the second two are marked as bad by the shorter- 
path heuristic, then the state S7 may be classified as a dead end. As a result, 
the move from S4 to S7 may be judged as undesirable, and the move from 
S4 to S6 may be judged as a better move, since it does not lead to any un- 
desirable state. Again, this heuristic cannot decide that the S4 to S6 move is 
absolutely desirable (though it does lie on the solution path), but it can 
determine that this move should be preferred to its alternative. 

Failure to Progress 

We have so far referred to the initial search strategy only in the abstract. 
However, some search strategies are more powerful than others, and this 
power can be used in assigning credit and blame before a complete solution 
has been found. For example, search methods such as means-ends analysis 
and hill-climbing employ an evaluation function which tells whether one is 
closer to the goal after a move has been made than he was before. Let us 
consider a simple example from the domain of algebra. In solving algebra 
problems in one variable, simplifying the expression will take one closer to 
the goal (in which the variable is on one side of the equation and a number is 
on the other). Thus, if a step is taken which does not simplify the expres- 
sion, this may be judged as an undesirable move. Another move made from 
the same state that does lead to a simplification may be judged as more 
desirable, though (in principle at least) it might not be the best move possi- 
ble. Neves (1978) employed such a credit assignment principle in his ALEX 
system, enabling it to learn algebra heuristics before a complete solution had 
been achieved. The implementation of such a principle might be quite gen- 
eral, as in Ohlsson’s (1983) UPL 2 system, which used a form of means-ends 
analysis, or it might be relatively specific, as in knowing that algebra expres- 
sions should always be simplified. 

Illegal States 

A final heuristic for the determination of credit and blame revolves around 
the notion of illegal states. In some cases, the problem solver may attempt 
to make moves which he later recognizes as violating some task constraint. 
For example, in the Tower of Hanoi puzzle, one might attempt to move the 
largest disk, even though one or more smaller disks were resting on it. Of 
course, such a move is undesirable, and any move from the same state that 
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does not violate a constraint may be judged as better. This is yet another 
case in which the desirable move is only relatively good, and that move may 
be judged as undesirable at some later point in the search process. In princi- 
ple, this heuristic may be applied to any task that involves some form of 
constraints. However, problem solvers often incorporate such constraints 
into their operators, and so avoid illegal moves from the outset. Still, this 
type of mistake occurs among human problem solvers sufficiently often for 
it to be included in the psychological literature (Simon & Reed, 1976), so we 
shall keep it on our list of methods for solving the credit assignment prob- 
lem. Now that we have considered approaches to the first step in the strategy 
learning process, it is time to move on to the second stage-the modification 
of behavior. 

APPROACHES TO ALTERING SEARCH BEHAVIOR 

There exist two rather different approaches to controlling search in an in- 
telligent fashion. In the first scheme, some numerical evaluation function is 
used to rank states, and those with the highest scores are selected for further 
expansion. This method is commonly used in game-playing programs. The 
alternative is to employ heuristics with symbolic conditions to direct search, 
and this approach has often been applied to puzzle-solving tasks and mathe- 
matical domains. As one might expect, both of the methods lead to associated 
techniques for al&ring search behavior, and both approaches to learning 
have been explored in the literature. Below we summarize these approaches 
to strategy acquisition. 

Discovering Evaluation Functions 

The approach to learning through discovering evaluation functions is an at- 
tractive, one and was examined early in the history of AI. Samuel (1959) 
constructed a checker-playing program that chose its moves on the basis of 
a linear evaluation function. The system experimentally introduced new 
terms from a set of predefined features and altered the weights of existing 
terms, and then noted the result in its playing ability. In this way, Samuel’s 
system eventually progressed to master-level checkers play. Rendell(l983) has 
explored an alternate approach to finding evaluation functions. His PLSl 
program first solves a problem (such as the eights puzzle) using breadth- 
first search. Once a solution has been found, this information is used to 
assign a score to each state in the search tree. Using various curve-fitting 
techniques, Rendell’s system generates a function that predicts these scores 
in terms of a set of predefined features. This function can then be used as an 
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evaluation function for directing the search process. While such techniques 
are useful in domains where numeric evaluation functions are appropriate, 
other methods must be used to acquire heuristics that can only be stated in 
symbolic terms. 

Generalizing Conditions 

One technique for learning symbolic conditions begins with very specific 
rules and generalizes as more information is gathered. In this incremental 
approach, the hypothesized conditions are usually initialized to the first 
positive instance. When a new positive instance is encountered, it is com- 
pared to the current hypothesis and one or more revised hypotheses are 
generated, based on the features held in common by the two structures. If 
some of these hypotheses become overly general, they eventually lead to the 
incorrect classification of negative instances as positive ones and are re- 
jected. Since more than one hypothesis may result from this comparison, 
some method for controlling search through the rule space is required. Win- 
ston (1975) has explored depth-first strategies for searching the rule space, 
while Hayes-Roth (1976) and Vere (1975) have employed breadth-first search 
strategies. Since most generalization-based methods search for features held 
in common by all positive instances, they have difficulty in learning rules 
with disjunctive conditions. However, Iba (1979) has used an extension of 
the depth-first scheme to successfully learn disjunctive rules. 

Discriminating Conditions 

An alternate approach starts with an overly general rule and generates more 
specific versions through a process of discrimination. This occurs when one 
of the current hypotheses leads to an error, providing evidence that it is too 
general. The context in which the faulty rule matched the negative instance 
is compared to the last context in which the same rule matched a positive in- 
stance. During this comparison, differences between the positive (desirable) 
instance and negative (undesirable) instance are found. For each difference, 
a more specific hypothesis can be constructed that would match against the 
positive instance but not the negative one. Since multiple hypotheses can 
result, some search control is required. Brazdil (1978) has used depth-first 
search to direct the discrimination process, while Anderson and Kline (1979) 
and Langley (1982b) have employed more complex strategies involving no- 
tions of strengthening and weakening. Since the discrimination method 
compares instances to other instances (rather than to hypotheses), it does 
not attempt to find features common to all positive instances, and so has no 
difficulty in learning rules with disjunctive conditions. 
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The Version Space Approach 

Mitchell (1977) has explored the version space approach, which incorporates 
aspects of both the generalization and discrimination methods. This tech- 
nique begins with a very specific hypothesis and generates more general ver- 
sions (S) as new positive instances are encountered. As with generalization 
methods, this is done by finding common features. It also begins with a very 
general hypothesis and produces more specific versions (G) as experience is 
gained. However, instead of testing the first set of hypotheses (S) against 
negative instances to see if they are overly general, it tests them against the 
second set (G). Similarly, more specific versions of the second set (G) are 
found by comparing negative instances to members of the first set (S). Mit- 
chell employed a breadth-first strategy to direct search through the space of 
hypotheses. As more instances are gathered, this bidirectional search con- 
verges on the hypothesis best suited to summarize the data. Since Mitchell’s 
method also finds features held in common by all positive instances, it has 
the same difficulty with disjunctive rules as most generalization-based 
learning systems. 

Implications for Search Behavior 

Note that the direction taken in searching for conditions has implications 
for the performance component of a strategy learning system. For example, 
if the system moves from specific to general hypotheses through a generali- 
zation process, then the associated performance system will be conservative. 
The system will begin by making no bad moves and missing some good 
moves, but as the system nears the correct hypothesis, its errors of omission 
will decrease. In contrast, if the system moves from general to specific hy- 
potheses through a discrimination process, then the associated performance 
system will be a rush one, omitting few desirable moves but considering 
many undesirable ones as well, though the latter will decrease as the correct 
hypothesis is approached. 

While a conservative strategy is useful when a benevolent tutor is 
available to present positive and negative instances (as in the paradigm of 
learning concepts from examples), it is less adaptive in learning search heu- 
ristics, where a system must generate its own behavior in order to accumu- 
late positive and negative instances of various rules. In this case, the price of 
commission errors is small, since the only result is added search. However, 
the price of omissions is great, since learning is impossible in the absence of 
behavior. Thus, in the context of learning search strategies, the reckless dis- 
crimination approach seems superior to the more conservative generaliza- 
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tion approach.J The version space approach is capable of conservative or 
rash behavior, depending on whether one uses S or G in the match process. 
However, in this paper we will limit our attention to discrimination-based 
approaches to strategy learning. 

SAGE.2: A SYSTEM THAT LEARNS SEARCH HEURISTICS 

Having considered the three components involved in strategy learning, we 
can now examine a particular strategy learning system in some detail. We 
will focus on SAGE.2, the second in a line of programs (Langley, 1982a, 
1983) that we have constructed to study the process of strategy acquisition. 
SAGE stands for Strategy Acquisition Governed by Experimentation. Like 
most other strategy learning programs, SAGE is implemented as an adap- 
tive production system. In other words, it is stated as a set of relatively inde- 
pendent condition-action rules or productions, and learning occurs through 
the addition of new productions. The program is implemented in PRISM 
(Langley, 1981), a production system language designed to explore learning 
phenomena. We now consider the components of SAGE, starting with its 
representation of states and operators. After this, we discuss the system’s 
initial search strategy, its credit assignment heuristics, and its mechanisms 
for altering its search strategy in the light of experience. 

Representing States and Operators 

Any problem-solving system must have some representation upon which to 
work. For a given problem, it must be able to represent the states that con- 
stitute the problem space being searched, and to represent the operators that 
enable the system to move between those states. As we have stated, SAGE.2 
is implemented as a production system. Others have argued for the advan- 
tages of production system formalisms (Newell, 1972, Anderson, 1976), and 
we do not have the space to recount those arguments here. However, the 
choice of production systems leads to a natural style for representing states 
and operators, and it is appropriate to spend some time discussing that 
style. 

