
COGNITIVE SCIENCE 9, 217-260 (1985)

Learning to Search: From Weak Methods

to Domain-Specific Heuristics*

PAT LANGLEY

The Robotics Institute
Carnegie-Mellon University

Learning from experience involves three distinct components-generating

behavior, assigning credit, and modifying behavior. We discuss these com-

ponents in the context of learning scorch heuristics, olong with the types of

learning that con occur. We then focus on SAGE, o system that improves its

search strategies with practice. The program is implemented OS o production

system, and learns by creating and strengthening rules for proposing moves.

SAGE incorporates five different heuristics for assigning credit and blame, and

employs a discrimination process to direct its search through the space of

rules. The system has shown its generality by leorning heuristics for directing

search in six different task domoins. In oddition to improving its search

behavior on practice problems, SAGE is able to tronsfer its expertise to

scaled-up versions of o task, and in one case. transfers its acquired search

strategy to problems with different initial and goal stotes.

INTRODUCTION

The ability to search is central to intelligence, and the ability to direct search
down profitable paths is what distinguishes the expert from the novice.
However, since all experts begin as novices, the transition from one to
the other should hold great interest for Artificial Intelligence (AI). In this
paper, we examine the process by which general but weak methods are
transformed into powerful, domain-specific search heuristics. Readers
should be able to detect two main themes. In the early sections of the paper,
we have attempted to classify the types of heuristics learning that can occur,

* We would like thank Stephanie Sage, who helped in programming and debugging the
SAGE system as well as Drew McDermott and Rich Korf, who provided useful comments on
an earlier draft.

Correspondence and requests for reprints should be sent to Pat Langley, Department of
Information and Computer Science, University of California, Irvine, CA 92717.

217

218 LANGLEY

as well as the components that contribute to such learning. After these pre-
liminaries have been completed, we explore a particular learning system-
SAGE.2-in some detail, both in terms of its structure and in terms of its
behavior in different domains. We close with a discussion of some direc-
tions in which the system should be extended.

Within any system that improves its search strategies with experience,
we can identify three distinct components. First, such a system must be able
to search, so that it can generate behaviors upon which to base its learning.
Second, the system must be able to distinguish desirable from undesirable
behaviors, and to determine the components of the system that were respon-
sible for those behaviors; in other words, it must be able to assign credit and
blame. Finally, the system must be able to use this knowledge to modify its
search strategies, so that behavior improves over time. Since so much AI re-
search has revolved around the notion of search, it is not surprising that the
first of these components is the best understood. Many alternative search
strategies have been explored, ranging from very general but weak methods,
like depth-first and breadth-first search, to much more powerful methods
that incorporate knowledge about specific domains. It is precisely the trans-
ition between weak, general methods and specific, powerful methods with
which we are concerned. Thus, it is appropriate that a strategy learning sys-
tem start with some weak search scheme that can be applied to many dif-
ferent domains. However, it is also important that the search control can be
easily modified to take advantage of domain-dependent knowledge that is
acquired with experience. The areas of credit assignment and modification
are less well understood, and we discuss them in some detail in later sec-
tions. However, before turning to these matters, let us consider the problem
of learning search heuristics in the context of a simple puzzle.

Over the years, the Tower of Hanoi puzzle has been used as a testbed
for many different AI systems. We have chosen this task for our example
because it is so well-known to the AI community, and because it poses a
challenging problem to humans despite its small search space. In this puzzle,
one is presented with three pegs on which are placed N disks of decreasing
size. Initially, all disks are placed on a single peg, and the goal is to get all of
these disks onto one of the other pegs. This task would be trivial except for
two constraints on the types of moves that are allowed. First, one can only
move the smallest disk from a given peg. Second, one cannot move a disk
onto another peg if a smaller disk is already resting on that peg. Taken to-
gether, these restrictions considerably constrain the set of legal moves, and
make for a challenging problem.

Figure 1 presents the state space for the three-disk Tower of Hanoi
problem, originally formulated by Nilsson (1971), while Figure 2 shows
two of these states in more detail. Note that although only 27 states exist in
the space, the number of connections between these states is very large. One

LEARNING TO SEARCH 219

s20 521 s22 S23 s24 S26 S26 S27

Figure 1. State space for the three-disk Tower of Hanoi puzzle

result of this high density of connections is that loops are very easy to gen-
erate.’ Another result is that while many paths to a goal are possible, only a
few are optimal. In other words, within the state space for the three-disk
problem, considerable search may be necessary to find an optimal solution
path. Suppose Sl is given as the initial state (in which all disks are on a
single peg), and the goal is to reach either state S20 or state S27 (in which the
disks are all on another peg).2 Further assume that we employ a very
general but weak search strategy such as depth-first or breadth-first search
to solve this problem. Given such weak search control, many nonoptimal
moves yrill be considered before the best set of moves is discovered. For ex-
ample, a breadth-first search scheme would consider moving from state S2
to S3, as well as the optimal move from. S2 to S4. The goal of a strategy-
learning system is to discover a set of heuristics that will propose moves ly-
ing on the solution path, while avoiding those leading off the path. In the
following sections, we consider some of the ways in which such search heu-
ristics can be acquired.

TYPES OF STRATEGY LEARNING

Throughout the history of science, the first step in understanding a set of
phenomena has involved the construction of taxonomies or classification
schemes. Thus, the early chemists formulated classes such as acids, alkalis,
and salts before they began to discover quantitative laws for reactions.
Similarly, in biology the acceptance of the Linnaean classification system

’ Loops are possible because all moves are reversible. For example, one can move from

State S2 to Sl as easily as from Sl to S2. though longer loops can also occur.
z In most versions of this task, the goal involves moving all disks to a single peg: we will

discuss the reason for allowing multiple solutions later in the paper.

220 LANGLEY

preceded Darwin’s recognition of similarities between classes and his expla-
nation of their evolutionary relations. By analogy, it would seem useful to
attempt to categorize the various types of strategy improvement before at-
tempting to explain the processes responsible for them.

Ohlsson (1982) has distinguished between improvement, in which
search decreases on a single practice problem, and transfer, in which prac-
tice on one set of problems leads to a reduction in search on a second set of
problems. Building upon this distinction, it is possible to subdivide the class
of transfer learning still further. One type of transfer involves the scaling up
of simple problems into more complex ones. We have seen that for puzzles
such as the Tower of Hanoi, one can draw a state space diagram represent-
ing the possible states and the moves connecting them. The state space for
the four-disk puzzle is very similar to that for the simpler problem, and can
be generated by replacing each state in Figure 1 by a triangle of states. Given
this similarity of structure, one might expect that heuristics learned for solv-
ing the three-disk problem would easily transfer to the four-disk problem.
However, more steps would be involved in reaching a solution, so this prob-
lem is a scaled-up version of the three-disk problem.3

state Sl state S2

Figure 2. Moving disk-l from peg-A to peg-C on the Tower of Hanoi puzzle

A second type of transfer occurs when one practices on one problem,
and then is presented with another problem that involves the same state
space, but has a different initial state or a different goal state. For example,
one might learn a set of heuristics for moving from state Sl to S20 or S27 in
the three-disk problem, and then be asked to find a path between state S7
and S14. In general, this type of transfer would appear to be more difficult
than scaled-up transfer, since one must take goal information into account
while constructing one’s heuristics.

In domains such as algebra and integration, the state spaces for differ-
ent problems bear little similarity to one another, since only a few of the
many possible operators come into play on a given problem. However, the
goals always have very similar forms-to simplify an expression or to solve
for some variable. As a result, the above two types of transfer seldom occur
in such domains. In these cases, one usually practices on one set of prob-

’ The difficulty of a problem can sometimes be altered in multiple ways. For example,
one can formulate a variation of TOH puzzle that involves three disks and four pegs. In fact,

this problem can be solved in fewer steps than the standard version, but the point is that dif-
ficulty can sometimes be affected in more than one way.

LEARNING TO SEARCH 221

lems, and then is tested on a different set of problems that, while they differ
in the structure of their state spaces, have approximately the same cornplex-
iry. This type of transfer constitutes the third member in our classification
scheme.

Finally, one may sometimes attempt to use knowledge learned in an
area that is only loosely related to the current situation. In such cases, only
some of the operators used earlier may be applicable to the space currently
being searched, and others that were not applicable before may come into
play. Still, one may be able to take advantage of some of the heuristics that
were acquired in the first class of problems and apply them to the task at
hand; this form of transfer is usually called learning by analogy. Taken
together, these four classes would seem to cover the ways in which transfer
of learning can occur, though one might propose alternate divisions based
along other dimensions.

While we do not have the space to review earlier research on strategy
learning in detail,’ it will useful to classify the existing work in terms of our
categories. For instance, Anzai (1978) focused on improvement within the
three-disk Tower of Hanoi task, but did not address the issue of transfer. In
contrast, Brazdil’s (1978) concern with arithmetic has led him to explore
transfer to scaled-up problems and to problems of equal complexity, and
Neves (1978) has also examined the latter in the context of algebra learning.
Mitchell, Utgoff, and Banerji’s (1983) research on symbolic integration and
Anderson’s (1981) work on geometry theorem proving have also been con-
cerned with the latter type of transfer. Langley’s SAGE. 1 (1982a, 1983)-the
predecessor of the current system-showed both improvement on a single
problem and transfer to scaled-up problems, while Ohlsson’s UPL2 (1983)
showed both improvement and some ability to transfer to problems with
different initial states and goals. Rendell’s (1983) PLSl system was able to
transfer its heuristics to both scaled-up problems and to those with different
initial and goal states. Like Anzai, Hagert (1982) has focused on improve-
ment on the Tower of Hanoi task, while Korf’s (1982) macro-operator
learning program was able to transfer its expertise to problems with differ-
ent initial states. Finally, both Carbonell (1983) and Anderson (1983) have
studied learning by analogy, in which knowledge gained in solving one
problem is applied to direct search in a quite different problem. We sum-
marize this information in Table 1.

Later in the paper, we will examine the behavior of a particular strat-
egy learning system called SAGE.2. To anticipate our results, we will find
that SAGE is capable not only of improvement, but that it is also capable of
transfer to scaled-up tasks and to problems of equal complexity. We will

’ The interested reader is directed to Keller (1982) and Langley (1983) for reviews of
some recent work in the area.

222 LANGLEY

TABLE I

Types of Leorning Addressed in Earlier Research

ANZAI

BRAZDIL

NEVES

MITCHELL

LANGLEY

OHLSSON

RENDELL

HAGERT

KORF

ANDERSON

CARBONELL

Improvement

X

X

X

X

X

X

X

X

X

X

X

Scaled-up Diff. Goals Equal Camp. Analogy

x X

X

X

X

X

X X

X

X X

X

also find that the current system has difficulty in transferring its expertise to
problems with different initial and goal states, but that the potential for this
form of transfer does exist. Finally, learning by analogy appears to lie
beyond the methods employed by the program. Hopefully, the reader now
has a better understanding of the types of transfers that can occur and those
types we will focus on in the following pages. Now let us move on to the
components of the strategy learning process.

APPROACHES TO CREDIT ASSIGNMENT

As we have seen, the first step in learning is to distinguish desirable from
undesirable behaviors, and to determine the parts of the system responsible
for those behaviors. This has been called the credir assignment problem, and
has been explored in a number of domains, ranging from puzzle solving to
chess playing. We have arrived at a number of heuristics for assigning credit
and blame that appear to be quite general, some of which we have borrowed
from other researchers. All of these methods involve the same basic idea-
that steps lying along optimal solution paths should be preferred to those
leading off those paths. However, the various methods make judgments
about preferable moves in quite different ways. Below, we discuss these
heuristics in the context of the Tower of Hanoi puzzle and a few other sim-
ple tasks.

Complete Solution Paths

One option for distinguishing desirable from undesirable behavior is to wait
until a complete solution path has been found for a problem. Moves leading
to states on the solution path are desirable, since they led to a solution,

LEARNING TO SEARCH 223

while moves going off the path are undesirable, since they led elsewhere.
Mitchell, et al. (1983) have employed this approach to their LEX system,
while Langley (1983) has used a very similar approach in his SAGE. 1 pro-
gram. Brazdil (1978) and Rendell (1983) have also employed the complete
solution path heuristic. Sleeman, Langley, and Mitchell (1982) have dis-
cussed the generality and limitations of this approach to credit assignment.

