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Abstract

Generating satisfactory routes for driving requires
data about the road network and an individual’s rela-
tive weighting of available factors. We describe an in-
teractive planning system that generates routes with
the help of a driver and refines its model of the driver’s
preferences through interaction. Results of a study
indicate that it is possible to model drivers through
feedback about relative preferences, but a richer de-
scription of the road network can improve accuracy.
Our adaptive route advisor unobtrusively collects data
on preferences in relevant areas, provides its user with
a useful service, and improves its performance as it
updates its user model.

Introduction

Generating routes for drivers is a challenging problem
for several reasons. First, driving occurs in a rich envi-
ronment where many factors influence the desirability
of a particular route. Second, many relevant factors
are not currently available in digital form, such as av-
erage congestion on streets. Additionally, some factors
are virtually impossible to encode, such as whether a
route is “scenic.” The relative importance of these
factors varies among individuals, and drivers may not
know themselves what they value most in routes.

In this paper, we report a planning system that flex-
ibly combines a number of factors into a single utility
function, which it uses to plan a path from a source
node on a road network to a destination node. The
system also incorporates a simple heuristic for approx-
imating unobservable factors. The combination func-
tion is a simple weighted sum of factors, and the system
personalizes the weights to individual drivers based on
direct feedback through user interaction.
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The planner finds a path to the destination that min-
imizes the utility function and describes it to the user
in terms of a sequence of street names. If the user
model is not accurate, the initial route presented to
the driver may not be acceptable. In this case, mixed-
initiative planning is necessary to further specify the
driver’s requirements for the planning task. Moreover,
the planner can attempt to generalize the interaction
that led to a satisfactory route so as to improve the
user model for future tasks.

The pages that follow describe our approach in more
detail and present the results of an experiment in per-
sonalizing the user model. First we describe the plan-
ning algorithm and the style of interaction, followed
by a description of the adaptation method the system
uses to refine the user model. We report on our exper-
iment with human subjects and its results in the next
section. The following sections present our approach
to handling hidden attributes and outline planned im-
provements to the system. The final section summa-
rizes our system and describes its relevance to more
general planning problems.

The Routing Algorithm

The core of the system is the routing algorithm that
plans a path through a digital map from a starting
point to a destination. The planner represents the dig-
ital map as a graph, where the nodes are intersections
and the edges are parts of roads between intersections.
The routing algorithm finds a path from a designated
source node, usually the current position, to a desig-
nated destination. The cost of an edge is the weighted
sum of its attributes,

c= Z(wZ - a;).

i

The weight vector plays the role of a user model that
defines the relative importance of the attributes. The
system uses Dijkstra’s shortest path algorithm (Cor-
men, Leiserson, & Rivest 1990) to find the path with



the minimal sum of the costs for each edge in the path.

Our digital maps provide three attributes for each
edge: length, driving time, and turn angle to connected
edges. The planner refers to these digital maps to min-
imize the weighted sum of the driving time, length,
number of turns, and number of intersections.

In the current implementation, the user enters a
starting intersection in terms of the cross street names,
a destination intersection, and the weights for each at-
tribute. The weights must be non-negative, because
negative edges cause the planner to enter an infinite
loop. After computing a path, the planner displays it
in terms of the sequence of street names, and the user
has the option to replan with different parameters. We
have also developed a graphical interface that lets the
user define the task on a map, view the results, and
drag sliders to set the weights.

Acquiring the User Model

Although weighting each edge attribute creates a flex-
ible cost function for the planner, it is difficult and in-
convenient, for a user to specify his relative preference
for each attribute, especially while driving. Instead,
our system induces driver preferences from interaction
with the driver. We have implemented a perceptron-
style training algorithm (Nilsson 1965) that processes a
sequence of interactions with the planner and produces
a weight vector that attempts to model the preferences
expressed.