A program that is stated as a production system consists of two main 
components-a set of condition-action rules or productions and a working 

’ However, Ohlsson (I 983) has devised a generalization-based scheme that sidesteps this 
problem. His UPL2 system begins with a set of overly general rules which lead to search; based 
on good moves, the program creates specific rules and generalizes them when possible. Al- 
though UPL prefers to use such learned rules, it retains the original rules, and so can fall back 
on them, if the acquired rules fail to propose any move. 
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memory against which those productions are matched. The working memory 
tends to be declarative in nature, and changes contents fairly rapidly. In 
contrast, the production memory tends to express procedural knowledge, 
and changes only slowly, when learning occurs. During problem solving, 
new states are generated quite often, while new search procedures are added 
only occasionally. Therefore, it is quite natural to represent states as ele- 
ments in working memory, and it is equally natural to represent operators 
for moving between those states as productions. 

Given these design decisions, a question remains as to the precise man- 
ner in which states and operators are to be stored. For example, states might 
be represented as single working-memory elements, as with (in-state S2 (peg- 
A contains disk-2 disk-3) (peg-B contains disk-l) (peg-C contains)) for the 
Tower of Hanoi. Alternately, they might be stored as a number of separate 
elements, such as (disk-l is-on peg-B in-state S2), (disk-2 is-on peg-A in- 
state S2), and (disk-3 in-on peg-A in-state S2). Since most production sys- 
tems languages have limited pattern matching capabilities, the latter of these 
two schemes is desirable: It lets one express finer distinctions. In fact, this is 
the representation for states used in SAGE, and it has worked extremely 
well for our purposes.6 

Since production system formalisms require a close correspondence 
between the form of elements in working memory and the form of produc- 
tions, the choice of representation for states places strong constraints on the 
representation for operators. For example, the following rule is a natural 
statement of the conditions under which a disk can be legally moved in the 
Tower of Hanoi task: 

TOH 
If you have disk on current-peg in current-state, 

and you have some other-peg different from current-peg, 

and in current-srare there is no o/her-disk on currenf-peg that is 

smaller than disk, 

and in curreni-state there is no third-disk on other-peg that is smaller 
than disk, 

then consider moving disk from currenr-peg to ofher-peg. 

The meaning of this production is self-explanatory, but the correspondence 
between conditions and working memory may not be so clear. For this rule 
to be applied, each line must match against some element in working 
memory. For example, at the outset of the problem, the first line might 
match against against the elements (disk-l is-on peg-A in-state Sl), (disk-2 
is-on peg-A in-state Sl), or (disk-3 is-on peg-A in-state Sl). Similarly, the 

@ Anzai (1978) employed a representation very much like the first one shown and cer- 

tainly managed to implement a running system. However, this approach required that he build 

considerable knowledge into his learning mechanisms about the particular representation he 

was using. In our opinion, this was one of the reasons why Anzai never managed to get his 

system to learn in more than a single domain. 
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second condition would match against the elements (peg-B is-a peg) and 
(peg-C is-a peg). The remaining negated conditions would match against 
elements (disk-l is-on peg-A in-state Sl) and (disk-3 is-larger-than disk-l). 
Italicized terms in the rule stand for variables which can match against any 
symbol; in addition to matching within individual conditions, variables 
must bind consistently across conditions for the production as a whole to 
match. In cases where the negated conditions are successfully matched, they 
keep the production as a whole from matching. Thus, they can be used to 
keep this rule from proposing illegal moves, such as moving a disk when a 
smaller one is resting on it. 

Note that the above rule proposes a move but does not actually carry 
it out; we will call such rules proposers. Each proposer contains the legal 
conditions on an operator, while the operator itself is implemented in a 
separate rule. This division of labor has two main advantages. First, since 
we are concerned with improving search strategies, our system need only 
alter the conditions under which actions are proposed. This means that we 
can ignore the actions involved in an operator and focus on the conditions. 
Second, as we shall see later, SAGE learns by creating variants of proposers 
like TOH. In some cases, variants of the same original production fire in 
parallel, proposing the same action. By introducing an additional step be- 
tween the move proposal and its implementation, we give the system time to 
recognize the identity of these proposals and to avoid unnecessary effort. 

When a proposal is actually carried out, an operator frace is deposited 
in working memory. These traces refer to the operator that was applied, as 
well as to the arguments that were passed to it, as in the working memory 
element (move-l was move disk-l from peg-A to peg-B). Information is also 
stored about the state at which the operator was applied and the state that 
resulted from its application, as in the element (move-l led-from Sl to S2). 
Such trace information is used once a solution has been found, allowing 
SAGE to chain back up the path, marking traces lying on that path as desir- 
able. The system’s other credit assignment heuristics also take advantage of 
these traces, using them to infer moves leading to undesirable states and to 
back up to earlier states. SAGE also considers such trace information when 
it is searching for conditions on its proposers, and can incorporate knowl- 
edge of previous moves into the productions it generates. The need for some 
form of trace data in strategy learning has been emphasized by Neches (1981) 
and by Langley, Neches, Neves, and Anzai (1980), and our experience with 
the current system has reinforced our beliefs on this matter. 

The Initial Search Strategy 

In order to understand SAGE.2’s initial search strategy and the manner in 
which this strategy changes over time, we must consider some more details 
about the nature of production systems. A given rule may match against the 
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elements in working memory in more than one way; each such match is called 
an insfanfiafion. Given a set of instantiations, a production system program 
must have some means of determining which should be applied and which 
should be saved for later application; this process is called conflicf resolu- 
tion. SAGE employs three conflict resolution principles, which are applied 
in turn. First, instantiations which have been applied before are never 
selected again; this process of refraction keeps the same move from being 
proposed by the same production, while allowing prior states to be retained 
in case some other move must be made from them. Second, instantiations 
matching against more recent states are preferred to those relating to older 
states; this focuses attention on new states, so that the system continues to 
explore promising paths. Third, each production has an associated sfrengfh, 
and rules with high strengths are preferred to weaker ones; since rules are 
strengthened each time they are relearned, this number can be viewed as a 
measure of each rule’s success, with preference being given to more success- 
ful rules. 

If two or more rules have equal strength, or if multiple instantiations 
of a single rule match against elements of the same recency, then more than 
one move may be proposed at a time. This is the standard situation when 
SAGE first attempts to solve a problem, since its proposers generally begin 
with identical strengths, or because it starts with only one such rule. In 
this case, the system carries out a breadth-first search through the problem 
space defined by its operators, and the program continues in this exhaustive 
fashion until credit can be assigned and learning can occur. Once new move 
proposing rules have been generated and the strengths of the old rules have 
been altered, search becomes more selective. Although still preferring more 
recent states, SAGE begins to prefer productions that have been learned 
many times, and to shun those that have led to errors in the past. However, 
it retains the ability to consider multiple paths, as long as these paths are 
generated by rules with the same strengths. For example, it would still be 
able to find both solutions to the Tower of Hanoi puzzle, since these are 
perfectly symmetrical. In summary, the system starts by carrying out a blind 
breadth-first search, and using information it gathers along the way, it ends 
(perhaps after a number of runs) with the ability to direct its search toward 
the goal states. 

The system must also know when it can stop searching. This is the re- 
sponsibility of a separate production that recognizes when the goal state has 
been reached, and adds information to working memory to this effect. For 
example, the goal-recognizing rule for the Tower of Hanoi puzzle notes 
when all disks are resting on one of the goal pegs, and adds to memory the 
names of the states that satisfy this condition. This information is used later 
in determining the complete solution path. Separate goal-recognizing pro- 
ductions must be provided for each task domain, since the conditions for 
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the solutions differ. However, the same rule can generally be used for scaled- 
up versions of a problem; for instance, the goal production for Tower of 
Hanoi does not refer to the number of disks on the goal peg, and so can be 
used for the four-disk and five-disk tasks, as well as for the simpler three- 
disk problem. 

SAGE.2’s Credit Assignment Heuristics 

In an earlier section, we distinguished two basic approaches to altering 
search behavior. The first of these involved the discovery of evaluation func- 
tions, while the second involved the determination of the symbolic condi- 
tions under which moves should be proposed. Since SAGE.2 is stated as 
a production system, the second of these methods seemed most appropriate. 
As we indicated before, the program employs a discrimination mechanism 
(as opposed to a generalization or version space method) to determine the 
heuristic conditions for applying its operators. Since this method inputs a 
positive and negative instance of some rule, it is appropriate to first con- 
sider the manner in which the system assigns credit and blame, and thus dis- 
tinguishes desirable moves (or positive instances) from those which should 
be avoided (or negative instances). 