Let us consider how this technique can be applied to the Tower of
Hanoi puzzle. Figure 1 presents the state space for the three-disk puzzle,
with the two solution paths connecting the top vertex to the two bottom ver-
tices. Given the legal operators for solving the puzzle, many problem-solv-
ing systems can discover the solutions by searching this space. Once the
solution paths have been discovered, they can be used to assign credit and
blame. For example, since both moves from the initial state Sl lie on the
solution path, both would be labeled as good moves. Three moves are possi-
ble from each of the resulting states S2 and S3. The moves leading to states
S4 and S5 also lie on the solution path, and so would be marked as good
moves. However, the moves leading to states S3 and S2 lie off the solution
path, as do the two moves leading back to the initial state. Thus, all of
these moves would be labeled as undesirable.

This approach is very general, since it can be used to assign blame and
credit to any problem that can be solved by search. However, this method is
guaranteed to work only if all of the shortest solution paths are available.
Since some search techniques find only a single solution path, difficulties
can arise. For example, a system that solves problems using a form of
depth-first search might find one of the solutions shown in Figure 1, but not
the other. Given such incomplete knowledge, our credit assignment heuris-
tic would mistakenly label one of the initial moves as undesirable. Mitchell,
et al. (1983) have dealt with this problem by carrying out additional search
before deciding that a move is bad. Another problem is that while almost
any problem can in principle be solved purely by search, there are many
problems with search spaces so large that some other route must be taken.
In these cases, other credit assignment heuristics that do not require com-
plete solution paths must be employed to enable learning to occur while the
problem is being solved, so that the search process can become directed
enough to reach the goal state. We now discuss a number of heuristics that
allow credit assignment during the search process, and which open the way
to learning while doing.

Noting Loop Moves

When one is attempting to solve a problem in as few steps as possible, re-
turning to a previously visited state (or looping) may be safely considered
undesirable. Thus, when a move leads to a state through which the problem

224 LANGLEY

solver has already traveled, that move can be labeled as less desirable than
another move that does not complete a loop. For example, suppose one is at
state S4 in the three-disk Tower of Hanoi problem, and considers moving to
states S2, S6, and S7. Since the first of these leads back to the previously
visited state S2, it can be labeled as less desirable than the last two moves.
Note that this form of credit assignment is relative rather than absolute, as
was the case when complete solutions were known. There is no guarantee
that the move leading from S4 to S7 will ultimately be deemed desirable (as
in fact it will not, since it leads off the solution path). However, one can say
that this move is more desirable than the one leading back to a previously
reached state, and this information may be useful to the modification com-
ponent of the system. Anzai (1978) has used a loop move detector to good
effect in modeling learning on the Tower of Hanoi, but it is clear that this
approach can be applied to any domain in which loops can occur during
search. Ohlsson (1983) has employed a similar credit assignment technique
in his UPL system.

Noting Longer Paths

In general, shorter paths to a goal are more desirable than longer ones.
Thus, if a problem solver notes that he has reached some state by two dif-
ferent paths, he can infer that the last move in the longer path should have
been avoided. For example, in the three-disk Tower of Hanoi puzzle, sup-
pose one has moved from state S4 to state S7, as well as from S4 to S6. Fur-
ther suppose that on the next move, one moves from S6 to S7, as well as
from S6 to SlO. Since the state S7 has been reached by two paths, the last
move in the longer path (from S6 to S7) may be judged undesirable. The
alternate move from S6 to SlO cannot immediately be deemed good in any
absolute sense (though later it would be found to lie on the solution path),
but it can be judged as more desirable than the move from S6 to S7. Thus,
this is another case where the assignment of credit and blame takes on a
relative aspect. The shorter-path heuristic is closely related to the loop move
method, and appears to be another quite general technique for assigning
credit during the search process. Anzai (1978) has applied a very similar
technique to learning on the Tower of Hanoi task.

Dead Ends

In solving a problem, a path must be found from the initial to the goal state.
However, some paths lead to dead ends from which no steps can be taken
except to back up, and it is desirable to avoid these c&de-sacs if possible.
Another generally useful credit assignment heuristic labels as bad the last

LEARNING TO SEARCH 225

move in a path that has led to a dead end. For example, suppose in solving
the three-disk Tower of Hanoi problem, one has moved from state S4 to S7.
Also suppose that after this, one has tried moving from S7 to S4, from S7 to
S6, and from S7 to S8. If the first of these moves is labeled as bad by the
loop move heuristic, and the second two are marked as bad by the shorter-
path heuristic, then the state S7 may be classified as a dead end. As a result,
the move from S4 to S7 may be judged as undesirable, and the move from
S4 to S6 may be judged as a better move, since it does not lead to any un-
desirable state. Again, this heuristic cannot decide that the S4 to S6 move is
absolutely desirable (though it does lie on the solution path), but it can
determine that this move should be preferred to its alternative.

Failure to Progress

We have so far referred to the initial search strategy only in the abstract.
However, some search strategies are more powerful than others, and this
power can be used in assigning credit and blame before a complete solution
has been found. For example, search methods such as means-ends analysis
and hill-climbing employ an evaluation function which tells whether one is
closer to the goal after a move has been made than he was before. Let us
consider a simple example from the domain of algebra. In solving algebra
problems in one variable, simplifying the expression will take one closer to
the goal (in which the variable is on one side of the equation and a number is
on the other). Thus, if a step is taken which does not simplify the expres-
sion, this may be judged as an undesirable move. Another move made from
the same state that does lead to a simplification may be judged as more
desirable, though (in principle at least) it might not be the best move possi-
ble. Neves (1978) employed such a credit assignment principle in his ALEX
system, enabling it to learn algebra heuristics before a complete solution had
been achieved. The implementation of such a principle might be quite gen-
eral, as in Ohlsson’s (1983) UPL 2 system, which used a form of means-ends
analysis, or it might be relatively specific, as in knowing that algebra expres-
sions should always be simplified.

Illegal States

A final heuristic for the determination of credit and blame revolves around
the notion of illegal states. In some cases, the problem solver may attempt
to make moves which he later recognizes as violating some task constraint.
For example, in the Tower of Hanoi puzzle, one might attempt to move the
largest disk, even though one or more smaller disks were resting on it. Of
course, such a move is undesirable, and any move from the same state that

226 LANGLEY

does not violate a constraint may be judged as better. This is yet another
case in which the desirable move is only relatively good, and that move may
be judged as undesirable at some later point in the search process. In princi-
ple, this heuristic may be applied to any task that involves some form of
constraints. However, problem solvers often incorporate such constraints
into their operators, and so avoid illegal moves from the outset. Still, this
type of mistake occurs among human problem solvers sufficiently often for
it to be included in the psychological literature (Simon & Reed, 1976), so we
shall keep it on our list of methods for solving the credit assignment prob-
lem. Now that we have considered approaches to the first step in the strategy
learning process, it is time to move on to the second stage-the modification
of behavior.

APPROACHES TO ALTERING SEARCH BEHAVIOR

There exist two rather different approaches to controlling search in an in-
telligent fashion. In the first scheme, some numerical evaluation function is
used to rank states, and those with the highest scores are selected for further
expansion. This method is commonly used in game-playing programs. The
alternative is to employ heuristics with symbolic conditions to direct search,
and this approach has often been applied to puzzle-solving tasks and mathe-
matical domains. As one might expect, both of the methods lead to associated
techniques for al&ring search behavior, and both approaches to learning
have been explored in the literature. Below we summarize these approaches
to strategy acquisition.

Discovering Evaluation Functions

The approach to learning through discovering evaluation functions is an at-
tractive, one and was examined early in the history of AI. Samuel (1959)
constructed a checker-playing program that chose its moves on the basis of
a linear evaluation function. The system experimentally introduced new
terms from a set of predefined features and altered the weights of existing
terms, and then noted the result in its playing ability. In this way, Samuel’s
system eventually progressed to master-level checkers play. Rendell(l983) has
explored an alternate approach to finding evaluation functions. His PLSl
program first solves a problem (such as the eights puzzle) using breadth-
first search. Once a solution has been found, this information is used to
assign a score to each state in the search tree. Using various curve-fitting
techniques, Rendell’s system generates a function that predicts these scores
in terms of a set of predefined features. This function can then be used as an

LEARNING TO SEARCH 227

evaluation function for directing the search process. While such techniques
are useful in domains where numeric evaluation functions are appropriate,
other methods must be used to acquire heuristics that can only be stated in
symbolic terms.

Generalizing Conditions

One technique for learning symbolic conditions begins with very specific
rules and generalizes as more information is gathered. In this incremental
approach, the hypothesized conditions are usually initialized to the first
positive instance. When a new positive instance is encountered, it is com-
pared to the current hypothesis and one or more revised hypotheses are
generated, based on the features held in common by the two structures. If
some of these hypotheses become overly general, they eventually lead to the
incorrect classification of negative instances as positive ones and are re-
jected. Since more than one hypothesis may result from this comparison,
some method for controlling search through the rule space is required. Win-
ston (1975) has explored depth-first strategies for searching the rule space,
while Hayes-Roth (1976) and Vere (1975) have employed breadth-first search
strategies. Since most generalization-based methods search for features held
in common by all positive instances, they have difficulty in learning rules
with disjunctive conditions. However, Iba (1979) has used an extension of
the depth-first scheme to successfully learn disjunctive rules.

Discriminating Conditions

An alternate approach starts with an overly general rule and generates more
specific versions through a process of discrimination. This occurs when one
of the current hypotheses leads to an error, providing evidence that it is too
general. The context in which the faulty rule matched the negative instance
is compared to the last context in which the same rule matched a positive in-
stance. During this comparison, differences between the positive (desirable)
instance and negative (undesirable) instance are found. For each difference,
a more specific hypothesis can be constructed that would match against the
positive instance but not the negative one. Since multiple hypotheses can
result, some search control is required. Brazdil (1978) has used depth-first
search to direct the discrimination process, while Anderson and Kline (1979)
and Langley (1982b) have employed more complex strategies involving no-
tions of strengthening and weakening. Since the discrimination method
compares instances to other instances (rather than to hypotheses), it does
not attempt to find features common to all positive instances, and so has no
difficulty in learning rules with disjunctive conditions.

228 LANGLEY

The Version Space Approach

Mitchell (1977) has explored the version space approach, which incorporates
aspects of both the generalization and discrimination methods. This tech-
nique begins with a very specific hypothesis and generates more general ver-
sions (S) as new positive instances are encountered. As with generalization
methods, this is done by finding common features. It also begins with a very
general hypothesis and produces more specific versions (G) as experience is
gained. However, instead of testing the first set of hypotheses (S) against
negative instances to see if they are overly general, it tests them against the
second set (G). Similarly, more specific versions of the second set (G) are
found by comparing negative instances to members of the first set (S). Mit-
chell employed a breadth-first strategy to direct search through the space of
hypotheses. As more instances are gathered, this bidirectional search con-
verges on the hypothesis best suited to summarize the data. Since Mitchell’s
method also finds features held in common by all positive instances, it has
the same difficulty with disjunctive rules as most generalization-based
learning systems.

Implications for Search Behavior

Note that the direction taken in searching for conditions has implications
for the performance component of a strategy learning system. For example,
if the system moves from specific to general hypotheses through a generali-
zation process, then the associated performance system will be conservative.
The system will begin by making no bad moves and missing some good
moves, but as the system nears the correct hypothesis, its errors of omission
will decrease. In contrast, if the system moves from general to specific hy-
potheses through a discrimination process, then the associated performance
system will be a rush one, omitting few desirable moves but considering
many undesirable ones as well, though the latter will decrease as the correct
hypothesis is approached.