We define an interaction with the driver to be the
presentation of a pair of generated routes and feedback
from the user indicating which route is preferable. We
feel that requiring a simple binary choice is a small
burden on the user, and it is sufficient for approxi-
mating the true user model after many instances. For
example, if a user prefers a route that optimizes time
over one that optimizes turns, and the current user
model prefers the other route, the adaptation method
increases the weight for the time attribute and de-
creases the weight for the turns attribute.

The adaptation method represent routes with a vec-
tor ¥ containing its four (currently) measurable at-
tributes: estimated total time, total distance, num-
ber of turns, number of intersections. With an initial
weight vector f, we estimate the cost of a route to be
their linear product, ¢ = & - £. If route &7 is rated
better than route #» and the cost of #; is lower than
¥y, the weights are consistent and do not need modi-
fication. If the cost of #; is higher than 75, we apply
the perceptron update rule to & to decrease the cost
of #; and increase the cost of Z,

AW = an - ’I}fl = ’I](fg - ’1?1)

Figure 1: Sample task for the subjects. The starting
point is the box at the upper left and the ending point
is the box at the lower right. A is the route with fewest
turns, B is the fastest route, C' is the route with fewest
intersections, and D is the shortest route.

For each pass through all available training data,
the perceptron adds A to @ and continues running
through the training data until the weights stop chang-
ing or it exceeds a certain number of iterations. Al-
though the system could potentially retrain the per-
ceptron on the entire data set after each new training
example, the experiment described in the next section
trains on a fixed set of examples.

Testing the Adaptation Algorithm

The goals of interacting with the user are to generate a
more satisfactory plan and to improve the user model.
Although we do not yet have a way to objectively test
the first goal, this section presents an experiment test-
ing the second goal. Since the feedback portion of the
planner is not yet implemented, we simulated a series
of interactions on paper with human subject evalua-
tions of planner output. We implemented the percep-
tron training method as a separate program. The test
consisted of 20 tasks that involved trips between in-
tersections in the Palo Alto area. For each task, we
produced four routes using dummy user models with
a unit weight for one attribute and zero for the rest,
creating routes optimized for time, distance, number
of intersections, and number of turns. We plotted the
four routes, labeled A through D in random order, on
a map of Palo Alto. We presented the tasks in a differ-
ent random order for each subject. Figure 1 shows an
example of one of the tasks and its four route choices.

We asked the subjects to evaluate the routes for each
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Figure 2: (left) Exchange rates for three of the attributes with respect to distance. High positive values for an
attribute indicate that shorter distance is less important than reducing that attribute, near zero values indicate
that shorter distance is more important, and high negative values indicate that longer distance is more preferable.
(right) Percentage of correct predictions on pairwise route orderings. The training accuracy comes from using the
entire set of training instances, and the testing accuracy comes from using ten-fold cross validation.

task and rank them in preference order, using 1 for best
and 4 for worst, repeating for each task. Since a rank-
ing of four routes gives six independent binary prefer-
ences (A better/worse than B, C, D; B better/worse
than C,D; C better/worse than D), each subject pro-
vided 6 - 20 = 120 training instances.

We trained the perceptron for 100,000 epochs (n =
0.001) for each subject. The resulting user models
varied widely. Since the cost of a route is a relative
measure, the relative values of the weights is more in-
formative than the absolute values. We will refer to
the ratio of two weights as the exzchange rate between
the two attributes. For example, if the exchange rate
between time and turn weights is 30, the driver is will-
ing to drive up to 30 seconds longer to save one turn,
but no more. Figure 2 (left) shows the exchange rates
between distance and the other three attributes.

The results indicate that route preferences differ
widely across people. Some subjects, such as 11 and
16, are apparently willing to go to great distances to
improve their route on some other attribute. Other
subjects, such as 9 and 17, would sacrifice other at-
tributes to reduce the distance attribute. The most
surprising results are that many subjects have nega-
tive exchange rates. For example, the distance/turns
exchange rate for Subject 10 is —1027. This means
that, given two routes A and B, if route A has one
more turn than route B, it will have a lower cost if
it is more than 1027 feet longer than B. Besides its
intuitive contradictions, it is impossible to directly use
these weights as a user model for planning because it
means some edges could have a negative cost. We be-

lieve these negative weights come from the bias in the
training data toward optimal routes on some attribute.
For example, the fact that drivers prefer shorter routes,
other factors being equal, is not explicitly represented
in the training data. If we include this as background
knowledge, it should eliminate the negative exchange
rates.