SAGE can operate in either of two modes. It can assign credit based 
only on complete solution paths, or it can attempt to learn during the search 
process. Since the program’s credit assignment heuristics are stated as inde- 
pendent condition-action rules, they can be added or removed without af- 
fecting the system’s ability to search, though of course this does affect the 
manner in which learning occurs. Let us begin by focusing on the method 
relying on complete solution paths. Table 2 shows two productions, ON- 
THE-PATH and OFF-THE-PATH. The first of these matches against traces 
of moves that lie along the solution path; upon application, it retrieves the 
instantiation responsible for proposing the move and stores it as a positive 
instance of the rule that was matched.’ The second production matches 
against traces that originated on the solution path but led off that path 
when the move was made; upon firing, this rule retrieves the responsible in- 
stantiation and marks it as a bad instance of the rule that led to the move. In 
addition, it weakens the responsible rule so that it will be less likely to apply 
in the future, and calls on the discrimination learning mechanism. This re- 
trieves the last positive instance of the faulty rule and compares it to the cur- 
rent negative instance in search of differences. Since this heuristic retrieves 
the most recent positive instance of a rule, SAGE may lose information 

’ The traces matched by these rules are based on move information laid down by the 

various operators upon application; when a solution is found, SAGE chains back up the solu- 
tion paths, marking move traces that fall on these paths. 
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TABLE II 

Credit-Assignment Heuristics Based on Complete Solution Paths 

ON-THE-PATH 

If move led from stole to good-state. 

and state lies along the solution path, 

and good-state lies along the solution poth, 

then retrieve the rule and instantiotion that proposed move. 

and store that instontiotion as a positive instance of the rule. 

OFF-THE-PATH 

If move led from stote to bad-state, 

and state lies along the solution path, 

and bod-state does not lie along the solution path, 

then retrieve the instantiation and rule that proposed move, 

as well as the last good instantiation of the same rule; 

weaken the rule and call on the discrimination process using 

the lost good instantiation as the positive instance 

and the current instantiation OS the negative instance. 

when more than one correct move is made in a row. However, it would be 
impractical to compare all positive instances to all negative instances, and 
retrieving the last positive instance seems a plausible compromise. 

SAGE’s other credit assignment rules avoid this issue by more com- 
pletely specifying the instances that should be compared. Table 3 presents 
three of the system’s rules for assigning credit during the search process. 
The first of these, MARKED-BAD, matches when some operator trace has 
been labeled as undesirable, and some other operator trace originating from 
the same state has not been so labeled. In this case, SAGE retrieves the rule 
that fired in each case. If the same rule was applied in both situations, the 
discrimination mechanism is called with the first move as a negative in- 
stance and the second as a positive instance. In addition, the strength of the 
offending rule is decreased. If the good and bad moves were proposed by 
different rules, then the discrimination process cannot be applied, but the 
rule leading to the undesirable state is still weakened. 

The remaining productions interact with MARKED-BAD, providing 
the labeling of states it requires for application. One of these, NOTE- 
LONGER, matches when the system reaches some state that was visited 
earlier. It marks the move that led to the revisited state as bad, and backs 
up, focusing attention on the state from which this move originated. Note 
that as this rule is stated, it will match against loops as well as against un- 
necessarily long paths, since a loop can be viewed as the longer of two paths 
to a state, where the shorter path has length zero. Thus, while these two 
situations can be separated conceptually, there is no reason to distinguish 
them as far as the implementation is concerned, as Anzai (1978) has done. 
The third rule in Table 3, DEAD-END, applies when a state is found from 
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TABLE III 
Credit-Assignment Heuristics Based on Complete Solution Paths 

MARKED-BAD 

If bod-state is the current state, 

ond bod-move led from prior-sfote to bad-state. 

ond bod-move wos undesirable, 

ond good move led from prior-state to good-stofe. 

ond good-move is not marked OS undesirable, 

then weoken the rule that proposed bod-move. 

ond if the some rule proposed good-move, 

discriminate using the instantiation for bod-move OS a negotive instance, 

ond using the instontiotion for good move OS a positive instance. 

NOTE-LONGER 

If current-sfote is the current stote, 

ond move led from prior-state to current-state, 

ond current-state has been visited earlier, 

then make prior-stole the current stote, 

and lobe1 move OS undesirable. 

DEAD-END 

If currenf-state is the current stote. 

ond move led from prior-sfote to current-state, 

ond no moves ore possible from current-stote 

thot hove not olreody been mode, 

then moke prior-sfote the current state, 

and lobe1 move OS undesirable. 

which no moves can be made; it marks the move leading to that state as 
undesirable and shifts attention back to the previous state. We have not 
shown rules for noting illegal states or failure to make progress, since these 
must be implemented for specific domains individually. However, while the 
conditions of such rules differ from those of NOTE-LONGER and DEAD- 
END, their actions are identical, and they interact with MARKED-BAD in 
the same manner-by specifying undesirable moves, and letting this more 
general rule select better moves starting from the same state and evoking the 
discrimination process. 

Learning Conditions Through Discrimination 

As we have seen, once a strategy learning system has distinguished the posi- 
tive from the negative instances of an operator, it must have some means of 
altering the conditions under which that operator is applied. In implement- 
ing SAGE.2, we chose to employ a discrimination-learning process that 
begins with overly general rules for proposing moves, and generates variants 
of these rules with additional conditions as experience is gained. This mech- 
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anism is presented with a single positive instance of a rule and a single nega- 
tive instance of the same rule (in terms of their variable bindings), along 
with the state of working memory in each case. Bundy and Silver (1982) 
have called the variable bindings and state of memory during the good 
application, the selection context, and the variable bindings and state of 
memory during the faulty application, the rejeclion confext. The discrimi- 
nation process compares these two contexts, searching for differences which 
will allow it to distinguish one from the other. 

The simplest form of difference involves a working memory element 
that was present in one context but not in the other. For example, if the 
trace of a previous move were present in the selection context but not in the 
rejection context, SAGE would create a variant of the overly general pro- 
poser that included this fact (with certain terms replaced by variables) as an 
additional condition. This variant would never match against the initial 
problem state, since no such trace would be present at the outset of the 
problem. Similarly, if an element were found to be present in the rejection 
context but not the selection context, this fact would be included as a 
negafed condition in a variant on the original rule. The resulting rule would 
only match if this fact (or a similar one) were not present in memory. 

More complex differences can be stated as conjuncfions of elements 
that were present in one context but not in the other. Such differences are 
generated by a path-finding process that travels through symbols shared by 
working memory elements. An example will clarify the process. Table 4 pre- 
sents both a selection context and a rejection context for the TOH rule. The 
first of these proposes the move from state S2 to state S4 shown in Figure 1, 
while the second leads to the move from State S3 to State Sl. The two con- 
texts are expressed in terms of the bindings between variables (in italics) and 
the symbols against which these variables matched. Thus, in the selection 
context, the variable current-sfale was bound to state S2, disk to disk-2, 
current-peg to peg-A, and other-peg to peg-B, leading SAGE to consider 
moving disk-2 from peg-A to peg-B. This move falls on the solution path, 
since it removes an obstruction (disk-2) from the largest disk (disk-3). In the 
rejection context, the variable currenf-state was bound to state S2, disk to 
disk-l, current-peg to peg-C, and o/her-peg to peg-A, leading to the action 
of moving disk-l from peg-C to peg-A. Since this move takes the system 
back to the original state, it is undesirable. 

Table 4 also presents the elements that were present in memory during 
each context” and from which new conditions are generated. The path-find- 
ing process starts from analogous symbols in the two sets of bindings (such 

‘ Actually, SAGE considers only those elements which describe the current state or 

parents to the current state. Since other states considered in parallel can have no effect on the 

current move, they are ignored. Thus, the state of working memory after SAGE’s initial moves 

can be found by taking the union of the two sets shown in Table 4. together with state-indepen- 

dent elements such as (peg-A is-a peg) and (disk-3 is-larger-than disk-l). 
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TABLE IV 

Selection and Rejection Contexts for the TOH Rule 

Selecfion Context 

Vorioble bindings 

disk->disk-2 

current-peg->peg-A 

other-peg-> peg-6 

currenf-stofe->S2 

Rejection Context 

disk->disk-1 

current-peg-> peg-C 

other-peg-> peg-A 

current-sfote->S3 

Elemenfs in working memory 

(move-l led-from Sl to 52) 

(move-l wos move disk-l from 

(move-2 led-from Sl to S3) 

(move-2 wos move disk-l from 

peg-A to peg-C) peg-A to peg-B) 

(disk-l is -on peg-A in-stote Sl) 

(disk-2 is -on peg-A in-state Sl) 

(disk-3 is -on peg-A in-stote Sl) 

(disk-l is -on peg-C in-stote 52) 

(disk-2 is -on peg-A in-state 52) 

(disk-3 is -on peg-A in-state 52) 

(disk-l is-on peg-A in-state Sl) 

(disk-2 is-on peg-A in-state Sl) 

(disk-3 is-on peg-A in-state Sl) 

(disk-l is-on peg-B in-state S3) 

(disk-2 is-on peg-A in-state 53) 

(disk-3 is-on peg-A in-state 53) 

as disk-2 and disk-l), and attempts to find some path through the “good” 
elements that has no analogous path through the “bad” elements. Thus, if 
a path consisting of three elements was present in the selection context but 
not in the rejection context, a variant of the TOH rule would be based on this 
difference. This rule would include the three elements (with some constants 
replaced by variables) as positive conditions, so that it would match in the 
selection context but not the rejection context. 

The path-finding process also searches for paths through the “bad” 
elements that have no analogous path through the “good” elements. Let us 
trace the method’s discovery of such a difference in the elements in Table 4. 
Starting from the “bad” symbol S3 and the “good” symbol S2, the path- 
finding process considers bad elements and good elements that contain 
these symbols. Since both contexts contain an element indicating that an 
earlier move led to the current state-(move-2 led-from Sl to S3) and 
(move-l led-from Sl to S2)-SAGE must extend these paths by considering 
additional elements in its search for differences. Thus, the analogous sym- 
bols move-2 (for the bad element) and move-l (for the good element) are 
marked, and other elements containing these symbols are considered.’ 