While a conservative strategy is useful when a benevolent tutor is
available to present positive and negative instances (as in the paradigm of
learning concepts from examples), it is less adaptive in learning search heu-
ristics, where a system must generate its own behavior in order to accumu-
late positive and negative instances of various rules. In this case, the price of
commission errors is small, since the only result is added search. However,
the price of omissions is great, since learning is impossible in the absence of
behavior. Thus, in the context of learning search strategies, the reckless dis-
crimination approach seems superior to the more conservative generaliza-

LEARNING TO SEARCH 229

tion approach.J The version space approach is capable of conservative or
rash behavior, depending on whether one uses S or G in the match process.
However, in this paper we will limit our attention to discrimination-based
approaches to strategy learning.

SAGE.2: A SYSTEM THAT LEARNS SEARCH HEURISTICS

Having considered the three components involved in strategy learning, we
can now examine a particular strategy learning system in some detail. We
will focus on SAGE.2, the second in a line of programs (Langley, 1982a,
1983) that we have constructed to study the process of strategy acquisition.
SAGE stands for Strategy Acquisition Governed by Experimentation. Like
most other strategy learning programs, SAGE is implemented as an adap-
tive production system. In other words, it is stated as a set of relatively inde-
pendent condition-action rules or productions, and learning occurs through
the addition of new productions. The program is implemented in PRISM
(Langley, 1981), a production system language designed to explore learning
phenomena. We now consider the components of SAGE, starting with its
representation of states and operators. After this, we discuss the system’s
initial search strategy, its credit assignment heuristics, and its mechanisms
for altering its search strategy in the light of experience.

Representing States and Operators

Any problem-solving system must have some representation upon which to
work. For a given problem, it must be able to represent the states that con-
stitute the problem space being searched, and to represent the operators that
enable the system to move between those states. As we have stated, SAGE.2
is implemented as a production system. Others have argued for the advan-
tages of production system formalisms (Newell, 1972, Anderson, 1976), and
we do not have the space to recount those arguments here. However, the
choice of production systems leads to a natural style for representing states
and operators, and it is appropriate to spend some time discussing that
style.

A program that is stated as a production system consists of two main
components-a set of condition-action rules or productions and a working

’ However, Ohlsson (I 983) has devised a generalization-based scheme that sidesteps this
problem. His UPL2 system begins with a set of overly general rules which lead to search; based
on good moves, the program creates specific rules and generalizes them when possible. Al-
though UPL prefers to use such learned rules, it retains the original rules, and so can fall back
on them, if the acquired rules fail to propose any move.

230 LANGLEY

memory against which those productions are matched. The working memory
tends to be declarative in nature, and changes contents fairly rapidly. In
contrast, the production memory tends to express procedural knowledge,
and changes only slowly, when learning occurs. During problem solving,
new states are generated quite often, while new search procedures are added
only occasionally. Therefore, it is quite natural to represent states as ele-
ments in working memory, and it is equally natural to represent operators
for moving between those states as productions.

Given these design decisions, a question remains as to the precise man-
ner in which states and operators are to be stored. For example, states might
be represented as single working-memory elements, as with (in-state S2 (peg-
A contains disk-2 disk-3) (peg-B contains disk-l) (peg-C contains)) for the
Tower of Hanoi. Alternately, they might be stored as a number of separate
elements, such as (disk-l is-on peg-B in-state S2), (disk-2 is-on peg-A in-
state S2), and (disk-3 in-on peg-A in-state S2). Since most production sys-
tems languages have limited pattern matching capabilities, the latter of these
two schemes is desirable: It lets one express finer distinctions. In fact, this is
the representation for states used in SAGE, and it has worked extremely
well for our purposes.6

Since production system formalisms require a close correspondence
between the form of elements in working memory and the form of produc-
tions, the choice of representation for states places strong constraints on the
representation for operators. For example, the following rule is a natural
statement of the conditions under which a disk can be legally moved in the
Tower of Hanoi task:

TOH
If you have disk on current-peg in current-state,

and you have some other-peg different from current-peg,

and in current-srare there is no o/her-disk on currenf-peg that is

smaller than disk,

and in curreni-state there is no third-disk on other-peg that is smaller
than disk,

then consider moving disk from currenr-peg to ofher-peg.

The meaning of this production is self-explanatory, but the correspondence
between conditions and working memory may not be so clear. For this rule
to be applied, each line must match against some element in working
memory. For example, at the outset of the problem, the first line might
match against against the elements (disk-l is-on peg-A in-state Sl), (disk-2
is-on peg-A in-state Sl), or (disk-3 is-on peg-A in-state Sl). Similarly, the

@ Anzai (1978) employed a representation very much like the first one shown and cer-

tainly managed to implement a running system. However, this approach required that he build

considerable knowledge into his learning mechanisms about the particular representation he

was using. In our opinion, this was one of the reasons why Anzai never managed to get his

system to learn in more than a single domain.

LEARNING TO SEARCH 231

second condition would match against the elements (peg-B is-a peg) and
(peg-C is-a peg). The remaining negated conditions would match against
elements (disk-l is-on peg-A in-state Sl) and (disk-3 is-larger-than disk-l).
Italicized terms in the rule stand for variables which can match against any
symbol; in addition to matching within individual conditions, variables
must bind consistently across conditions for the production as a whole to
match. In cases where the negated conditions are successfully matched, they
keep the production as a whole from matching. Thus, they can be used to
keep this rule from proposing illegal moves, such as moving a disk when a
smaller one is resting on it.

Note that the above rule proposes a move but does not actually carry
it out; we will call such rules proposers. Each proposer contains the legal
conditions on an operator, while the operator itself is implemented in a
separate rule. This division of labor has two main advantages. First, since
we are concerned with improving search strategies, our system need only
alter the conditions under which actions are proposed. This means that we
can ignore the actions involved in an operator and focus on the conditions.
Second, as we shall see later, SAGE learns by creating variants of proposers
like TOH. In some cases, variants of the same original production fire in
parallel, proposing the same action. By introducing an additional step be-
tween the move proposal and its implementation, we give the system time to
recognize the identity of these proposals and to avoid unnecessary effort.

When a proposal is actually carried out, an operator frace is deposited
in working memory. These traces refer to the operator that was applied, as
well as to the arguments that were passed to it, as in the working memory
element (move-l was move disk-l from peg-A to peg-B). Information is also
stored about the state at which the operator was applied and the state that
resulted from its application, as in the element (move-l led-from Sl to S2).
Such trace information is used once a solution has been found, allowing
SAGE to chain back up the path, marking traces lying on that path as desir-
able. The system’s other credit assignment heuristics also take advantage of
these traces, using them to infer moves leading to undesirable states and to
back up to earlier states. SAGE also considers such trace information when
it is searching for conditions on its proposers, and can incorporate knowl-
edge of previous moves into the productions it generates. The need for some
form of trace data in strategy learning has been emphasized by Neches (1981)
and by Langley, Neches, Neves, and Anzai (1980), and our experience with
the current system has reinforced our beliefs on this matter.

The Initial Search Strategy

In order to understand SAGE.2’s initial search strategy and the manner in
which this strategy changes over time, we must consider some more details
about the nature of production systems. A given rule may match against the

232 LANGLEY

elements in working memory in more than one way; each such match is called
an insfanfiafion. Given a set of instantiations, a production system program
must have some means of determining which should be applied and which
should be saved for later application; this process is called conflicf resolu-
tion. SAGE employs three conflict resolution principles, which are applied
in turn. First, instantiations which have been applied before are never
selected again; this process of refraction keeps the same move from being
proposed by the same production, while allowing prior states to be retained
in case some other move must be made from them. Second, instantiations
matching against more recent states are preferred to those relating to older
states; this focuses attention on new states, so that the system continues to
explore promising paths. Third, each production has an associated sfrengfh,
and rules with high strengths are preferred to weaker ones; since rules are
strengthened each time they are relearned, this number can be viewed as a
measure of each rule’s success, with preference being given to more success-
ful rules.

If two or more rules have equal strength, or if multiple instantiations
of a single rule match against elements of the same recency, then more than
one move may be proposed at a time. This is the standard situation when
SAGE first attempts to solve a problem, since its proposers generally begin
with identical strengths, or because it starts with only one such rule. In
this case, the system carries out a breadth-first search through the problem
space defined by its operators, and the program continues in this exhaustive
fashion until credit can be assigned and learning can occur. Once new move
proposing rules have been generated and the strengths of the old rules have
been altered, search becomes more selective. Although still preferring more
recent states, SAGE begins to prefer productions that have been learned
many times, and to shun those that have led to errors in the past. However,
it retains the ability to consider multiple paths, as long as these paths are
generated by rules with the same strengths. For example, it would still be
able to find both solutions to the Tower of Hanoi puzzle, since these are
perfectly symmetrical. In summary, the system starts by carrying out a blind
breadth-first search, and using information it gathers along the way, it ends
(perhaps after a number of runs) with the ability to direct its search toward
the goal states.

The system must also know when it can stop searching. This is the re-
sponsibility of a separate production that recognizes when the goal state has
been reached, and adds information to working memory to this effect. For
example, the goal-recognizing rule for the Tower of Hanoi puzzle notes
when all disks are resting on one of the goal pegs, and adds to memory the
names of the states that satisfy this condition. This information is used later
in determining the complete solution path. Separate goal-recognizing pro-
ductions must be provided for each task domain, since the conditions for

LEARNING TO SEARCH 233

the solutions differ. However, the same rule can generally be used for scaled-
up versions of a problem; for instance, the goal production for Tower of
Hanoi does not refer to the number of disks on the goal peg, and so can be
used for the four-disk and five-disk tasks, as well as for the simpler three-
disk problem.

SAGE.2’s Credit Assignment Heuristics

In an earlier section, we distinguished two basic approaches to altering
search behavior. The first of these involved the discovery of evaluation func-
tions, while the second involved the determination of the symbolic condi-
tions under which moves should be proposed. Since SAGE.2 is stated as
a production system, the second of these methods seemed most appropriate.
As we indicated before, the program employs a discrimination mechanism
(as opposed to a generalization or version space method) to determine the
heuristic conditions for applying its operators. Since this method inputs a
positive and negative instance of some rule, it is appropriate to first con-
sider the manner in which the system assigns credit and blame, and thus dis-
tinguishes desirable moves (or positive instances) from those which should
be avoided (or negative instances).

SAGE can operate in either of two modes. It can assign credit based
only on complete solution paths, or it can attempt to learn during the search
process. Since the program’s credit assignment heuristics are stated as inde-
pendent condition-action rules, they can be added or removed without af-
fecting the system’s ability to search, though of course this does affect the
manner in which learning occurs. Let us begin by focusing on the method
relying on complete solution paths. Table 2 shows two productions, ON-
THE-PATH and OFF-THE-PATH. The first of these matches against traces
of moves that lie along the solution path; upon application, it retrieves the
instantiation responsible for proposing the move and stores it as a positive
instance of the rule that was matched.’ The second production matches
against traces that originated on the solution path but led off that path
when the move was made; upon firing, this rule retrieves the responsible in-
stantiation and marks it as a bad instance of the rule that led to the move. In
addition, it weakens the responsible rule so that it will be less likely to apply
in the future, and calls on the discrimination learning mechanism. This re-
trieves the last positive instance of the faulty rule and compares it to the cur-
rent negative instance in search of differences. Since this heuristic retrieves
the most recent positive instance of a rule, SAGE may lose information

’ The traces matched by these rules are based on move information laid down by the

various operators upon application; when a solution is found, SAGE chains back up the solu-
tion paths, marking move traces that fall on these paths.

234 LANGLEY

TABLE II

Credit-Assignment Heuristics Based on Complete Solution Paths

ON-THE-PATH

If move led from stole to good-state.

and state lies along the solution path,

and good-state lies along the solution poth,

then retrieve the rule and instantiotion that proposed move.

and store that instontiotion as a positive instance of the rule.

OFF-THE-PATH

If move led from stote to bad-state,

and state lies along the solution path,

and bod-state does not lie along the solution path,

then retrieve the instantiation and rule that proposed move,

as well as the last good instantiation of the same rule;

weaken the rule and call on the discrimination process using

the lost good instantiation as the positive instance

and the current instantiation OS the negative instance.

when more than one correct move is made in a row. However, it would be
impractical to compare all positive instances to all negative instances, and
retrieving the last positive instance seems a plausible compromise.