Figure 2 (right) shows the training accuracy and, us-
ing ten-fold cross validation, testing accuracy for the
pairwise ordering predictions. The accuracy is uni-
formly better than chance (50%), but far from perfect.
Since the training accuracy is not 100%, the training
data must not be linearly separable. Some possible
sources for this model failure are that people are in-
herently inconsistent or use additional, unencoded at-
tributes in their route preferences. For example, peo-
ple may dislike a certain road or intersection, which
affects the rankings for some tasks but not others. Fu-
ture studies will include additional information about
the routes and measure the subjects’ consistency on
redundant tasks.

Personalized Features

One source of error for the experiment was the sparse
and impersonal nature of the route descriptors. Some
descriptors are impersonal because they reflect esti-
mates or averages over many individuals, such as the
transit time for edges. Using traces from a Global Po-
sitioning System to record personal data for individ-
ual drivers lets the system personalize some attributes.
For example, analysis of individual driving habits pro-
vides average speeds on edges taken by that driver.



Positing similar speeds for undriven edges with simi-
lar attributes generates a function that estimates the
speed difference from the overall traffic averages for
each edge. Although not yet implemented, this person-
alized transit time would replace the current estimated
transit time attribute for each edge.

As Haigh and Veloso (1995) note, the descriptor set
is sparse because it may not represent all factors rel-
evant to a driver. In fact, there are many features of
edges and entire routes intrinsically not representable
by digital maps, including features only of importance
to individuals. Although extensive interviews with a
particular driver are not practical, we can assume that
the routes a person drives, in general, are desirable by
that person’s true internal cost function.! The plan-
ner uses familiarity information, when available, as an
additional attribute for each edge. Since we did not
have familiarity information for the subjects, our ex-
periment did not use the familiarity attribute.

With an additional assumption that sequences of
familiar edges (subroutes) are more desirable than
isolated familiar edges, we have developed a sys-
tem (Rogers et al. 1997) that groups sequences of
road edges between commonly used intersections into
higher-level links, similar to macro-operators. A macro
link between two intersections represents all distinct
routes the driver has used between these intersections.
Moreover, macro links can incorporate smaller macro
links, until the largest macro link is an entire familiar
trip between intersections, such as the trip from home
to work. Including these macro links adds three prop-
erties to the planner: it uses sequences of familiar edges
as primitives, it shortens the edge-by-edge description
of the route by summarizing familiar sequences, and
it biases the route description toward using familiar
intersections.

However, the existence of a familiar route between
the start and destination does not necessarily force the
planner to include it in a plan. Since we represent fa-
miliarity as an additional attribute for an edge, the
cost of a familiar edge depends on the weight for the
familiarity attribute and the weights and values for the
other attributes. For example, if familiarity were less
important than time to a driver, the planner would pre-
fer a fast, unfamiliar route over a slow, familiar route.
Treating familiarity as an attribute gives the planner
the flexibility to select familiar routes and edges when
appropriate, and unfamiliar edges when they are more
desirable on other attributes.

!Situations in which this assumption does not hold in-
clude cases where the driver is lost, where he is forced to
take an undesirable road because it is the only route to his
destination, and where he is following directions.

Directions for Future Work

The results of our experiment indicate that it is possi-
ble to learn a cost function that predicts driver prefer-
ences, although imperfectly. More important, this cost
function serves as a user model for generating routes
that will be satisfactory to the driver. The system
can be made more powerful and useful through work
in three key areas: better street descriptions, better
interaction and user feedback, and better model in-
duction.

We can improve street descriptions by accessing cur-
rently existing geographic databases and generating
new geographic databases. Current databases provide
information about the types of roads, the location and
types of businesses, and demographic information. We
will generate new geographic databases by collecting
and analyzing a large set of Global Positioning Sys-
tem traces of car trips. Analyzing the trajectories of
many cars along the same edge provides average speed
models for different times of day, the location of traffic
controls, and number of lanes.