For example, the bad path can be extended to include the element 
(move-2 was move disk-l from peg-A to peg-B), since this also contains the 
symbol move-2. At first glance, there appears to be an analogous extension 
to the good path, using the element (move-l was move disk-l from peg-A to 
peg-C). However, note that the symbol disk-l is already bound to the vari- 

’ Alternate paths arc followed through other analogous symbols, such as peg-B and 

peg-C, peg-A and peg-A, and disk-l and disk-l. Note that a symbol may be mapped onto 

itself, provided it occurs in analogous positions in the two elements. 



238 LANGLEY 

able disk in the rejection context, while this is not true of disk-l in the selec- 
tion context. Similarly, peg-A is already bound to other-peg in the rejection 
context, while peg-C is unbound in the selection context. As a result, these 
two elements cannot be considered analogous, and the path-finding process 
has found a difference between the two contexts. Based on this difference, 
SAGE constructs the following variant: 

TOH-I 
If  you have disk on current-peg in current-state, 

and you have some other-peg different from current-peg, 

and in current-state there is no other-disk on current-peg that is 
smaller than disk, 

and in current-state there is no third-disk on other-peg that is 
smaller than disk, 

and it is not the case that: 
prior-move led from prior-state to current-state, and 
prior-move was a move of disk from other-peg to current-peg, 

then consider moving disk from curren,t-peg to other-peg. 

In addition to the original conditions, this rule (let us call it TOH-1) includes 
the elements (move-2 led-from Sl to 3) and (move-2 was move disk-l from 
peg-A to peg-B), with the specific disk and pegs replaced by variables, em- 
bedded within a single negated condition. This rule will match if either of 
the negated conditions is matched, but not if both are matched simulta- 
neously. As a result, it will still match against the selection context in Table 
4 but not against the rejection context, which is precisely the goal of the dis- 
crimination method. Effectively, the new conditions prevent SAGE from 
reversing the last move it has made. 

In some cases, only a single difference exists between the selection and 
rejection contexts. Winston (1970) has called these situations near misses, 
and they considerably simplify the learning process, since only one variant 
need be considered. Unfortunately, near misses seldom occur in the task of 
learning search heuristics, and a robust system must be able to handle the 
general case in which many differences exist. (Bundy and Silver [1982] have 
called these fur misses.) SAGE deals with far misses by finding all paths to 
length N (in our runs, we have set N to 4) and constructing a variant based 
on each of these differences, some with new negated conditions like TOH-1, 
and others with new positive conditions. These conditions may involve 
descriptions of the current state, previous states, previous moves (as in 
TOH-1) or any combination of them. This leads to a significant search 
problem, and we will discuss the system’s response to this problem later. 
However, let us first consider the notion of difference in more detail. 

In searching for differences, the discrimination process must know 
which symbols should be used in determining significant differences and 
which differences should be ignored. For example, it makes sense to dis- 
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tinguish between working memory elements including the symbol was (which 
describe move traces) and those including led-from (which temporally 
connect these move traces), since they represent different types of informa- 
tion. In contrast, there is no reason to distinguish between internally gener- 
ated symbols like the states Sl and S2, since there are only the “connecting 
tissue” used to link together the descriptions of each state and the temporal 
relations between states. Thus, when it is searching for differences, the dis- 
crimination routine never considers two elements as analogous if one con- 
tains was in the Nth position and the other contains led-from in the same 
position. However, if one contains Sl and the other contains S2 in the same 
position, then the two elements will be considered analogous, unless some 
other (significant) difference exists, or unless one of these symbols has al- 
ready been associated with some other symbol (such as S3) during the path- 
finding process. When a variant is constructed, significant terms are retained, 
while insignificant terms are replaced by variables in a consistent manner. 

The case is less clear for the names of operators and their arguments. 
These symbols are not generated internally, yet if the variants are to retain 
any generality, some of them must be replaced by variables. Since one seldom 
wants to generalize across the operators themselves, SAGE treats operator 
names as significant. However, the arguments of these operators (e.g., ob- 
jects and their positions) are treated as insignificant and are replaced by 
variables when a variant is constructed. Note that such decisions are not in- 
herent aspects of the discrimination process; rather, they are parameters 
that are input to the learning method and can be easily modified. Later we 
will reconsider this decision and its implications for SAGE’s learning behav- 
ior. For now, though, let us continue with our examination of the current 
system. 

Directing Search Through the Rule Space 

Most condition-finding methods, including the standard generalization ap- 
proach and Mitchell’s version space technique, find conditions that are held 
in common by all positive instances of a concept or operator. As a result, 
these methods are limited to acquiring conjunctive rules. In contrast, 
SAGE.2’s discrimination process compares a single positive instance to a 
single negative instance. Because of this, it is capable of discovering disjunc- 
five rules as well as conjunctive ones, and this ability can be very important 
in some task domains. In order to acquire disjunctive rules, the discrimina- 
tion mechanism must search a larger space of rules than methods based on 
finding common features, and it must have some means of directing this 
search. For this reason, SAGE compares newly learned rules to those it has 
constructed earlier. If the new rule is identical to one of the existing vari- 
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ants, that variant is strengthened. Since the strength of a rule plays a major- 
role in whether it is selected for application, rules that have been learned 
more often will tend to be preferred. Thus, strength measures the success 
rate of each variant, and SAGE can be viewed as carrying out a heuristic 
search through the space of rules, selecting those rules that have proven 
most successful. 

In domains involving only a single operator, it would be sufficient to 
simply strengthen variants whenever they were relearned, since they would 
eventually come to be preferred to the rules from which they were generated. 
However, some tasks involve multiple operators, and require that one of 
these operators be preferred to another. Given the role of strength in select- 
ing rules, the natural response to such situations is to weaken rules when 
they propose an undesirable move. In addition to letting SAGE learn to 
prefer some operators over others, this strategy also decreases the chance 
that a faulty variant will be selected for application. 

Although the combination of discrimination, strengthening, and 
weakening will eventually lead to useful search heuristics, many spurious 
variants will be created along the way. Since the matching process is a major 
component of programs stated as condition-action rules, we should briefly 
consider how SAGE handles the potential combinatorial explosion in the 
matcher. First, the system’s condition-action rules are stored in a discrimi- 
nation network that takes advantage of structure that is shared between 
rules. Since variants of the same proposer tend to be quite similar to one 
another, the expense involved in matching many variants of a rule is not 
much greater than that involved in matching the original rule. However, 
other components of the system (such as conflict resolution) are also slowed 
by the presence of many variants, so some further response is required. In 
addition, SAGE incorporates a thresholding principle. Variants below the 
threshold are not even incorporated in the discrimination network, and so 
have no effect on either the match process or conflict resolution (though 
they are retained for comparison with rules that are learned later). The 
strengths of new variants are set to a fraction of the rule from which they 
were spawned, and it is only when a variant comes to exceed its parent in 
strength that it is considered for application. Since few spurious variants 
ever become stronger than their parent rules, this method has worked quite 
well in directing SAGE’s search through the space of proposers. 

AN EXAMPLE OF SAGE.2 AT WORK 

Our overview of SAGE.2 is now complete, but to give the reader a better 
understanding of how the system learns search strategies, we must examine 
its workings in specific domains. We now discuss SAGE’s learning sequence 
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on the Tower of Hanoi puzzle, comparing its behavior when using only com- 
plete solution paths to its behavior when learning during the search process. 
We have chosen this task as our main example because it is familiar to many 
readers, and because most of the credit assignment heuristics discussed 
earlier come into play. However, since generality is an important criterion 
for judging learning systems, we will later examine the program’s behavior 
in five other task domains in somewhat less detail. 

Learning From Solution Paths 

Since we have already discussed the Tower of Hanoi puzzle and its associ- 
ated problem space, we shall begin by discussing the system’s behavior on 
this problem when using the first credit assignment strategy-learning from 
complete solution paths. SAGE.2 was presented with a standard three-disk 
problem: The three disks were placed on a single peg, and the goal was 
to get all three disks on either of the other two pegs. In other words, the 
system started at State Sl in Figure 1 and was asked to reach either state S20 
or S27 (or both of them). Starting with a breadth-first search strategy, the 
program first moved to states S2 and S3 and from there considered six 
moves: from S2 to S4, from S3 to S5, from S2 to Sl, from S3 to Sl, from S2 
to S3, and from S3 to S2. While the system noted that the last four of these 
moves led to previously visited states, it did not attempt to learn from this 
knowledge, and simply abandoned these undesirable paths. From the two 
remaining states S4 and S5, SAGE moves to states S6, S7, S8, S9, S2, and 
S3. The last two of these moves were identified as loops, so only the first 
four states were retained for expansion. This search process continued until 
the program reached the two solution states, S20 and S27. 

At this point, the complete solution path heuristic was applied. SAGE 
chained back up the solution path, marking the traces of moves that lay on 
the path. Once this was completed, it worked its way back down the marked 
path, letting the rules ON-THE-PATH and OFF-THE-PATH apply when 
they matched. The first of these circumstances occurred at states S2 and S3, 
when four moves were made that led off the solution path. One of these 
moves led to a loop from S2 back to Sl, the original state. Comparing the 
good move from this point (from S2 to S4) to the bad move, SAGE’s dis- 
crimination mechanism generated the variant TOH-1 that we considered 
earlier. The selection and rejection contexts for this learning situation were 
identical to those we have examined, except that SAGE compared two 
moves from state S2, rather than comparing one move from state S2 and 
another from state S3. As a result, the same differences were discovered, 
and the variant TOH-1 was constructed. The reader will recall that this rule 
contains a negated conjunction that prevents it from proposing a move that 
will reverse the move SAGE has just made. Some four other differences 



242 LANGLEY 

were found, leading to four additional variants, but TOH-1 was the only 
rule that ever became strong enough to apply. An identical set of variants 
were created when the context for the move from S3 to Sl was compared to 
that for the move from S3 to SS, since these situations are completely sym- 
metrical; this led each of the existing variants to be strengthened. 