SAGE’s other credit assignment rules avoid this issue by more com-
pletely specifying the instances that should be compared. Table 3 presents
three of the system’s rules for assigning credit during the search process.
The first of these, MARKED-BAD, matches when some operator trace has
been labeled as undesirable, and some other operator trace originating from
the same state has not been so labeled. In this case, SAGE retrieves the rule
that fired in each case. If the same rule was applied in both situations, the
discrimination mechanism is called with the first move as a negative in-
stance and the second as a positive instance. In addition, the strength of the
offending rule is decreased. If the good and bad moves were proposed by
different rules, then the discrimination process cannot be applied, but the
rule leading to the undesirable state is still weakened.

The remaining productions interact with MARKED-BAD, providing
the labeling of states it requires for application. One of these, NOTE-
LONGER, matches when the system reaches some state that was visited
earlier. It marks the move that led to the revisited state as bad, and backs
up, focusing attention on the state from which this move originated. Note
that as this rule is stated, it will match against loops as well as against un-
necessarily long paths, since a loop can be viewed as the longer of two paths
to a state, where the shorter path has length zero. Thus, while these two
situations can be separated conceptually, there is no reason to distinguish
them as far as the implementation is concerned, as Anzai (1978) has done.
The third rule in Table 3, DEAD-END, applies when a state is found from

LEARNING TO SEARCH 235

TABLE III
Credit-Assignment Heuristics Based on Complete Solution Paths

MARKED-BAD

If bod-state is the current state,

ond bod-move led from prior-sfote to bad-state.

ond bod-move wos undesirable,

ond good move led from prior-state to good-stofe.

ond good-move is not marked OS undesirable,

then weoken the rule that proposed bod-move.

ond if the some rule proposed good-move,

discriminate using the instantiation for bod-move OS a negotive instance,

ond using the instontiotion for good move OS a positive instance.

NOTE-LONGER

If current-sfote is the current stote,

ond move led from prior-state to current-state,

ond current-state has been visited earlier,

then make prior-stole the current stote,

and lobe1 move OS undesirable.

DEAD-END

If currenf-state is the current stote.

ond move led from prior-sfote to current-state,

ond no moves ore possible from current-stote

thot hove not olreody been mode,

then moke prior-sfote the current state,

and lobe1 move OS undesirable.

which no moves can be made; it marks the move leading to that state as
undesirable and shifts attention back to the previous state. We have not
shown rules for noting illegal states or failure to make progress, since these
must be implemented for specific domains individually. However, while the
conditions of such rules differ from those of NOTE-LONGER and DEAD-
END, their actions are identical, and they interact with MARKED-BAD in
the same manner-by specifying undesirable moves, and letting this more
general rule select better moves starting from the same state and evoking the
discrimination process.

Learning Conditions Through Discrimination

As we have seen, once a strategy learning system has distinguished the posi-
tive from the negative instances of an operator, it must have some means of
altering the conditions under which that operator is applied. In implement-
ing SAGE.2, we chose to employ a discrimination-learning process that
begins with overly general rules for proposing moves, and generates variants
of these rules with additional conditions as experience is gained. This mech-

236 LANGLEY

anism is presented with a single positive instance of a rule and a single nega-
tive instance of the same rule (in terms of their variable bindings), along
with the state of working memory in each case. Bundy and Silver (1982)
have called the variable bindings and state of memory during the good
application, the selection context, and the variable bindings and state of
memory during the faulty application, the rejeclion confext. The discrimi-
nation process compares these two contexts, searching for differences which
will allow it to distinguish one from the other.

The simplest form of difference involves a working memory element
that was present in one context but not in the other. For example, if the
trace of a previous move were present in the selection context but not in the
rejection context, SAGE would create a variant of the overly general pro-
poser that included this fact (with certain terms replaced by variables) as an
additional condition. This variant would never match against the initial
problem state, since no such trace would be present at the outset of the
problem. Similarly, if an element were found to be present in the rejection
context but not the selection context, this fact would be included as a
negafed condition in a variant on the original rule. The resulting rule would
only match if this fact (or a similar one) were not present in memory.

More complex differences can be stated as conjuncfions of elements
that were present in one context but not in the other. Such differences are
generated by a path-finding process that travels through symbols shared by
working memory elements. An example will clarify the process. Table 4 pre-
sents both a selection context and a rejection context for the TOH rule. The
first of these proposes the move from state S2 to state S4 shown in Figure 1,
while the second leads to the move from State S3 to State Sl. The two con-
texts are expressed in terms of the bindings between variables (in italics) and
the symbols against which these variables matched. Thus, in the selection
context, the variable current-sfale was bound to state S2, disk to disk-2,
current-peg to peg-A, and other-peg to peg-B, leading SAGE to consider
moving disk-2 from peg-A to peg-B. This move falls on the solution path,
since it removes an obstruction (disk-2) from the largest disk (disk-3). In the
rejection context, the variable currenf-state was bound to state S2, disk to
disk-l, current-peg to peg-C, and o/her-peg to peg-A, leading to the action
of moving disk-l from peg-C to peg-A. Since this move takes the system
back to the original state, it is undesirable.

Table 4 also presents the elements that were present in memory during
each context” and from which new conditions are generated. The path-find-
ing process starts from analogous symbols in the two sets of bindings (such

‘ Actually, SAGE considers only those elements which describe the current state or

parents to the current state. Since other states considered in parallel can have no effect on the

current move, they are ignored. Thus, the state of working memory after SAGE’s initial moves

can be found by taking the union of the two sets shown in Table 4. together with state-indepen-

dent elements such as (peg-A is-a peg) and (disk-3 is-larger-than disk-l).

LEARNING TO SEARCH 237

TABLE IV

Selection and Rejection Contexts for the TOH Rule

Selecfion Context

Vorioble bindings

disk->disk-2

current-peg->peg-A

other-peg-> peg-6

currenf-stofe->S2

Rejection Context

disk->disk-1

current-peg-> peg-C

other-peg-> peg-A

current-sfote->S3

Elemenfs in working memory

(move-l led-from Sl to 52)

(move-l wos move disk-l from

(move-2 led-from Sl to S3)

(move-2 wos move disk-l from

peg-A to peg-C) peg-A to peg-B)

(disk-l is -on peg-A in-stote Sl)

(disk-2 is -on peg-A in-state Sl)

(disk-3 is -on peg-A in-stote Sl)

(disk-l is -on peg-C in-stote 52)

(disk-2 is -on peg-A in-state 52)

(disk-3 is -on peg-A in-state 52)

(disk-l is-on peg-A in-state Sl)

(disk-2 is-on peg-A in-state Sl)

(disk-3 is-on peg-A in-state Sl)

(disk-l is-on peg-B in-state S3)

(disk-2 is-on peg-A in-state 53)

(disk-3 is-on peg-A in-state 53)

as disk-2 and disk-l), and attempts to find some path through the “good”
elements that has no analogous path through the “bad” elements. Thus, if
a path consisting of three elements was present in the selection context but
not in the rejection context, a variant of the TOH rule would be based on this
difference. This rule would include the three elements (with some constants
replaced by variables) as positive conditions, so that it would match in the
selection context but not the rejection context.

The path-finding process also searches for paths through the “bad”
elements that have no analogous path through the “good” elements. Let us
trace the method’s discovery of such a difference in the elements in Table 4.
Starting from the “bad” symbol S3 and the “good” symbol S2, the path-
finding process considers bad elements and good elements that contain
these symbols. Since both contexts contain an element indicating that an
earlier move led to the current state-(move-2 led-from Sl to S3) and
(move-l led-from Sl to S2)-SAGE must extend these paths by considering
additional elements in its search for differences. Thus, the analogous sym-
bols move-2 (for the bad element) and move-l (for the good element) are
marked, and other elements containing these symbols are considered.’

For example, the bad path can be extended to include the element
(move-2 was move disk-l from peg-A to peg-B), since this also contains the
symbol move-2. At first glance, there appears to be an analogous extension
to the good path, using the element (move-l was move disk-l from peg-A to
peg-C). However, note that the symbol disk-l is already bound to the vari-

’ Alternate paths arc followed through other analogous symbols, such as peg-B and

peg-C, peg-A and peg-A, and disk-l and disk-l. Note that a symbol may be mapped onto

itself, provided it occurs in analogous positions in the two elements.

238 LANGLEY

able disk in the rejection context, while this is not true of disk-l in the selec-
tion context. Similarly, peg-A is already bound to other-peg in the rejection
context, while peg-C is unbound in the selection context. As a result, these
two elements cannot be considered analogous, and the path-finding process
has found a difference between the two contexts. Based on this difference,
SAGE constructs the following variant:

TOH-I
If you have disk on current-peg in current-state,

and you have some other-peg different from current-peg,

and in current-state there is no other-disk on current-peg that is
smaller than disk,

and in current-state there is no third-disk on other-peg that is
smaller than disk,

and it is not the case that:
prior-move led from prior-state to current-state, and
prior-move was a move of disk from other-peg to current-peg,

then consider moving disk from curren,t-peg to other-peg.

In addition to the original conditions, this rule (let us call it TOH-1) includes
the elements (move-2 led-from Sl to 3) and (move-2 was move disk-l from
peg-A to peg-B), with the specific disk and pegs replaced by variables, em-
bedded within a single negated condition. This rule will match if either of
the negated conditions is matched, but not if both are matched simulta-
neously. As a result, it will still match against the selection context in Table
4 but not against the rejection context, which is precisely the goal of the dis-
crimination method. Effectively, the new conditions prevent SAGE from
reversing the last move it has made.

In some cases, only a single difference exists between the selection and
rejection contexts. Winston (1970) has called these situations near misses,
and they considerably simplify the learning process, since only one variant
need be considered. Unfortunately, near misses seldom occur in the task of
learning search heuristics, and a robust system must be able to handle the
general case in which many differences exist. (Bundy and Silver [1982] have
called these fur misses.) SAGE deals with far misses by finding all paths to
length N (in our runs, we have set N to 4) and constructing a variant based
on each of these differences, some with new negated conditions like TOH-1,
and others with new positive conditions. These conditions may involve
descriptions of the current state, previous states, previous moves (as in
TOH-1) or any combination of them. This leads to a significant search
problem, and we will discuss the system’s response to this problem later.
However, let us first consider the notion of difference in more detail.

In searching for differences, the discrimination process must know
which symbols should be used in determining significant differences and
which differences should be ignored. For example, it makes sense to dis-

LEARNING TO SEARCH 239

tinguish between working memory elements including the symbol was (which
describe move traces) and those including led-from (which temporally
connect these move traces), since they represent different types of informa-
tion. In contrast, there is no reason to distinguish between internally gener-
ated symbols like the states Sl and S2, since there are only the “connecting
tissue” used to link together the descriptions of each state and the temporal
relations between states. Thus, when it is searching for differences, the dis-
crimination routine never considers two elements as analogous if one con-
tains was in the Nth position and the other contains led-from in the same
position. However, if one contains Sl and the other contains S2 in the same
position, then the two elements will be considered analogous, unless some
other (significant) difference exists, or unless one of these symbols has al-
ready been associated with some other symbol (such as S3) during the path-
finding process. When a variant is constructed, significant terms are retained,
while insignificant terms are replaced by variables in a consistent manner.

The case is less clear for the names of operators and their arguments.
These symbols are not generated internally, yet if the variants are to retain
any generality, some of them must be replaced by variables. Since one seldom
wants to generalize across the operators themselves, SAGE treats operator
names as significant. However, the arguments of these operators (e.g., ob-
jects and their positions) are treated as insignificant and are replaced by
variables when a variant is constructed. Note that such decisions are not in-
herent aspects of the discrimination process; rather, they are parameters
that are input to the learning method and can be easily modified. Later we
will reconsider this decision and its implications for SAGE’s learning behav-
ior. For now, though, let us continue with our examination of the current
system.