We also intend to continue work on integrating the
planner with a graphical user interface and use the in-
teractions as feedback to improve the user model. We
are planning a highly interactive, mixed-initiative sys-
tem such as TRAINS (Ferguson, Allen, & Miller 1996).
The driver will explore routes already generated while
the planner generates more routes in the background.
As soon as a new distinct route is finished, the plan-
ner will summarize it in terms of total time, distance,
turns, and other relevant features. After the driver
selects a route, he will display it on a map, view turn-
by-turn directions, or expand macro links. He will also
request, the planner to generate a similar route with
more or less emphasis on some attribute. The planner
will accomplish this by changing the weight for that at-
tribute and replanning. Since similar weight settings
tend to produce the same route, the driver will only
be able to increase or decrease an attribute’s impor-
tance, and the planner will incrementally change the
weight until the route itself changes. This interaction
will continue until the driver and planner generate a
satisfactory route or the driver starts a trip.

Besides letting the driver easily and quickly generate
a satisfactory route to a destination, each interaction
will provide feedback to the interface. If the driver
requests a faster or more familiar route, the driver’s
personal profile can be updated with more weight on
that feature. Unlike the CABINS project (Sycara &
Miyashita 1994), which personalized schedules in a job
shop by recording schedule repairs, we intend to store
preference decisions over route summaries, in terms of
total time, distance, number of turns, and other at-



tributes. Also, the interface may automatically expand
routes that score high on important features in the
driver’s profile.

Another form of feedback comes from observing the
routes actually driven. If the driver does not take the
route the user model predicted, the new route will be
presumed to be better than the predicted route, and
this will generate a new instance for the personalization
module. This type of feedback includes more classifi-
cation noise than direct feedback because there is no
evidence that the driver liked his route or even that
the driver was not lost. However, if the driver usu-
ally follows routes because of his own true preferences,
the noise should cancel out after suitable training time.
These indirect forms of feedback are less intrusive on
a user than the approach in the experiment reported
in this paper or the approach used in the Automated
Travel Assistant (Linden, Hanks, & Lesh 1997), where
the user explicitly lists his preferences for airlines, air-
ports, and other plan components.

We are also exploring other inductive methods for
adapting the user model, such as regression over the
preference rankings, multi-layer neural networks, and
principal component analysis. Results from any of
these methods could improve with some background
knowledge about the domain, such as a preference for
routes that dominate others on all attributes. Adding
more relevant attributes to the street descriptions
should increase accuracy, as would more interaction
traces from the user interface. We can improve our
evaluation by determining the fraction of our model-
ing errors that are due to driver inconsistency. We will
measure this by including some redundancy in the user
surveys. Our final goal is a system with a flexible, us-
able interface that accurately adapts itself to its user
over time.

Conclusion

Route planning for automotive domains is a
knowledge-rich problem where the criteria for making
decisions (attributes of the edges), the relative weight
of the features (cost function), and the presentation
of routes must be personalized. The ability to inter-
act with the planner allows the system to generate a
more satisfactory route than a single plan, and provides
an opportunity to receive feedback from the driver re-
flecting his route and display preferences. Automatic
feedback while driving provides personalized data for
the digital map and additional training data for im-
proving the user model. Although interaction is in the
driver’s best interest if he wants a satisfactory route,
the system does not require it, and ideally it will be-
come less necessary as the system better approximates
the driver’s true cost function. This light interaction

requirement is crucial for in-car decision making where
the driver’s attention is necessarily focussed elsewhere.

We believe this approach of automatically acquiring
value judgments by observing the user’s actions in a do-
main, while utilizing user interaction as an additional
source of value judgments, is a powerful and general
method of personalizing a user model. The approach
generates an optimal solution using its current user
model, receives feedback from the user if its model is
inaccurate, and corrects its model in areas relevant to
the problem being solved.
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