A different set of three variants resulted when the good move from S2 
to S4 was compared to the bad move from S2 to S3 (and when the symmetri- 
cal moves were examined). In this case, the rule we are interested in is subtly 
different from the variant we described earlier: 

TOH-2 
If you have disk on current-peg in current-state, 

and you have some other-peg different from current-peg, 

and in current-state there is no other-disk on current-peg that is 
smaller than disk, 

and in current-state there is no third-disk on other-peg that is 
smaller than disk, 

and it is not the case that: 
prior-move led-from prior-state to current-state, and 
prior-move was a move of disk from an-v-peg to current peg, 

then consider moving disk from current-peg to other-peg. 

The new negated conjunction on this variant of TOH is nearly identical to 
that on TOH-1, but the difference is significant. TOH-2 states that it is ac- 
ceptable to move a disk from its current peg to a new peg, provided on the 
previous move one did not move from any peg to the current peg. An exam- 
ple should help clarify this difference. Suppose we have disk-l on peg-B, 
and since disk-l is the smallest of the disks, we can move it to either Peg-A 
or peg-C without violating any of the task constraints. Further suppose that 
on the previous step, we moved disk-l from peg-A to peg-B, so that TOH-1 
will not propose moving the smallest disk back to peg-A (which would result 
in a loop). However, this variant would propose moving disk-l to peg-C. In 
contrast, TOH-2 would not propose moving disk-l to either peg-A or peg- 
C, since its negated condition forbids a move of the same disk twice in a 
row. Thus, the second variant is more conservative than the first, and as a 
result, it constrains the search process to a greater extent. 

Upon comparing its moves from state S4 and SS, SAGE produced 
another set of variants on its initial proposer. When the discrimination pro- 
cess compared the context in which the desirable move from S4 to S6 was 
proposed to the context that led to the move from S4 to S7, some six new 
productions resulted. In this case, two of the rules are of interest: 

TOH-3 
If you have disk on current-peg in current-state, 

and you have some other-peg different from current-peg, 

and in current-state there is no other-disk on current-peg that is 
smaller than disk, 
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and in current-state there is no third-disk on other-peg that is 
smaller than disk, 

and it is not the case that: 
prior-move led-from prior-state to current-state, and 

earlier-move led-from earlier-state to prior-state, and 

disk was on other-peg in earlier-state, 

then consider moving disk from current-peg to other-peg. 

and 

TOH-4 
If you have disk on current-peg in current-state, 

and you have some other-peg different from current-peg, 

and in current-state there is no other-disk on current-peg that is 
smaller than disk, 

and in current-state there is no third-disk on other-peg that is 
smaller than disk, 

and it is not the case that: 
prior-move led-from prior-state to current-state, and 
earlier-move led-from earlier-state to prior-state, and 
earlier-move was a move of disk from other-peg to current- 

peg, 
then consider moving disk from current-peg to other-peg. 

In addition to helping direct search down profitable paths, these rules are 
interesting because they are syntactically different but semantically equiva- 
lent. The first refers to the sfale occupied two steps before the current state, 
while the second refers to the ltlove made at that point. Yet both rules ef- 
fectively keep one from moving a disk back to the position it was in two 
moves before, avoiding such nonoptimal moves as that from S4 to S7 and 
that from S5 to S8. Because of the structure of the task domain, these rules 
are always guaranteed to match together, and whenever one is learned, the 
other will also be learned. The possibility for syntactically distinct but 
semantically identical rules causes some extra search through the space of 
possible rules, but other than this, no harm is done. 

So far, we have considered only the initial cases in which the above 
variants were constructed. However, each of these was relearned many 
times throughout the course of the first run. For example, the nonbackup 
variant TOH-1 was relearned and strengthened at each step along the way, 
since SAGE foolishly considered a backup at every point in its initial search 
tree. Similarly, the TOH-2 variant was strengthened whenever an attempt 
had been made to move the same disk twice in a row (other than simple 
backups). Thus, the bad moves from S2 to S3, from S6 to S7, and from 
S12 to S13 all resulted in an increase of this rule’s strength, along with anal- 
ogous faulty moves on the symmetrical path. Finally, the last two useful 
variants, TOH-3 and TOH-4, were learned whenever SAGE had considered 
moving a disk back to the position it had occupied two states earlier. Thus, 
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the bad moves from S4 to S7, from SlO to S13, and from S16 to S21 all rein- 
forced these rules, increasing their likelihood of selection on the next run. 

On the second run, the system’s performance improved considerably, 
since TOH-l’s strength had come to exceed that of the initial proposer. 
As a result, no backup moves were considered and the search process was 
considerably more directed. Unfortunately, neither this rule nor any of the 
other variants were sufficient by themselves to completely eliminate SAGE’s 
search on the Tower of Hanoi problem, so more learning was required. 
Again the system chained back up its solution path, marking traces that led 
to the goal states, and began to compare the contexts of positive and nega- 
tive instances in its search for useful variants. The learning process on this 
run was quite similar to the first, except that variants of TOH-1 were created 
(since only it had been applied), instead of variants of the original rule. 

As one might expect, TOH-1 made exactly the same errors as its pre- 
decessor, except for the backup moves which its additional condition for- 
bid. Thus, when at state S2, it considered moving to S3 as well as to S4, and 
when at state S4, it moved to S7 as well as to S6. As a result, the discrimina- 
tion process generated variants of this production that were very similar to 
those created for its more general ancestor. When comparing the contexts 
that led from S2 to S4 and from S2 to S3, SAGE created a rule containing a 
“don’t move the same disk twice in a row” condition, as well as the “don’t 
back up” condition that was already present. Similarly, when comparing 
the moves from S4 to S6 and from S4 to S7, it constructed two variants with 
a “don’t move a disk back where it was two states before” condition (again, 
these were syntactically different, but would always match against the same 
state of memory). These rules were relearned and strengthened at each of 
the points where their analogs were learned during the first run. 

Since the new variants were more conservative than TOH-1, and since 
they had surpassed this rule in strength during the second learning run, they 
began to further direct the search process on the third pass. In fact, the 
“don’t move the same disk twice in a row” variant (let us call it TOH-4) 
achieved the highest strength, so it was applied at each stage on this run. 
This rule avoided errors such as moving from S2 to S3 and from S6 to S7. 
However, it continued to make mistakes such as moving from S4 to S7, 
since it lacked the condition (contained in TOH-3) that would keep it from 
making such moves. Fortunately, once the solution paths had been found 
and the learning stage had begun, two (structurally different, but seman 
tically equivalent) variants of TOH-4 were constructed that contained the 
“don’t move a disk back to where it was two states before” condition 
Once these two rules exceeded the strength of TOH-4 (as they had by the 
end of the run), SAGE had available to it a search heuristic that proposed 
moves lying on the solution path, but that ignored moves that would take it 
off that path. Indeed, when the system was presented the three-disk prob. 
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lem a fourth time, it successfully solved the problem without taking any 
false steps. 
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Figure 3. Learning curve for the three-disk Tower of Hanoi task 

Figure 3 presents the learning curve for SAGE.2 on the Tower of 
Hanoi task. The figure graphs the number of states considered during the 
search process against the number of times the problem had previously been 
attempted. As can be seen, the system shows a distinct improvement over 
time, until it eventually solves the task in the minimum number of steps. In 
addition, since the problem spaces for the four-disk and five-disk puzzles 
have the same basic structure as the simpler three-disk space, the learned 
heuristics were also useful in these more complex tasks. In fact, when pre- 
sented with the standard four-disk and five-disk versions of the puzzle (in 
which all disks must be moved from one peg to a different peg), SAGE 
applied its heuristics to solve these problems without search as well. Thus, 
we can conclude that for this domain at least, the system is capable of 
transfer to scaled-up versions of a problem on which it has practiced. 

While SAGE was able to transfer its acquired knowledge to other 
standard versions of the Tower of Hanoi task, the program would not have 
fared so well if it had been given a nonstandard problem. The heuristics 
that the system learns for this task are very good at directing search when all 
disks start on one peg and must be moved to another peg, but they are not 
adequate for moving from one arbitrary configuration to another. Later, 
we will have more to say about this type of transfer, and what would be re- 
quired to accomplish it. However, let us first turn to the topic of learning 
while doing. 

Learning While Doing 

Although SAGE.2 is capable of learning from complete solution paths, it is 
not limited to this method. As we have seen, the system also includes heuris- 
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tics for learning from longer paths and loops, from dead ends, from illegal 
moves, and from a failure to make progress. The first two of these tech- 
niques”’ can be applied to the Tower of Hanoi puzzle to acquire search strat- 
egies identical to those described in the previous section. Let us consider this 
process of learning while doing and its relation to learning from complete 
solution paths. 

As before, SAGE began the three-disk problem by carrying out a 
breadth-first search, moving from state Sl to states S2 and S3. Since these 
moves led to new states and since other moves could be made from them, 
none of the blame-assignment heuristics applied at this point. Since the two 
solution paths are symmetrical, we will focus on the left half of the space 
shown in Figure 1. From the state S2, three moves were possible-SAGE 
could move to S4, to Sl, and to S3. The first of these was a new state, but Sl 
and S3 had been visited before. The move from S2 to Sl led to a loop, while 
the move from Sl through S2 to S3 was a longer path than that from Sl 
directly to S3. However, the NOTE-LONGER production does not make 
such distinctions (because it is concerned only with avoiding revisited states), 
so this rule applied, marking the moves from S2 to Sl and S3 as undesira- 
ble. 