Directing Search Through the Rule Space

Most condition-finding methods, including the standard generalization ap-
proach and Mitchell’s version space technique, find conditions that are held
in common by all positive instances of a concept or operator. As a result,
these methods are limited to acquiring conjunctive rules. In contrast,
SAGE.2’s discrimination process compares a single positive instance to a
single negative instance. Because of this, it is capable of discovering disjunc-
five rules as well as conjunctive ones, and this ability can be very important
in some task domains. In order to acquire disjunctive rules, the discrimina-
tion mechanism must search a larger space of rules than methods based on
finding common features, and it must have some means of directing this
search. For this reason, SAGE compares newly learned rules to those it has
constructed earlier. If the new rule is identical to one of the existing vari-

240 LANGLEY

ants, that variant is strengthened. Since the strength of a rule plays a major-
role in whether it is selected for application, rules that have been learned
more often will tend to be preferred. Thus, strength measures the success
rate of each variant, and SAGE can be viewed as carrying out a heuristic
search through the space of rules, selecting those rules that have proven
most successful.

In domains involving only a single operator, it would be sufficient to
simply strengthen variants whenever they were relearned, since they would
eventually come to be preferred to the rules from which they were generated.
However, some tasks involve multiple operators, and require that one of
these operators be preferred to another. Given the role of strength in select-
ing rules, the natural response to such situations is to weaken rules when
they propose an undesirable move. In addition to letting SAGE learn to
prefer some operators over others, this strategy also decreases the chance
that a faulty variant will be selected for application.

Although the combination of discrimination, strengthening, and
weakening will eventually lead to useful search heuristics, many spurious
variants will be created along the way. Since the matching process is a major
component of programs stated as condition-action rules, we should briefly
consider how SAGE handles the potential combinatorial explosion in the
matcher. First, the system’s condition-action rules are stored in a discrimi-
nation network that takes advantage of structure that is shared between
rules. Since variants of the same proposer tend to be quite similar to one
another, the expense involved in matching many variants of a rule is not
much greater than that involved in matching the original rule. However,
other components of the system (such as conflict resolution) are also slowed
by the presence of many variants, so some further response is required. In
addition, SAGE incorporates a thresholding principle. Variants below the
threshold are not even incorporated in the discrimination network, and so
have no effect on either the match process or conflict resolution (though
they are retained for comparison with rules that are learned later). The
strengths of new variants are set to a fraction of the rule from which they
were spawned, and it is only when a variant comes to exceed its parent in
strength that it is considered for application. Since few spurious variants
ever become stronger than their parent rules, this method has worked quite
well in directing SAGE’s search through the space of proposers.

AN EXAMPLE OF SAGE.2 AT WORK

Our overview of SAGE.2 is now complete, but to give the reader a better
understanding of how the system learns search strategies, we must examine
its workings in specific domains. We now discuss SAGE’s learning sequence

LEARNING TO SEARCH 241

on the Tower of Hanoi puzzle, comparing its behavior when using only com-
plete solution paths to its behavior when learning during the search process.
We have chosen this task as our main example because it is familiar to many
readers, and because most of the credit assignment heuristics discussed
earlier come into play. However, since generality is an important criterion
for judging learning systems, we will later examine the program’s behavior
in five other task domains in somewhat less detail.

Learning From Solution Paths

Since we have already discussed the Tower of Hanoi puzzle and its associ-
ated problem space, we shall begin by discussing the system’s behavior on
this problem when using the first credit assignment strategy-learning from
complete solution paths. SAGE.2 was presented with a standard three-disk
problem: The three disks were placed on a single peg, and the goal was
to get all three disks on either of the other two pegs. In other words, the
system started at State Sl in Figure 1 and was asked to reach either state S20
or S27 (or both of them). Starting with a breadth-first search strategy, the
program first moved to states S2 and S3 and from there considered six
moves: from S2 to S4, from S3 to S5, from S2 to Sl, from S3 to Sl, from S2
to S3, and from S3 to S2. While the system noted that the last four of these
moves led to previously visited states, it did not attempt to learn from this
knowledge, and simply abandoned these undesirable paths. From the two
remaining states S4 and S5, SAGE moves to states S6, S7, S8, S9, S2, and
S3. The last two of these moves were identified as loops, so only the first
four states were retained for expansion. This search process continued until
the program reached the two solution states, S20 and S27.

At this point, the complete solution path heuristic was applied. SAGE
chained back up the solution path, marking the traces of moves that lay on
the path. Once this was completed, it worked its way back down the marked
path, letting the rules ON-THE-PATH and OFF-THE-PATH apply when
they matched. The first of these circumstances occurred at states S2 and S3,
when four moves were made that led off the solution path. One of these
moves led to a loop from S2 back to Sl, the original state. Comparing the
good move from this point (from S2 to S4) to the bad move, SAGE’s dis-
crimination mechanism generated the variant TOH-1 that we considered
earlier. The selection and rejection contexts for this learning situation were
identical to those we have examined, except that SAGE compared two
moves from state S2, rather than comparing one move from state S2 and
another from state S3. As a result, the same differences were discovered,
and the variant TOH-1 was constructed. The reader will recall that this rule
contains a negated conjunction that prevents it from proposing a move that
will reverse the move SAGE has just made. Some four other differences

242 LANGLEY

were found, leading to four additional variants, but TOH-1 was the only
rule that ever became strong enough to apply. An identical set of variants
were created when the context for the move from S3 to Sl was compared to
that for the move from S3 to SS, since these situations are completely sym-
metrical; this led each of the existing variants to be strengthened.

A different set of three variants resulted when the good move from S2
to S4 was compared to the bad move from S2 to S3 (and when the symmetri-
cal moves were examined). In this case, the rule we are interested in is subtly
different from the variant we described earlier:

TOH-2
If you have disk on current-peg in current-state,

and you have some other-peg different from current-peg,

and in current-state there is no other-disk on current-peg that is
smaller than disk,

and in current-state there is no third-disk on other-peg that is
smaller than disk,

and it is not the case that:
prior-move led-from prior-state to current-state, and
prior-move was a move of disk from an-v-peg to current peg,

then consider moving disk from current-peg to other-peg.

The new negated conjunction on this variant of TOH is nearly identical to
that on TOH-1, but the difference is significant. TOH-2 states that it is ac-
ceptable to move a disk from its current peg to a new peg, provided on the
previous move one did not move from any peg to the current peg. An exam-
ple should help clarify this difference. Suppose we have disk-l on peg-B,
and since disk-l is the smallest of the disks, we can move it to either Peg-A
or peg-C without violating any of the task constraints. Further suppose that
on the previous step, we moved disk-l from peg-A to peg-B, so that TOH-1
will not propose moving the smallest disk back to peg-A (which would result
in a loop). However, this variant would propose moving disk-l to peg-C. In
contrast, TOH-2 would not propose moving disk-l to either peg-A or peg-
C, since its negated condition forbids a move of the same disk twice in a
row. Thus, the second variant is more conservative than the first, and as a
result, it constrains the search process to a greater extent.

Upon comparing its moves from state S4 and SS, SAGE produced
another set of variants on its initial proposer. When the discrimination pro-
cess compared the context in which the desirable move from S4 to S6 was
proposed to the context that led to the move from S4 to S7, some six new
productions resulted. In this case, two of the rules are of interest:

TOH-3
If you have disk on current-peg in current-state,

and you have some other-peg different from current-peg,

and in current-state there is no other-disk on current-peg that is
smaller than disk,

LEARNING TO SEARCH 243

and in current-state there is no third-disk on other-peg that is
smaller than disk,

and it is not the case that:
prior-move led-from prior-state to current-state, and

earlier-move led-from earlier-state to prior-state, and

disk was on other-peg in earlier-state,

then consider moving disk from current-peg to other-peg.

and

TOH-4
If you have disk on current-peg in current-state,

and you have some other-peg different from current-peg,

and in current-state there is no other-disk on current-peg that is
smaller than disk,

and in current-state there is no third-disk on other-peg that is
smaller than disk,

and it is not the case that:
prior-move led-from prior-state to current-state, and
earlier-move led-from earlier-state to prior-state, and
earlier-move was a move of disk from other-peg to current-

peg,
then consider moving disk from current-peg to other-peg.

In addition to helping direct search down profitable paths, these rules are
interesting because they are syntactically different but semantically equiva-
lent. The first refers to the sfale occupied two steps before the current state,
while the second refers to the ltlove made at that point. Yet both rules ef-
fectively keep one from moving a disk back to the position it was in two
moves before, avoiding such nonoptimal moves as that from S4 to S7 and
that from S5 to S8. Because of the structure of the task domain, these rules
are always guaranteed to match together, and whenever one is learned, the
other will also be learned. The possibility for syntactically distinct but
semantically identical rules causes some extra search through the space of
possible rules, but other than this, no harm is done.

So far, we have considered only the initial cases in which the above
variants were constructed. However, each of these was relearned many
times throughout the course of the first run. For example, the nonbackup
variant TOH-1 was relearned and strengthened at each step along the way,
since SAGE foolishly considered a backup at every point in its initial search
tree. Similarly, the TOH-2 variant was strengthened whenever an attempt
had been made to move the same disk twice in a row (other than simple
backups). Thus, the bad moves from S2 to S3, from S6 to S7, and from
S12 to S13 all resulted in an increase of this rule’s strength, along with anal-
ogous faulty moves on the symmetrical path. Finally, the last two useful
variants, TOH-3 and TOH-4, were learned whenever SAGE had considered
moving a disk back to the position it had occupied two states earlier. Thus,

244 LANGLEY

the bad moves from S4 to S7, from SlO to S13, and from S16 to S21 all rein-
forced these rules, increasing their likelihood of selection on the next run.

On the second run, the system’s performance improved considerably,
since TOH-l’s strength had come to exceed that of the initial proposer.
As a result, no backup moves were considered and the search process was
considerably more directed. Unfortunately, neither this rule nor any of the
other variants were sufficient by themselves to completely eliminate SAGE’s
search on the Tower of Hanoi problem, so more learning was required.
Again the system chained back up its solution path, marking traces that led
to the goal states, and began to compare the contexts of positive and nega-
tive instances in its search for useful variants. The learning process on this
run was quite similar to the first, except that variants of TOH-1 were created
(since only it had been applied), instead of variants of the original rule.

As one might expect, TOH-1 made exactly the same errors as its pre-
decessor, except for the backup moves which its additional condition for-
bid. Thus, when at state S2, it considered moving to S3 as well as to S4, and
when at state S4, it moved to S7 as well as to S6. As a result, the discrimina-
tion process generated variants of this production that were very similar to
those created for its more general ancestor. When comparing the contexts
that led from S2 to S4 and from S2 to S3, SAGE created a rule containing a
“don’t move the same disk twice in a row” condition, as well as the “don’t
back up” condition that was already present. Similarly, when comparing
the moves from S4 to S6 and from S4 to S7, it constructed two variants with
a “don’t move a disk back where it was two states before” condition (again,
these were syntactically different, but would always match against the same
state of memory). These rules were relearned and strengthened at each of
the points where their analogs were learned during the first run.

Since the new variants were more conservative than TOH-1, and since
they had surpassed this rule in strength during the second learning run, they
began to further direct the search process on the third pass. In fact, the
“don’t move the same disk twice in a row” variant (let us call it TOH-4)
achieved the highest strength, so it was applied at each stage on this run.
This rule avoided errors such as moving from S2 to S3 and from S6 to S7.
However, it continued to make mistakes such as moving from S4 to S7,
since it lacked the condition (contained in TOH-3) that would keep it from
making such moves. Fortunately, once the solution paths had been found
and the learning stage had begun, two (structurally different, but seman
tically equivalent) variants of TOH-4 were constructed that contained the
“don’t move a disk back to where it was two states before” condition
Once these two rules exceeded the strength of TOH-4 (as they had by the
end of the run), SAGE had available to it a search heuristic that proposed
moves lying on the solution path, but that ignored moves that would take it
off that path. Indeed, when the system was presented the three-disk prob.

LEARNING TO SEARCH 245

lem a fourth time, it successfully solved the problem without taking any
false steps.

P 60-
F
$ 50.

2
;40.

! i
p 30.

20.

10

t
I

0 1 2 3 4 5
Learning frials

Figure 3. Learning curve for the three-disk Tower of Hanoi task

Figure 3 presents the learning curve for SAGE.2 on the Tower of
Hanoi task. The figure graphs the number of states considered during the
search process against the number of times the problem had previously been
attempted. As can be seen, the system shows a distinct improvement over
time, until it eventually solves the task in the minimum number of steps. In
addition, since the problem spaces for the four-disk and five-disk puzzles
have the same basic structure as the simpler three-disk space, the learned
heuristics were also useful in these more complex tasks. In fact, when pre-
sented with the standard four-disk and five-disk versions of the puzzle (in
which all disks must be moved from one peg to a different peg), SAGE
applied its heuristics to solve these problems without search as well. Thus,
we can conclude that for this domain at least, the system is capable of
transfer to scaled-up versions of a problem on which it has practiced.

While SAGE was able to transfer its acquired knowledge to other
standard versions of the Tower of Hanoi task, the program would not have
fared so well if it had been given a nonstandard problem. The heuristics
that the system learns for this task are very good at directing search when all
disks start on one peg and must be moved to another peg, but they are not
adequate for moving from one arbitrary configuration to another. Later,
we will have more to say about this type of transfer, and what would be re-
quired to accomplish it. However, let us first turn to the topic of learning
while doing.

Learning While Doing

Although SAGE.2 is capable of learning from complete solution paths, it is
not limited to this method. As we have seen, the system also includes heuris-

246 LANGLEY

tics for learning from longer paths and loops, from dead ends, from illegal
moves, and from a failure to make progress. The first two of these tech-
niques”’ can be applied to the Tower of Hanoi puzzle to acquire search strat-
egies identical to those described in the previous section. Let us consider this
process of learning while doing and its relation to learning from complete
solution paths.

As before, SAGE began the three-disk problem by carrying out a
breadth-first search, moving from state Sl to states S2 and S3. Since these
moves led to new states and since other moves could be made from them,
none of the blame-assignment heuristics applied at this point. Since the two
solution paths are symmetrical, we will focus on the left half of the space
shown in Figure 1. From the state S2, three moves were possible-SAGE
could move to S4, to Sl, and to S3. The first of these was a new state, but Sl
and S3 had been visited before. The move from S2 to Sl led to a loop, while
the move from Sl through S2 to S3 was a longer path than that from Sl
directly to S3. However, the NOTE-LONGER production does not make
such distinctions (because it is concerned only with avoiding revisited states),
so this rule applied, marking the moves from S2 to Sl and S3 as undesira-
ble.

Given the information that these two moves should not have been
made, the rule MARKED-BAD was applied to each in turn, calling on the
discrimination mechanism. In both cases, it focused on the move from S2 to
S4 as the positive instance, since this was the only move from S2 that was
not labeled as an error. Upon comparing this move to the one from S2 to
Sl, SAGE constructed the variant TOH-1 that we saw before, along with
four other variant productions that never became strong enough to apply.
When the move from S2 to S4 was compared to that from S2 to S3, the vari-
ant TOH-2 was created (along with two other rules). Thus, up to this point,
SAGE had assigned credit in precisely the same manner that it did when the
complete solution path was available.

Next, having abandoned the revisited states, SAGE applied its initial
proposer (which was still stronger than any of the variants) to the state S4.
From this position, three moves were again possible-from S4 to S6, from
S4 to S2, and from S4 to S7. The second of these led back to the previous
state, and was labeled as undesirable by NOTE-LONGER. Given this judg-
ment, MARKED-BAD applied twice, comparing this move both to that
from S4 to S6 and to that from S4 to S7, since neither had been marked as
bad. In both cases, the variant TOH-1 was recreated and strengthened,
along with a number of other rules. Since SAGE did not yet have any reason

I0 In fact, the rules NOTE-LONGER and DEAD-END were used even in the described

run in which credit was assigned after a solution had been found. However, their role in this

run was only to tell SAGE when it had reached untenable positions, so the system could aban-

don search down certain paths and focus on others. Because the production MARKED-BAD

was not present, the program could not learn using the information added to memory by these

rules.

LEARNING TO SEARCH 247

to suspect that the move from S4 to S7 was undesirable, it considered moves
from both this state and from S6, which lay on the solution path.

Three moves were possible from S6, and all were carried out; these in-
cluded a move from S6 to SlO, from S6 to S4, and from S6 to S7. The last
two of these operations led to revisited states, so NOTE-LONGER was ap-
plied in each case. MARKED-BAD compared each of these moves to that
from S6 to SlO, regenerating TOH-1 in one instance and TOH-2 in the
other, along with a number of additional variants. Three moves could also
be made from S7, to the states S6, S4, and S8. However, each of these states
had been visited before, the last from the symmetrical search in the right
side of the space. NOTE-LONGER was applied and marked each of the
moves from S7 as undesirable, but since there were no good moves origi-
nating from S7 with which they could be compared, MARKED-BAD could
not be applied. Meanwhile, NOTE-LONGER had also refocused SAGE’s
attention on S7, marking it as one of the states currently under considera-
tion for expansion. Since no other moves could be made from this state, the
rule DEAD-END applied, calling on the discrimination routine to compare
the good move from S4 to S6 to the recently determined bad move. Two of
the resulting variants were TOH-3 and TOH-4, which avoid moving a disk
back to the position it occupied two states earlier.

By this point, SAGE’s credit assignment had begun to lose ground to
the strategy of learning from complete solution paths. Although NOTE-
LONGER continued to notice revisited states and to lead MARKED-BAD
to strengthen both TOH-1 and TOH-2, the dead-end noticing rule never had
another chance to apply. As a result, the moves from SlO to S13 and from
S16 to S21 were never classified as undesirable, and the two variants TOH-3
and TOH-4 were not relearned until the complete solution path was marked,
and ON-PATH and OFF-PATH came into the picture. This did eventually
occur, and the resulting events were identical to those described in the pre-
vious section, save that many of the variants already existed, and so by the
end of the run they were considerably stronger than in the other case. After
this, SAGE was given a second chance to solve the three-disk task, and
events followed much the same route, except that backups were missing, so
NOTE-LONGER was applied much less often. By the fifth run, the system
was able to solve the problem without search, and to transfer its expertise to
the four-disk puzzle. The learning curve for these runs was very similar to
that shown in Figure 3. However, slightly less search was carried out in the
early runs, since the useful variants were able to mask their predecessors
before the run was complete.

The Importance of Goals

In our treatment of the Tower of Hanoi puzzle, we assumed two goal states
and two symmetrical solution paths to these goals. It is much more common

240 LANGLEY

to formulate the problem with a single goal peg, resulting in only one op-
timal solution path, and our use of multiple goals deserves some discussion.
In the early stages of constructing SAGE.2, we made two design decisions
that led us to state the Tower of Hanoi puzzle as we have done. First, we
decided to treat the arguments of operators as insignificant during the dis-
crimination process, as we described earlier. As a result, the system has dif-
ficulty in learning heuristics for moving disks toward one peg rather than
another, and we avoided this issue by including two goal pegs. If we had
chosen instead to treat pegs as significant symbols, SAGE would have learned
more specific rules, but at least the system would have been able to acquire
heuristics for moving disks to a specific peg. However, a more general and
attractive alternative presents itself.

The second design decision involved assuming a procedural represen-
tation for the goal state, rather than a declarative one. The reader will recall
that SAGE includes a production for recognizing when it has solved a prob-
lem, and which stops the search process when this occurs. Since goal infor-
mation is not available for inspection by the discrimination mechanism, it
cannot discover conditions that refer to the goal state. As a result, the
search heuristics it learns are incapable of directing search down different
paths depending on the goal. Note that this is not a limitation of the dis-
crimination method itself, but is rather a limitation in the information acces-
sible to the learning system. If we had chosen to include explicit information
about the goal state in working memory, SAGE should have been able to
learn rules that would move toward a single goal and still treat the argu-
ments of its operators (such as pegs and disks) as insignificant symbols.

In addition, this approach opens the way for learning heuristics for
solving nonstandard versions of the Tower of Hanoi puzzle, in which both
the initial and goal states are arbitrary configurations of disks. Once the dis-
crimination method has access to the goal state, it might well be able to ac-
quire rules that would transfer between different initial and goal states,
leading to a much more robust system. Although we have not yet tested
SAGE in this manner on the Tower of Hanoi, we will later examine another
task in which this approach does lead to the predicted forms of transfer.
Since goals are so obviously important to problem solving, it may seem odd
that we did not include declarative knowledge of goals at the outset of our
research. Such judgments are all too easily made with the aid of hindsight.
In defense, we can only note that very little of the other ,work on learning
search heuristics deals with goals in this manner, so that SAGE is far from
alone on this dimension.

APPLYING SAGE.2 TO OTHER DOMAINS

One important dimension on which AI systems are judged is their general-
ity, and the most obvious test of a program’s generality is to apply it to a

LEARNING TO SEARCH 249

number of different domains. In this section, we summarize SAGE.2’s be-
havior on five additional tasks. Some of these are puzzles similar to the
Tower of Hanoi task, but others have quite different characteristics. In each
case, we describe the problem or class of problems, consider the rules the
program learns in the domain, and discuss the types of transfer that occur.
After this, we examine the generality of the individual learning heuristics
employed by the system.

The Slide-Jump Puzzle

In the Slide-Jump puzzle, one is presented with N quarters and N nickels
placed in a row. The quarters are on the left, the nickels are on the right,
and the two sets of coins are separated by a blank space. Legal moves in-
clude sliding into a blank space or jumping over another coin into a blank
space. In addition, quarters can be moved only to the right, while nickels can
be moved only to the left. The goal is to exchange the positions of the quar-
ters and the nickels, so that the former occur on the right side of the blank
and the latter occur on the left. For instance, given the initial state Q Q Q -
N N N, one would attempt to generate the goal state N N N - Q Q Q. Like
the Tower of Hanoi problem, the Slide-Jump puzzle has a relatively small
search space, yet it is quite difficult for human problem solvers to master.
Also like the Tower of Hanoi, it has two symmetric solution paths; how-
ever, since moves are not reversible, loops do not come into play in this
task.

SAGE.2 was initially presented with the four-coin version of this puzzle,
in which the positions of two quarters and two nickels must be exchanged.
The program was given two initial proposers-one for suggesting slide moves
and the other for suggesting jumps. After an initial breadth-first search in
which both optimal solutions were found, the system attempted to learn
from these paths. After some three runs through the problem, SAGE had
generated (and sufficiently strengthened) the following variant of the initial
slide rule:

SLIDE-l
If a type-of-coin is in current-position in current state,

and adjacent-position is blank in current-state,
and adjacent-position is to the left-or-right of current-position.
and type-of-coin can move to the left-or-right,
[and prior-move led-from prior-state to current-state,]
[and prior-move was a jump of type-of-coin from adjacent-position

to other-position,]
then consider sliding type-of-coin from current-positions, to adjacent-

position.

This rule contains two conditions (enclosed in brackets) that were not pres-
ent in the original slide-proposing production. These conditions allow the

250 LANGLEY

variant to propose sliding a coin only if another coin of the same type was
just jumped from the adjacent position. Five other variants of the original
slide rule were constructed and contributed to directing the search process,
while some 14 variants were based on spurious features of the problem,
and were not learned enough times to affect behavior. One variant of the
jump rule was also constructed, which avoided jumping one coin over
another of the same type (which leads to to a dead end). However, this rule
was learned only once before a variant of the slide rule caused SAGE to
avoid this particular error.

In the learning-while-doing runs, the system proceeded in a very
similar manner, except that some credit and blame was assigned during the
search process. In this task, two credit-assignment heuristics contributed to
learning. The DEAD-END rule produced a variant that avoided sliding the
same type of coin twice in a row, while NOTE-LONGER generated the
jump variant already mentioned. When SAGE was presented with the six-
coin Slide-Jump puzzle, it successfully solved this problem without search,
again indicating that the system can handle scaled-up transfer. Although the
normal statement of the puzzle does not allow reversible moves, alternate
initial and goal states can be formulated if they are allowed. However, in
its current form, the program would not have been able to transfer its exper-
tise to an arbitrary problem of this type, for the same reasons as the Tower
of Hanoi version.