Given the information that these two moves should not have been 
made, the rule MARKED-BAD was applied to each in turn, calling on the 
discrimination mechanism. In both cases, it focused on the move from S2 to 
S4 as the positive instance, since this was the only move from S2 that was 
not labeled as an error. Upon comparing this move to the one from S2 to 
Sl, SAGE constructed the variant TOH-1 that we saw before, along with 
four other variant productions that never became strong enough to apply. 
When the move from S2 to S4 was compared to that from S2 to S3, the vari- 
ant TOH-2 was created (along with two other rules). Thus, up to this point, 
SAGE had assigned credit in precisely the same manner that it did when the 
complete solution path was available. 

Next, having abandoned the revisited states, SAGE applied its initial 
proposer (which was still stronger than any of the variants) to the state S4. 
From this position, three moves were again possible-from S4 to S6, from 
S4 to S2, and from S4 to S7. The second of these led back to the previous 
state, and was labeled as undesirable by NOTE-LONGER. Given this judg- 
ment, MARKED-BAD applied twice, comparing this move both to that 
from S4 to S6 and to that from S4 to S7, since neither had been marked as 
bad. In both cases, the variant TOH-1 was recreated and strengthened, 
along with a number of other rules. Since SAGE did not yet have any reason 

I0 In fact, the rules NOTE-LONGER and DEAD-END were used even in the described 

run in which credit was assigned after a solution had been found. However, their role in this 

run was only to tell SAGE when it had reached untenable positions, so the system could aban- 

don search down certain paths and focus on others. Because the production MARKED-BAD 

was not present, the program could not learn using the information added to memory by these 

rules. 
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to suspect that the move from S4 to S7 was undesirable, it considered moves 
from both this state and from S6, which lay on the solution path. 

Three moves were possible from S6, and all were carried out; these in- 
cluded a move from S6 to SlO, from S6 to S4, and from S6 to S7. The last 
two of these operations led to revisited states, so NOTE-LONGER was ap- 
plied in each case. MARKED-BAD compared each of these moves to that 
from S6 to SlO, regenerating TOH-1 in one instance and TOH-2 in the 
other, along with a number of additional variants. Three moves could also 
be made from S7, to the states S6, S4, and S8. However, each of these states 
had been visited before, the last from the symmetrical search in the right 
side of the space. NOTE-LONGER was applied and marked each of the 
moves from S7 as undesirable, but since there were no good moves origi- 
nating from S7 with which they could be compared, MARKED-BAD could 
not be applied. Meanwhile, NOTE-LONGER had also refocused SAGE’s 
attention on S7, marking it as one of the states currently under considera- 
tion for expansion. Since no other moves could be made from this state, the 
rule DEAD-END applied, calling on the discrimination routine to compare 
the good move from S4 to S6 to the recently determined bad move. Two of 
the resulting variants were TOH-3 and TOH-4, which avoid moving a disk 
back to the position it occupied two states earlier. 

By this point, SAGE’s credit assignment had begun to lose ground to 
the strategy of learning from complete solution paths. Although NOTE- 
LONGER continued to notice revisited states and to lead MARKED-BAD 
to strengthen both TOH-1 and TOH-2, the dead-end noticing rule never had 
another chance to apply. As a result, the moves from SlO to S13 and from 
S16 to S21 were never classified as undesirable, and the two variants TOH-3 
and TOH-4 were not relearned until the complete solution path was marked, 
and ON-PATH and OFF-PATH came into the picture. This did eventually 
occur, and the resulting events were identical to those described in the pre- 
vious section, save that many of the variants already existed, and so by the 
end of the run they were considerably stronger than in the other case. After 
this, SAGE was given a second chance to solve the three-disk task, and 
events followed much the same route, except that backups were missing, so 
NOTE-LONGER was applied much less often. By the fifth run, the system 
was able to solve the problem without search, and to transfer its expertise to 
the four-disk puzzle. The learning curve for these runs was very similar to 
that shown in Figure 3. However, slightly less search was carried out in the 
early runs, since the useful variants were able to mask their predecessors 
before the run was complete. 

The Importance of Goals 

In our treatment of the Tower of Hanoi puzzle, we assumed two goal states 
and two symmetrical solution paths to these goals. It is much more common 
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to formulate the problem with a single goal peg, resulting in only one op- 
timal solution path, and our use of multiple goals deserves some discussion. 
In the early stages of constructing SAGE.2, we made two design decisions 
that led us to state the Tower of Hanoi puzzle as we have done. First, we 
decided to treat the arguments of operators as insignificant during the dis- 
crimination process, as we described earlier. As a result, the system has dif- 
ficulty in learning heuristics for moving disks toward one peg rather than 
another, and we avoided this issue by including two goal pegs. If we had 
chosen instead to treat pegs as significant symbols, SAGE would have learned 
more specific rules, but at least the system would have been able to acquire 
heuristics for moving disks to a specific peg. However, a more general and 
attractive alternative presents itself. 

The second design decision involved assuming a procedural represen- 
tation for the goal state, rather than a declarative one. The reader will recall 
that SAGE includes a production for recognizing when it has solved a prob- 
lem, and which stops the search process when this occurs. Since goal infor- 
mation is not available for inspection by the discrimination mechanism, it 
cannot discover conditions that refer to the goal state. As a result, the 
search heuristics it learns are incapable of directing search down different 
paths depending on the goal. Note that this is not a limitation of the dis- 
crimination method itself, but is rather a limitation in the information acces- 
sible to the learning system. If we had chosen to include explicit information 
about the goal state in working memory, SAGE should have been able to 
learn rules that would move toward a single goal and still treat the argu- 
ments of its operators (such as pegs and disks) as insignificant symbols. 

In addition, this approach opens the way for learning heuristics for 
solving nonstandard versions of the Tower of Hanoi puzzle, in which both 
the initial and goal states are arbitrary configurations of disks. Once the dis- 
crimination method has access to the goal state, it might well be able to ac- 
quire rules that would transfer between different initial and goal states, 
leading to a much more robust system. Although we have not yet tested 
SAGE in this manner on the Tower of Hanoi, we will later examine another 
task in which this approach does lead to the predicted forms of transfer. 
Since goals are so obviously important to problem solving, it may seem odd 
that we did not include declarative knowledge of goals at the outset of our 
research. Such judgments are all too easily made with the aid of hindsight. 
In defense, we can only note that very little of the other ,work on learning 
search heuristics deals with goals in this manner, so that SAGE is far from 
alone on this dimension. 

APPLYING SAGE.2 TO OTHER DOMAINS 

One important dimension on which AI systems are judged is their general- 
ity, and the most obvious test of a program’s generality is to apply it to a 
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number of different domains. In this section, we summarize SAGE.2’s be- 
havior on five additional tasks. Some of these are puzzles similar to the 
Tower of Hanoi task, but others have quite different characteristics. In each 
case, we describe the problem or class of problems, consider the rules the 
program learns in the domain, and discuss the types of transfer that occur. 
After this, we examine the generality of the individual learning heuristics 
employed by the system. 

The Slide-Jump Puzzle 

In the Slide-Jump puzzle, one is presented with N quarters and N nickels 
placed in a row. The quarters are on the left, the nickels are on the right, 
and the two sets of coins are separated by a blank space. Legal moves in- 
clude sliding into a blank space or jumping over another coin into a blank 
space. In addition, quarters can be moved only to the right, while nickels can 
be moved only to the left. The goal is to exchange the positions of the quar- 
ters and the nickels, so that the former occur on the right side of the blank 
and the latter occur on the left. For instance, given the initial state Q Q Q - 
N N N, one would attempt to generate the goal state N N N - Q Q Q. Like 
the Tower of Hanoi problem, the Slide-Jump puzzle has a relatively small 
search space, yet it is quite difficult for human problem solvers to master. 
Also like the Tower of Hanoi, it has two symmetric solution paths; how- 
ever, since moves are not reversible, loops do not come into play in this 
task. 

SAGE.2 was initially presented with the four-coin version of this puzzle, 
in which the positions of two quarters and two nickels must be exchanged. 
The program was given two initial proposers-one for suggesting slide moves 
and the other for suggesting jumps. After an initial breadth-first search in 
which both optimal solutions were found, the system attempted to learn 
from these paths. After some three runs through the problem, SAGE had 
generated (and sufficiently strengthened) the following variant of the initial 
slide rule: 

SLIDE-l 
If a type-of-coin is in current-position in current state, 

and adjacent-position is blank in current-state, 
and adjacent-position is to the left-or-right of current-position. 
and type-of-coin can move to the left-or-right, 
[and prior-move led-from prior-state to current-state,] 
[and prior-move was a jump of type-of-coin from adjacent-position 

to other-position,] 
then consider sliding type-of-coin from current-positions, to adjacent- 

position. 

This rule contains two conditions (enclosed in brackets) that were not pres- 
ent in the original slide-proposing production. These conditions allow the 
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variant to propose sliding a coin only if another coin of the same type was 
just jumped from the adjacent position. Five other variants of the original 
slide rule were constructed and contributed to directing the search process, 
while some 14 variants were based on spurious features of the problem, 
and were not learned enough times to affect behavior. One variant of the 
jump rule was also constructed, which avoided jumping one coin over 
another of the same type (which leads to to a dead end). However, this rule 
was learned only once before a variant of the slide rule caused SAGE to 
avoid this particular error. 