Tiles and Squares

Ohlsson (1982) has described the Tiles and Squares puzzle, in which one is
presented with N tiles and N+ 1 squares on which they are placed. Each
square is numbered from 1 to N+ 1, and each tile is labeled with a unique
letter. Only one legal move is possible: moving a tile from its current posi-
tion to the blank square. The goal is simple: Get all the tiles from the initial
positions to some explicitly specified end position. For example, the initial
configuration might be B C * A, while the goal configuration might be
A * C B. Since any tile may be moved into the blank space, the moves are
much less constrained than in most puzzles. One of the interesting features
of this task is that while the branching factor of the search space is quite
high (3 for three-tile tasks, 4 for four-tile tasks, etc.), two simple heuristics
are sufficient to avoid search entirely. Indeed, one might ever-r question
whether the task is challenging enough to be called a puzzle. We have in-
cluded it here primarily to clarify SAGE’s ability to acquire disjunctive
rules.

l The location of the asterisk between the A B C letter patterns indicates blank space

positioning.

LEARNING TO SEARCH 251

SAGE.2 was presented with this problem, as well as a single rule for
proposing legal moves. Based on the two optimal solution paths it discov-
ered for this task, the system generated (and sufficiently strengthened) seven
variants for directing the search process, along with some 73 less useful
rules. Two of the useful variants” may be paraphrased as:

TS-1
If you have a tile on current-square in current-state,

and other-square is blank in current-state,

[and in the final goal you want tile in other-square,]

then consider moving tile from current-square to other-square.

and

TS-2
If you have a tile on current-square in current state,

and ofher-square is blank in current-state,

[and in the final goal you want other-tile in current-square,]

[and it is not the case that:
prior-move led-from prior-state to current-state, and
prior-move was a move of tile from other-square to current-

square,]

then consider moving tile from currenf-square to other-square.

Note that these rules are disjuncfive in that they cover different situations
that arise in the problem. For example, the first variant is useful in suggest-
ing that C be moved to the third position at the outset of the above problem,
leading to the state B * C A. Once this has been done, the second rule is use-
ful in proposing that either B or A be moved into the second square, leading
to the states * B C A and B AC *. At this point the first rule again comes into
play, proposing the move of A into square 1 or B into square 4, and finally,
this same rule proposes moving B to 4 or A to 1, reaching the goal state. The
point here is that neither of the above heuristics is sufficient to completely
direct the search process by itself, but taken together they eliminate search.
Thus, the ability of SAGE’s discrimination process to consider disjunctive
heuristics shows its potential in the Tiles and Squares puzzle.

Another interesting characteristic of this problem is that SAGE incor-
porated information about the goal state in the conditions it discovered.
This was possible because the goal description was present in working mem-
ory, and so was considered during the condition-finding process. As a
result, the heuristics the system learned from the above problem can be
applied not only to more complex problems with longer solution paths, but
to other problems in the same space with differing initial and goal states.
Thus, SAGE’s behavior on the Tiles and Squares task shows that the system

I’ The other five useful variants were semantically equivalent to TS-2 and proposed the

same moves in all cases.

252 LANGLEY

is capable of acquiring goal-sensitive heuristics, as we proposed earlier, pro-
vided information about the goal state is present in working memory.

In addition to learning from complete solution paths, the credit as-
signment heuristic for noting loops and longer paths was also applicable to
this domain. The detection of longer paths led to TS-1, the first variant,
which moves a tile into its goal square whenever possible. Similarly, the
detection of loops led to an initial version of TS-2 that contained only the
no-backup condition. However, none of the learning while doing heuristics
were sufficient to learn the TS-2 condition “in the final goal you want
other-tile in current-square.” This was due to the fact that, whenever TS-2
is applicable, there are a number of equally good moves that lie along opti-
mal solution paths. Moreover, other than backtracking moves, all of the
legal moves in such situations are equally desirable. Since the learning while
doing rule MARKED-BAD only compares instances originating from the
same state, and since there are no bad moves from such states, SAGE can
never master the complete form of TS-2 during the search process. As a
result, the system fell back on its complete solution path strategy to learn
the final version of this variant.

The Mattress Factory Puzzle

Like the Slide-Jump problem, the Mattress Factory puzzle requires two
operators for moving through its search space. In this task, one is told that
N employees are working at a mattress factory. Due to losses, the factory
must be closed down, and so all the workers must be fired. However, union
regulations require that hiring and firing follow certain rules. The least
senior worker may be hired or fired at any time; this corresponds to the first
operator. However, other workers may only be hired or fired if the person
directly below them in seniority is currently employed, and furthermore,
provided that no other person below them is also employed. This complex
rule corresponds to the second operator. Since each of these operators is
reversible, one can always immediately undo an action that was just taken.
Thus, this task shares an abundance of possible loop moves with the Tower
of Hanoi. Although this problem has an even smaller space than the Tower
of Hanoi, it also gives human problem solvers considerable difficulty. Cahn
(1977) has studied human learning on the Mattress Factory problem.

SAGE.2 was initially presented with the three-person version of the
problem, along with rules for proposing the two types of moves described
above. After finding the single solution path, it generated and sufficiently
strengthened a straightforward variant of the original lowest worker rule:

MF-I
If you have a worker with current-stutus in current-state,

and worker is not senior to any other-worker,

LEARNING TO SEARCH 253

and current-status is the opposite of other-status,

[and it is not the case that:
prior-move led-from prior-state to current-state, and
prior-move was a change of worker from other-status to

current-status,]

then consider changing worker from current-status to other-status.

In this production, the variables current-status and other-status match
against the possible states in which a worker can find himself-either em-
ployed or unemployed. The additional negated conjunction on this rule
simply prevents one from undoing the previous move. Together with a simi-
lar variant of the second operator, this production is nearly sufficient for
directing search on the Mattress Factory puzzle.

However, one additional piece of information is required. If one
avoids backups, then only two legal paths can be traversed in this problem
space, and these paths are entirely determined by whether one initially fires
the least senior worker or his immediate superior. In the three-worker prob-
lem, the correct choice is to fire the lowest person. SAGE acquires this strat-
egy by weakening the variant on the second operator, so that the MF-1 rule
shown above is preferred. This strategy transfers to scaled-up problems
concerning five, seven, or any odd number of workers, but not to problems
concerning even numbers of employees. If we had been willing to add to
SAGE’s memory the parity of the number of workers, this could conceivably
have been learned as a condition across problem types.

A significant feature of this class of problems is that learning from
complete solution paths does not provide any more accurate credit assign-
ment information than does learning while doing. In the latter case, the ma-
jority of credit is assigned by the NOTE-LONGER rule in response to the
large number of loop moves that are made. In addition, although SAGE ex-
plores both of the paths leading from the initial state, one of these eventually
leads to a dead end. At this point, the DEAD-END rule chains back up the
search tree, marking each state along the way as undesirable. However, no
learning can occur until it reaches the two moves made from the initial state,
since it requires both a positive and negative instance before learning can
occur. Since different operators were applied at this point, no discrimina-
tions can result, but the rule proposing the move down the dead-end path is
weakened, giving preference to the other operator.

Algebra

We have also presented SAGE.2 with algebra problems in one variable, such
as 4x - 5 = 3. The goal here is to simplify the expression, arriving at an equa-
tion with the variable on one side and a number on the other, such as x= 2.
For this domain, the system was given a single operator for adding, sub-

254 LANGLEY

tracting, multiplying, or dividing both sides of an equation by the same
number. Moreover, the initial proposer for this operator required that any
numeric arguments to these functions occur somewhere within the current
expression. In addition, SAGE was provided with a domain-specific credit
assignment heuristic; this informed the program that expressions which
were not simpler in form than the previous expression were no closer to the
goal, and so were undesirable.

Given this information, the system’s.behavior when learning while do-
ing was identical to that when learning from complete solution paths. Dur-
ing both runs, SAGE arrived at a variant of its original proposer that would
always direct it to an optimal solution. This rule can be stated as:

ALGEBRA-I
If you see a number as the argument of function in current-state,

and other-function is a function,
[and function is the inverse of other-function,]
[and function occurs at the top level of the expression in current-

state,]
then consider applying other-function to both sides with number as

its argument.

This production contains two conditions beyond those in the initial rule,
both of which are enclosed in brackets. The first of these constrains atten-
tion to functions that are the inverses of functions occurring in the expres-
sion. For example, given the expression 4x-5 = 3, ALGEBRA-l would
consider adding a number (since addition is the inverse of subtraction), or
dividing by a number (since division is the inverse of multiplication), but
not subtracting or multiplying. The second condition further constrains the
function that is selected. SAGE represents such expressions as trees or list
structures with forms like (= (- (* 4 x) 5) 3). Since subtraction occurs at
the top level of the structure, it would bind against the variablefuncrion, so
that adding 5 to both sides would be suggested.

Since algebra problems such as the above always assume similar goals,
transfer to problems with different goals is not appropriate for this domain.
However, scaled-up transfer is possible, and the variant SAGE generated
for the above problem can be used to solve more complex problems, such
as (3 (X + 1) - 5) 12 = 2. Obviously, it can also be used to solve different pro-
blems of the same complexity involving different functions. In principle, we
could have given SAGE four different proposers at the outset-one for
addition, one for subtraction, and so forth. If we had not given the system
information about the inverses of functions, it would still have been able to
learn not to add unless subtraction occurred in an expression, and analogous
rules with similar conditions. However, given a problem like 4x- 5 = 3 on
which to practice, the system would then have only partial transfer to a
problem like 2x+ 1 = 7, in which there occurred only one of the operators

LEARNING TO SEARCH 255

with which it had experience. This form of transfer is similar to that studied
by Mitchell, et al. (1983) in their work on symbolic integration.

Seriation

Seriation behavior has been widely studied by developmental psychologists,
starting with Piaget (1952), and production system models of children’s be-
havior on this task have been constructed by Young (1976) and by Baylor,
Gascon, Lemoyne, and Pother (1973). In one version of this task, the child
is presented with a set of blocks in a pile and is asked to line them up in
order of descending height (say from left to right). As simple as this may
sound, young children have considerable difficulty with this sorting task,
and many adults do not solve the problem very efficiently. Since this class
of problems was somewhat different from the others SAGE had been given,
we felt it would be useful to include it in our tests of the system.

In this case, the program was given a single operator for moving a
block from the pile to the end of the current line (or to the first position in
the line, if none existed). Also, SAGE was given a domain-specific rule for
determining illegal states. This stated that if a taller block had been set to
the right of a shorter block, the move that led to this state was undesirable.
For example, suppose the system were presented with four blocks-A, B, C,
and D-where A is the tallest and D is the shortest. Further suppose that on
the first move, SAGE moved D into the line. On the next move, the pro-
gram could move any of A, B, or C next to D, but each of these moves
would immediately be classified as illegal.

SAGE.2 was presented with four blocks and given the goal of order-
ing them according to height. Learning from complete solution paths (and
using only the illegal move detector to constrain the initial search), the
system generated 1 useful variant, along with some 67 others. The useful
production exceeded the original rule in strength after a single learning run,
and led to the perfect behavior on the second time through the problem; it
can be stated as:

SERIATE- 1
If you have a block in the pile in current-state,

[and it is not the case that:
there is some orher-block in the pile in current-stale,

and ofher-block is taller than block,]

then consider moving block to the end of the line.

This production contains a single new condition that is stated as a negated
conjunction. Effectively, it says that one should move a block only if there
is no other block in the pile that is taller than that piece. This constraint is
related to conditions in the illegal state detector, since the SERIATE-1

256 LANGLEY

variant will never place a taller block to the right of a shorter one. However,
one can imagine a rule that would never propose illegal moves, and yet
would still start off down the wrong path, say by placing the smallest block
in the line first. Such a variant was generated during the seriation run, but
did not become as strong as the rule shown above. Thus, while SERIATE-1
incorporates the test for illegal states in its condition side, it incorporates
look-ahead information as well, so that it avoids moves that lead to dead
ends.