In the learning-while-doing runs, the system proceeded in a very 
similar manner, except that some credit and blame was assigned during the 
search process. In this task, two credit-assignment heuristics contributed to 
learning. The DEAD-END rule produced a variant that avoided sliding the 
same type of coin twice in a row, while NOTE-LONGER generated the 
jump variant already mentioned. When SAGE was presented with the six- 
coin Slide-Jump puzzle, it successfully solved this problem without search, 
again indicating that the system can handle scaled-up transfer. Although the 
normal statement of the puzzle does not allow reversible moves, alternate 
initial and goal states can be formulated if they are allowed. However, in 
its current form, the program would not have been able to transfer its exper- 
tise to an arbitrary problem of this type, for the same reasons as the Tower 
of Hanoi version. 

Tiles and Squares 

Ohlsson (1982) has described the Tiles and Squares puzzle, in which one is 
presented with N tiles and N+ 1 squares on which they are placed. Each 
square is numbered from 1 to N+ 1, and each tile is labeled with a unique 
letter. Only one legal move is possible: moving a tile from its current posi- 
tion to the blank square. The goal is simple: Get all the tiles from the initial 
positions to some explicitly specified end position. For example, the initial 
configuration might be B C * A, while the goal configuration might be 
A * C B. Since any tile may be moved into the blank space, the moves are 
much less constrained than in most puzzles. One of the interesting features 
of this task is that while the branching factor of the search space is quite 
high (3 for three-tile tasks, 4 for four-tile tasks, etc.), two simple heuristics 
are sufficient to avoid search entirely. Indeed, one might ever-r question 
whether the task is challenging enough to be called a puzzle. We have in- 
cluded it here primarily to clarify SAGE’s ability to acquire disjunctive 
rules. 

l The location of the asterisk between the A B C letter patterns indicates blank space 

positioning. 
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SAGE.2 was presented with this problem, as well as a single rule for 
proposing legal moves. Based on the two optimal solution paths it discov- 
ered for this task, the system generated (and sufficiently strengthened) seven 
variants for directing the search process, along with some 73 less useful 
rules. Two of the useful variants” may be paraphrased as: 

TS-1 
If you have a tile on current-square in current-state, 

and other-square is blank in current-state, 

[and in the final goal you want tile in other-square,] 

then consider moving tile from current-square to other-square. 

and 

TS-2 
If you have a tile on current-square in current state, 

and ofher-square is blank in current-state, 

[and in the final goal you want other-tile in current-square,] 

[and it is not the case that: 
prior-move led-from prior-state to current-state, and 
prior-move was a move of tile from other-square to current- 

square, ] 

then consider moving tile from currenf-square to other-square. 

Note that these rules are disjuncfive in that they cover different situations 
that arise in the problem. For example, the first variant is useful in suggest- 
ing that C be moved to the third position at the outset of the above problem, 
leading to the state B * C A. Once this has been done, the second rule is use- 
ful in proposing that either B or A be moved into the second square, leading 
to the states * B C A and B AC *. At this point the first rule again comes into 
play, proposing the move of A into square 1 or B into square 4, and finally, 
this same rule proposes moving B to 4 or A to 1, reaching the goal state. The 
point here is that neither of the above heuristics is sufficient to completely 
direct the search process by itself, but taken together they eliminate search. 
Thus, the ability of SAGE’s discrimination process to consider disjunctive 
heuristics shows its potential in the Tiles and Squares puzzle. 

Another interesting characteristic of this problem is that SAGE incor- 
porated information about the goal state in the conditions it discovered. 
This was possible because the goal description was present in working mem- 
ory, and so was considered during the condition-finding process. As a 
result, the heuristics the system learned from the above problem can be 
applied not only to more complex problems with longer solution paths, but 
to other problems in the same space with differing initial and goal states. 
Thus, SAGE’s behavior on the Tiles and Squares task shows that the system 

I’ The other five useful variants were semantically equivalent to TS-2 and proposed the 

same moves in all cases. 
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is capable of acquiring goal-sensitive heuristics, as we proposed earlier, pro- 
vided information about the goal state is present in working memory. 

In addition to learning from complete solution paths, the credit as- 
signment heuristic for noting loops and longer paths was also applicable to 
this domain. The detection of longer paths led to TS-1, the first variant, 
which moves a tile into its goal square whenever possible. Similarly, the 
detection of loops led to an initial version of TS-2 that contained only the 
no-backup condition. However, none of the learning while doing heuristics 
were sufficient to learn the TS-2 condition “in the final goal you want 
other-tile in current-square.” This was due to the fact that, whenever TS-2 
is applicable, there are a number of equally good moves that lie along opti- 
mal solution paths. Moreover, other than backtracking moves, all of the 
legal moves in such situations are equally desirable. Since the learning while 
doing rule MARKED-BAD only compares instances originating from the 
same state, and since there are no bad moves from such states, SAGE can 
never master the complete form of TS-2 during the search process. As a 
result, the system fell back on its complete solution path strategy to learn 
the final version of this variant. 

The Mattress Factory Puzzle 

Like the Slide-Jump problem, the Mattress Factory puzzle requires two 
operators for moving through its search space. In this task, one is told that 
N employees are working at a mattress factory. Due to losses, the factory 
must be closed down, and so all the workers must be fired. However, union 
regulations require that hiring and firing follow certain rules. The least 
senior worker may be hired or fired at any time; this corresponds to the first 
operator. However, other workers may only be hired or fired if the person 
directly below them in seniority is currently employed, and furthermore, 
provided that no other person below them is also employed. This complex 
rule corresponds to the second operator. Since each of these operators is 
reversible, one can always immediately undo an action that was just taken. 
Thus, this task shares an abundance of possible loop moves with the Tower 
of Hanoi. Although this problem has an even smaller space than the Tower 
of Hanoi, it also gives human problem solvers considerable difficulty. Cahn 
(1977) has studied human learning on the Mattress Factory problem. 

SAGE.2 was initially presented with the three-person version of the 
problem, along with rules for proposing the two types of moves described 
above. After finding the single solution path, it generated and sufficiently 
strengthened a straightforward variant of the original lowest worker rule: 

MF-I 
If you have a worker with current-stutus in current-state, 

and worker is not senior to any other-worker, 
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and current-status is the opposite of other-status, 

[and it is not the case that: 
prior-move led-from prior-state to current-state, and 
prior-move was a change of worker from other-status to 

current-status,] 

then consider changing worker from current-status to other-status. 

In this production, the variables current-status and other-status match 
against the possible states in which a worker can find himself-either em- 
ployed or unemployed. The additional negated conjunction on this rule 
simply prevents one from undoing the previous move. Together with a simi- 
lar variant of the second operator, this production is nearly sufficient for 
directing search on the Mattress Factory puzzle. 

However, one additional piece of information is required. If one 
avoids backups, then only two legal paths can be traversed in this problem 
space, and these paths are entirely determined by whether one initially fires 
the least senior worker or his immediate superior. In the three-worker prob- 
lem, the correct choice is to fire the lowest person. SAGE acquires this strat- 
egy by weakening the variant on the second operator, so that the MF-1 rule 
shown above is preferred. This strategy transfers to scaled-up problems 
concerning five, seven, or any odd number of workers, but not to problems 
concerning even numbers of employees. If we had been willing to add to 
SAGE’s memory the parity of the number of workers, this could conceivably 
have been learned as a condition across problem types. 

A significant feature of this class of problems is that learning from 
complete solution paths does not provide any more accurate credit assign- 
ment information than does learning while doing. In the latter case, the ma- 
jority of credit is assigned by the NOTE-LONGER rule in response to the 
large number of loop moves that are made. In addition, although SAGE ex- 
plores both of the paths leading from the initial state, one of these eventually 
leads to a dead end. At this point, the DEAD-END rule chains back up the 
search tree, marking each state along the way as undesirable. However, no 
learning can occur until it reaches the two moves made from the initial state, 
since it requires both a positive and negative instance before learning can 
occur. Since different operators were applied at this point, no discrimina- 
tions can result, but the rule proposing the move down the dead-end path is 
weakened, giving preference to the other operator. 

Algebra 

We have also presented SAGE.2 with algebra problems in one variable, such 
as 4x - 5 = 3. The goal here is to simplify the expression, arriving at an equa- 
tion with the variable on one side and a number on the other, such as x= 2. 
For this domain, the system was given a single operator for adding, sub- 
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tracting, multiplying, or dividing both sides of an equation by the same 
number. Moreover, the initial proposer for this operator required that any 
numeric arguments to these functions occur somewhere within the current 
expression. In addition, SAGE was provided with a domain-specific credit 
assignment heuristic; this informed the program that expressions which 
were not simpler in form than the previous expression were no closer to the 
goal, and so were undesirable. 

Given this information, the system’s.behavior when learning while do- 
ing was identical to that when learning from complete solution paths. Dur- 
ing both runs, SAGE arrived at a variant of its original proposer that would 
always direct it to an optimal solution. This rule can be stated as: 

ALGEBRA-I 
If  you see a number as the argument of function in current-state, 

and other-function is a function, 
[and function is the inverse of other-function,] 
[and function occurs at the top level of the expression in current- 

state,] 
then consider applying other-function to both sides with number as 

its argument. 