SAGE.2 was also capable of learning during the initial search on this
task. In addition to the rule for noting illegal states, the DEAD-END heu-
ristic also came into play. Consider again our example in which block D is
placed first in the line. In this situation, the system attempted moving each
of A, B, and C next to the smallest block, and each move was marked as il-
legal. However, since no other moves were possible from this state, the
DEAD-END rule applied, marking the initial D move as undesirable. Since
the three other moves considered at the outset were still acceptable (the B
and C moves did not lead to dead ends until later), the D move was com-
pared to each of these moves by MARKED-BAD. The resulting call on dis-
crimination led to the SERIATE-1 rule shown above. Later dead ends led to
similar comparisons, and this rule was strengthened, until it came to effi-
ciently direct the search process before an initial solution had been found.

DISCUSSION

Now that we have examined SAGE and its behavior on a number of tasks,
we can begin to evaluate the program. In the case of a learning system, one
of the most important dimensions is generality. One way to test a system’s
generality is to run it in a number of domains, and as we have seen, SAGE
fares well on this criterion. However, one could in principle construct a pro-
gram that employed one heuristic for one domain, a different heuristic for
another domain, and so forth. In other words, one must also test the com-
ponents of a system for generality. On this dimension, SAGE’s discrimina-
tion/strengthening strategy passes with flying colors, since it played a cen-
tral role in each of the runs we have described. However, the situation with
respect to the credit-assignment heuristics is more complex, so let us con-
sider it in more detail.

Table 5 presents the five credit assignment rules used in SAGE.2, along
with the six task domains in which the system was tested. As can be seen
from the table, and as has been apparent throughout the paper, the complete
solution path heuristic is very general, and was (or could have been) applied
on each of the tasks. The other heuristics were less useful, but still showed

LEARNING TO SEARCH 257

TABLE V

Generality of SAGE.2’s Credit Assignment Heuristics

Solution Longer Deodends fllegol No Progress

Tower of Hanoi X X X

Slide-jump X X X

Tiles ond squares X X

Mattress factory X X X

Algebra X X

Seriation X X X

evidence of generality. Both the loop move/longer path rule and the dead-
end rule led to learning in four of the six problem classes.

The illegal state detector was stated in a domain-specific manner and
was used only in the seriation task. However, one can imagine versions of
the Tower of Hanoi, Mattress Factory, and Slide-Jump puzzles in which the
conditions for legal moves must be learned along with the conditions for
good moves. It might even be possible to state these constraints as elements
in SAGE’s working memory, so that a quite general illegal state detector
could be implemented. Finally, the no-progress rule was used only in the
algebra domain, but one can imagine a version of SAGE that always com-
puted the distance between the current state and the goal state, and a very
general no-progress heuristic that matched off the results of this computa-
tion.

Another issue relates to the form of the acquired heuristics. As we
have seen, the discrimination approach is in principle capable of learning
disjunctive rules, and this potential proved useful on the Titles and Squares
task. Since disjunctive heuristics are likely to occur in a significant fraction
of task domains, the ability to acquire them is certainly desirable, and
SAGE fares well on this count. On the other hand, we found that on most
tasks, SAGE was not able to learn heuristics that incorporated information
about the goal state. Such rules are important, since they would let the sys-
tem to transfer its acquired expertise to problems with different initial and
goal states than those on which it practiced.

The one area in which the system did achieve such transfer was the
Tiles and Squares problem, and the key is this case was the explicif represen-
tation in working memory of the goal state toward which the system was
working. Since this information was available for inspection by the dis-
crimination mechanism, it could be included in the conditions on variants
spawned by this process. As a result, variants containing such conditions
could direct the search in different directions, depending on the particular
goal that was being sought. Presumably, before SAGE can be expected to
manage similar transfers for other domains, its representation for these
tasks must be augmented to include explicit representations of their goal

258 LANGLEY

states. Whether such an addition will be sufficient or merely necessary is a
question that can best be answered experimentally.

A second natural extension relates to the search stragegy that SAGE
employs. Many problems (such as winning a chess game) are so complex
that they can only be solved by breaking the task up into manageable com-
ponents. One such approach involves setting up subgoals, each of which
must be solved before the supergoal is accomplished. If SAGE’s search con-
trol were augmented to allow the introduction of subgoals, then the heuris-
tic for assigning credit based on complete solution paths could undergo an
important but subtle alteration. Rather than requiring solutions to an entire
problem, the method could be applied whenever a particular subgoal had
been achieved. Variants learned from this path would be specific to that
subgoal; that is, they would include a description of the current subgoal as
an extra condition, in addition to the other conditions found through dis-
crimination. Even if SAGE later determined that this subgoal was not par-
ticularly desirable in the current context, the rules that had been learned
might still prove useful in satisfying the subgoal in some other situation at a
later date. This approach would also require the system to learn the condi-
tions under which various subgoals should be set, but this could be handled
by the existing mechanisms for learning the conditions on operators.

In summary, the existing version of SAGE has a number of desirable
features, but our understanding of the strategy learning process is far from
complete, and more work remains to be done. In our future research, we
plan to restructure the system’s problem solving and learning methods to
take advantage of information about goals. In addition, SAGE has so far
been tested only on problems with relatively small search spaces, and we are
now ready to explore the system’s behavior on more complex tasks. Un-
doubtedly, our experiences in these domains will lead to additional insights
into SAGE’s limitations, and to further revisions that, hopefully, will lead
to a more powerful and robust system for learning search heuristics.

REFERENCES

Anderson, J. R. (1976). Languuge. t~wmor.r. and rhoughr. Hillsdale, NJ: Erlbaum.

Anderson, J. R., & Kline, P. J. (1979). A learning system and its psychological implications.

Proceedings 41 /he .SI.VI~ lnrernarional Join/ Conference on Arri/~ial lnrelligence (pp.

16-21). Tokyo, Japan.

Anderson, J. R. (1981). Tuning the search of the problem space for geometry proofs. Proceed-

ings 01 Ihe Sevenlh lnternationol Joinr Con./erence on .A rrificial Intelligence.

Anzai, Y. (1978). Learning strategies by compuler. Proceedings o/’ /he Canadian .Socie/v for

Compu/o/ional S/t/dies o./ Infelligence (pp. 181-190). Toronto, Ontario, Canada.

Baylor, G. W., Gascon. J.. Lemoyne. G., & Pother, N. (1973). An information processing

model of some seriarion lasks. Conadion Pnrhologis,. 14. 167-196.

LEARNING TO SEARCH 259

Brazdil, P. (1978). Experimental learning model. Proceedings oJ,he third AISB/CI Confer-

ence (pp. 46-50). Hamburg, West Germany.

Bundy, A., & Silver, B. (1982). A critical survey of rule learning programs. Proceedingsof [he

European Conference on Arlificiol Inlelligence (pp. I5 I - 157). Orsay, France,

Cahn. A. (1977). A puzzle wirh u goat recursive str0leg.v: The molfress/acrory. Unpublished

master’s thesis, Department of Psychology, Carnegie-Mellon University, Pittsburgh,

PA.

Carbonell, J. G. (1983). Learning by analogy: Formulating and generalizing plans from past

experience. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Muchine

teorning: An ortificiot inletligence approach. Palo Alto, CA: Tioga Press.

Hagert, G. (1982). On procedural learning and its relation to memory and attention. Proceed-

rngs o.f /he European Conference on Artificial Inrettigence (pp. 261-266). Orsay,

France.

Hayes-Roth, F., & McDermott, J. (1978). An interference matching technique for inducing

abstractions. Communications of rhe ACM. 2/, 401-410.

Iba. G. A. (1979). Learning disjunc/ive concep/s from examples. Unpublished master’s thesis.

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,

MA.

Keller, R. M. (1982). A surve! q/research in sirolegv ocq~risirion. (Tech. Rep. DCS-TR-I 15).

Dept. of Computer Science, Rutgers University, New Brunswick, NJ.

Korf, R. E. (1982). A program that learns to solve Rubik’s cube. Proceedings qf/he Nu//ono/

Conjrence on Arrjficrul Inrell~gence (pp. 164-167). Pittsburgh, PA.

Langley, P., Neches. R., Never, D., & Anzai Y. (1980). A domain-independent framework for

learning procedures. lnternorionol Journol 0-f Policy .-lno/.vsis and ln.formorion .S.vs-

/ems, 4. 163-197.

Langley, P.. & Neches. R. (1981). Pri.trn user’s manual. (Tech. Rep.) Dept. of Computer Sci-

ence, Carnegie-Mellon University, Pittsburgh, PA.

Langley, P. (1982a). Strategy acqutsition governed by experimentation. Proceedings of rhe

Europeon Conference on Artl.ficiul Inielligence (pp. 171-176). Orsay. France.

Langley, P. (1982b). Language acquisition through error recovery. Cognrrron ond Bruin

Theon’, 5, 21 I-255.

Langley, P. (1983). Learning search strategies through discrimination. /n/ernotrono/ Journul
o/ Mun-Mochrne Srudles. 18. 5 13-54 I.

Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to rule learning.

Proceedrngs of the Fir/h lnrernutional Join/ Conjerence on Arlificiut Intelligence (pp.

305-310). Cambridge, MA.

Mitchell, T. M.. Utgoff, P., & Banerji, R. B. (1983). Learning problem solving heuristics by

experimentation. In R. S. Michalski, J. G. Carbonell, &T. M. Mitchell (Eds.), Machine

teornin,q: An ur~ificiol intelli,yence approach, Palo Allo. CA: Tioga Press.

Neches, R. (1981). A computational formalism for heuristic procedure modification. Proceed-

inRs oJ’ the Seventh lnrernurional Joinr Conjerence on Arrijiciot Inielligence (pp.

283-288). Vancouver, B.C., Canada

Neves, D. M. (1978). A computer program that learns algebraic procedures by examining ex-

amples and working problems in a textbook. Proceedrngs q/the Second No’urionot Con-

Jerence Q/ the Cunadiun Socierv /or Computuironul Srudies of Intelligence (pp.

191-195). Toronto, Ontario, Canada.

Newell, A., & Simon, H. A. (1972). Human problem so/ring. Englewood Cliffs, NJ: Prentice-

Hall.

Nilsson, N. J. (1971). Proh/e,n sohling rneihods in or/ijiciu/ inretligence. New York: McGraw-

Hill.

260 LANGLEY

Ohlsson, S. (1982). Trtrmyf‘er qf rrorning in procedural leurning: A mu/ler of conjecrures and

re/u/orions? (Tech. Rep. 13). Computing Science Department, University of Uppsala,

Uppsala. Sweden.

Ohlsson. S. (1983). A constrained mechanism for procedural learning. Proceedings of the

Eighth Infernational Joinr Conference on Arrt.ficml lnrelligence (pp. 426-428). Karls-

ruhe, West Germany.

Piaget, J. (1952). The child’s conceprion qfnumher. New York: Humanities Press.

Rendell, L. A. (1983). A learning system which accommodates feature interactions. froceec

ings oJ rhe Eighrh Inrernalronal Jornr ConJ>rence on Arr[frcinl lrrrelligence (pp. 469

472). Karlsruhe, West Germany.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Jour

nal of Research ond Developmenr, 3, 210-229.

Simon, H. A., & Reed, S. K. (1976). Modeling strategy shifts in a problem-solving task. Cogni-

rive Psvchologv, 8. 86-97.

Sleeman, D., Langley, P., & Mitchell, T. (1982). Learning from solution paths: An approach

to the credit assignment problem. Al ,Magu:ine. 3. 48-52.

Vere, S. A. (1975). Induction of concepts in the predicate calculus. Prowedings o.I‘/he Four/h

lnrernotional Joint Con.J’erence on Arriji’cial Inrelllgence (pp. 281-287). Tbilisi, Union

of the Soviet Socialist Republics.

Winston, P. H. (1970). Learnin,q slruclural de.wriprions Jio777 examples. (Tech. Rep. AI-TR-

231). Massachusetts Institute of Technology, Cambridge, MA.

Winston, P. H. (1975). Learning structural descriptions from examples. In P. H. Winston

(Ed.), The f~.wholo,~~ o./ Computer I’isron. New York: McGraw-Hill.

Young, R. M. (1976). Serrofion hv children: An arr~~li’ciul intelligence anuluis o/u Piugetian

rusk. Basel, Switzerland: Birkhauser.