This production contains two conditions beyond those in the initial rule, 
both of which are enclosed in brackets. The first of these constrains atten- 
tion to functions that are the inverses of functions occurring in the expres- 
sion. For example, given the expression 4x-5 = 3, ALGEBRA-l would 
consider adding a number (since addition is the inverse of subtraction), or 
dividing by a number (since division is the inverse of multiplication), but 
not subtracting or multiplying. The second condition further constrains the 
function that is selected. SAGE represents such expressions as trees or list 
structures with forms like (= (- (* 4 x) 5) 3). Since subtraction occurs at 
the top level of the structure, it would bind against the variablefuncrion, so 
that adding 5 to both sides would be suggested. 

Since algebra problems such as the above always assume similar goals, 
transfer to problems with different goals is not appropriate for this domain. 
However, scaled-up transfer is possible, and the variant SAGE generated 
for the above problem can be used to solve more complex problems, such 
as (3 (X + 1) - 5) 12 = 2. Obviously, it can also be used to solve different pro- 
blems of the same complexity involving different functions. In principle, we 
could have given SAGE four different proposers at the outset-one for 
addition, one for subtraction, and so forth. If we had not given the system 
information about the inverses of functions, it would still have been able to 
learn not to add unless subtraction occurred in an expression, and analogous 
rules with similar conditions. However, given a problem like 4x- 5 = 3 on 
which to practice, the system would then have only partial transfer to a 
problem like 2x+ 1 = 7, in which there occurred only one of the operators 
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with which it had experience. This form of transfer is similar to that studied 
by Mitchell, et al. (1983) in their work on symbolic integration. 

Seriation 

Seriation behavior has been widely studied by developmental psychologists, 
starting with Piaget (1952), and production system models of children’s be- 
havior on this task have been constructed by Young (1976) and by Baylor, 
Gascon, Lemoyne, and Pother (1973). In one version of this task, the child 
is presented with a set of blocks in a pile and is asked to line them up in 
order of descending height (say from left to right). As simple as this may 
sound, young children have considerable difficulty with this sorting task, 
and many adults do not solve the problem very efficiently. Since this class 
of problems was somewhat different from the others SAGE had been given, 
we felt it would be useful to include it in our tests of the system. 

In this case, the program was given a single operator for moving a 
block from the pile to the end of the current line (or to the first position in 
the line, if none existed). Also, SAGE was given a domain-specific rule for 
determining illegal states. This stated that if a taller block had been set to 
the right of a shorter block, the move that led to this state was undesirable. 
For example, suppose the system were presented with four blocks-A, B, C, 
and D-where A is the tallest and D is the shortest. Further suppose that on 
the first move, SAGE moved D into the line. On the next move, the pro- 
gram could move any of A, B, or C next to D, but each of these moves 
would immediately be classified as illegal. 

SAGE.2 was presented with four blocks and given the goal of order- 
ing them according to height. Learning from complete solution paths (and 
using only the illegal move detector to constrain the initial search), the 
system generated 1 useful variant, along with some 67 others. The useful 
production exceeded the original rule in strength after a single learning run, 
and led to the perfect behavior on the second time through the problem; it 
can be stated as: 

SERIATE- 1 
If you have a block in the pile in current-state, 

[and it is not the case that: 
there is some orher-block in the pile in current-stale, 

and ofher-block is taller than block,] 

then consider moving block to the end of the line. 

This production contains a single new condition that is stated as a negated 
conjunction. Effectively, it says that one should move a block only if there 
is no other block in the pile that is taller than that piece. This constraint is 
related to conditions in the illegal state detector, since the SERIATE-1 
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variant will never place a taller block to the right of a shorter one. However, 
one can imagine a rule that would never propose illegal moves, and yet 
would still start off down the wrong path, say by placing the smallest block 
in the line first. Such a variant was generated during the seriation run, but 
did not become as strong as the rule shown above. Thus, while SERIATE-1 
incorporates the test for illegal states in its condition side, it incorporates 
look-ahead information as well, so that it avoids moves that lead to dead 
ends. 

SAGE.2 was also capable of learning during the initial search on this 
task. In addition to the rule for noting illegal states, the DEAD-END heu- 
ristic also came into play. Consider again our example in which block D is 
placed first in the line. In this situation, the system attempted moving each 
of A, B, and C next to the smallest block, and each move was marked as il- 
legal. However, since no other moves were possible from this state, the 
DEAD-END rule applied, marking the initial D move as undesirable. Since 
the three other moves considered at the outset were still acceptable (the B 
and C moves did not lead to dead ends until later), the D move was com- 
pared to each of these moves by MARKED-BAD. The resulting call on dis- 
crimination led to the SERIATE-1 rule shown above. Later dead ends led to 
similar comparisons, and this rule was strengthened, until it came to effi- 
ciently direct the search process before an initial solution had been found. 

DISCUSSION 

Now that we have examined SAGE and its behavior on a number of tasks, 
we can begin to evaluate the program. In the case of a learning system, one 
of the most important dimensions is generality. One way to test a system’s 
generality is to run it in a number of domains, and as we have seen, SAGE 
fares well on this criterion. However, one could in principle construct a pro- 
gram that employed one heuristic for one domain, a different heuristic for 
another domain, and so forth. In other words, one must also test the com- 
ponents of a system for generality. On this dimension, SAGE’s discrimina- 
tion/strengthening strategy passes with flying colors, since it played a cen- 
tral role in each of the runs we have described. However, the situation with 
respect to the credit-assignment heuristics is more complex, so let us con- 
sider it in more detail. 

Table 5 presents the five credit assignment rules used in SAGE.2, along 
with the six task domains in which the system was tested. As can be seen 
from the table, and as has been apparent throughout the paper, the complete 
solution path heuristic is very general, and was (or could have been) applied 
on each of the tasks. The other heuristics were less useful, but still showed 
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TABLE V 

Generality of SAGE.2’s Credit Assignment Heuristics 

Solution Longer Deodends fllegol No Progress 

Tower of Hanoi X X X 

Slide-jump X X X 

Tiles ond squares X X 

Mattress factory X X X 

Algebra X X 

Seriation X X X 

evidence of generality. Both the loop move/longer path rule and the dead- 
end rule led to learning in four of the six problem classes. 

The illegal state detector was stated in a domain-specific manner and 
was used only in the seriation task. However, one can imagine versions of 
the Tower of Hanoi, Mattress Factory, and Slide-Jump puzzles in which the 
conditions for legal moves must be learned along with the conditions for 
good moves. It might even be possible to state these constraints as elements 
in SAGE’s working memory, so that a quite general illegal state detector 
could be implemented. Finally, the no-progress rule was used only in the 
algebra domain, but one can imagine a version of SAGE that always com- 
puted the distance between the current state and the goal state, and a very 
general no-progress heuristic that matched off the results of this computa- 
tion. 

Another issue relates to the form of the acquired heuristics. As we 
have seen, the discrimination approach is in principle capable of learning 
disjunctive rules, and this potential proved useful on the Titles and Squares 
task. Since disjunctive heuristics are likely to occur in a significant fraction 
of task domains, the ability to acquire them is certainly desirable, and 
SAGE fares well on this count. On the other hand, we found that on most 
tasks, SAGE was not able to learn heuristics that incorporated information 
about the goal state. Such rules are important, since they would let the sys- 
tem to transfer its acquired expertise to problems with different initial and 
goal states than those on which it practiced. 

The one area in which the system did achieve such transfer was the 
Tiles and Squares problem, and the key is this case was the explicif represen- 
tation in working memory of the goal state toward which the system was 
working. Since this information was available for inspection by the dis- 
crimination mechanism, it could be included in the conditions on variants 
spawned by this process. As a result, variants containing such conditions 
could direct the search in different directions, depending on the particular 
goal that was being sought. Presumably, before SAGE can be expected to 
manage similar transfers for other domains, its representation for these 
tasks must be augmented to include explicit representations of their goal 
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states. Whether such an addition will be sufficient or merely necessary is a 
question that can best be answered experimentally. 

A second natural extension relates to the search stragegy that SAGE 
employs. Many problems (such as winning a chess game) are so complex 
that they can only be solved by breaking the task up into manageable com- 
ponents. One such approach involves setting up subgoals, each of which 
must be solved before the supergoal is accomplished. If SAGE’s search con- 
trol were augmented to allow the introduction of subgoals, then the heuris- 
tic for assigning credit based on complete solution paths could undergo an 
important but subtle alteration. Rather than requiring solutions to an entire 
problem, the method could be applied whenever a particular subgoal had 
been achieved. Variants learned from this path would be specific to that 
subgoal; that is, they would include a description of the current subgoal as 
an extra condition, in addition to the other conditions found through dis- 
crimination. Even if SAGE later determined that this subgoal was not par- 
ticularly desirable in the current context, the rules that had been learned 
might still prove useful in satisfying the subgoal in some other situation at a 
later date. This approach would also require the system to learn the condi- 
tions under which various subgoals should be set, but this could be handled 
by the existing mechanisms for learning the conditions on operators. 

In summary, the existing version of SAGE has a number of desirable 
features, but our understanding of the strategy learning process is far from 
complete, and more work remains to be done. In our future research, we 
plan to restructure the system’s problem solving and learning methods to 
take advantage of information about goals. In addition, SAGE has so far 
been tested only on problems with relatively small search spaces, and we are 
now ready to explore the system’s behavior on more complex tasks. Un- 
doubtedly, our experiences in these domains will lead to additional insights 
into SAGE’s limitations, and to further revisions that, hopefully, will lead 
to a more powerful and robust system for learning search heuristics. 
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