
Personalization of the AutomotiveInformation EnvironmentSeth RogersPat Langley(rogers,langley)@rtna.daimlerbenz.comDaimler-Benz Research and Technology Center1510 Page Mill Road, Palo Alto, CA 94304-1135 Bryan JohnsonAnnabel Liu(bhj,aliu)@cs.stanford.eduComputational Learning LaboratoryCSLI, Ventura Hall, Stanford University220 Panama Street, Stanford, CA 94305-4115AbstractMost research in machine learning applica-tions has focussed on developing a knowledgebase from training data, and deploying onlythe knowledge base in industry. This paperdescribes a new application of machine learn-ing to personalization of complex devices.This task is di�erent from some other learn-ing applications because the learning compo-nent itself is deployed in the �eld, and the ap-plication dynamically constructs the knowl-edge base through interaction with a user. Asample application currently under develop-ment is a personalized route advisor for au-tomobile drivers. This system dynamicallylearns a driver's familiar routes for incorpo-ration into route planning, route description,and destination prediction. We believe thatthis style of machine learning is an ideal solu-tion to problems where a user needs to con-�gure a device to improve its e�ciency butlacks resources to do it manually.Keywords: personalization, driving assistance, routeplanning1 INTRODUCTIONThe increasing sophistication of devices currentlyavailable to consumers, such as computers and lux-ury automobiles, gives users the opportunity to tailortheir devices to work the way they want. For example,televisions now come with the capability to programinteresting channels and cycle through them. However,manually entering channels can be a time-consumingand unpleasant process, especially where the �nal ob-

jective is saving time and e�ort. In the televisionexample, some users never bother to program theirfavorite channels because it would involve reading apoorly-written technical manual and possibly callingothers for help. Television manufacturers have devel-oped an \autoprogram" function to capture all avail-able channels, but cable subscribers �nd themselvesconstantly searching through uninteresting options.Fortunately, in situations such as this, the user canprovide feedback to the device in terms of preferences,and this feedback can become training data for a ma-chine learning application, allowing the device to per-sonalize its behavior for a particular user. A more in-telligent approach to e�ciently choosing channels is tomonitor the channels people actually watch, and pro-mote all channels watched more than a certain fractionof total watching time to \favorite" status. Conceiv-ably, more sophisticated learning algorithms can usefeatures of the environment such as time of day to dy-namically predict the channel probability distribution.This paper describes a new application of machinelearning techniques to automatic personalization ofcon�gurable appliances. Section 2 describes somecharacteristics of the personalization task and somemodi�cations to the traditional machine learning ap-plication methodology to accommodate it. Section 3presents a sample application to learning route knowl-edge for automobile drivers. A sample planning appli-cation in Section 4 is under development to utilize thisknowledge. Finally, Section 5 summarizes the majorissues and presents some possible future applicationsfor automatic personalization.



2 MACHINE LEARNING FORPERSONALIZATIONMost applications of machine learning are oriented to-ward inducing knowledge from objective data. Re-searchers assume accurate results imply the knowledgeis universally valid, and �eld the knowledge base. Forexample, Leech [5] applied a decision tree algorithmto predict the quality of fuel pellets for nuclear powerplants. Maximizing fuel pellet quality increased thesponsoring company's business by more than ten mil-lion dollars per year. These systems typically train onreal data o�ine and the production phase uses onlythe resulting knowledge base.A more challenging type of application for machinelearning in some ways is learning subjective knowledgethat reects a particular point of view. These appli-cations e�ectively learn the individual preferences ofthe data source. If the data comes from a single hu-man user, machine learning can automatically acquirethe user's preferences and personalize the user's en-vironment. Since these systems are designed to workdi�erently for di�erent viewpoints, it is not practical togather all possible training data and select the appro-priate point of view at production time. Instead, thelearning algorithm itself must be deployed and trainonline as it receives subjective data.2.1 PREVIOUS WORKHermens and Schlimmer report one early applicationof subjective learning [2] that automatically �lls outforms in a database application. This system incre-mentally builds a decision tree for predicting default�eld values based on previous experience with the user.The induction algorithm integrates with the databaseto allow immediate feedback and adaptation. This ap-plication reduced keystrokes up to 87% after training.Other researchers have based personalization applica-tions on the World Wide Web. Mladenic and Mitchellhave created a personal Web page recommendationsystem [7]. This system learns a user's interests bywatching the links he or she clicks while browsing, andtreats selected links as positive examples and not se-lected links as negative examples. It uses a binary\bag of words" representation as its feature vector.With the optimal combination of feature size and in-ductive algorithm, up to 95% of all recommended linksare indeed interesting to the user.Maes uses a slightly di�erent approach in her collabo-rative �ltering work [6]. Instead of silently gathering

preference data, the user actively presents ratings ofitems belonging to some class. Based on these ratingsand the ratings of others, the user receives predictedratings of unrated items. This approach e�ectivelylearns to which \interest group" a user belongs withrespect to some class, where accuracy depends on thetotal number of ratings.These systems highlight some important di�erencesbetween personalization and objective machine learn-ing applications. The necessity of online adaptationimplies that an incremental learning mechanism ispreferable, so that the user can take advantage of newresults immediately. Also, the term \personalized"implies the existence of a larger system that is con-�gurable to a user's needs, so the knowledge is usedin service of some task. Finally, evaluation of such anembedded personalizer is di�cult for several reasons.Since each user has individual preferences, the perfor-mance of the system as a whole must be measuredover multiple users as well as over time as the systemtrains. The performance measure is the marginal ben-e�t of the system to the user compared to the userdoing the same tasks without the system. This metricmust be measured in the �eld on an individual basis,and it may be contaminated by the features of thehost application. More examples of relevant past workis in the 1996 AAAI Spring Symposium on Acquisi-tion, Learning & Demonstration: Automating Tasksfor Users [1].2.2 METHODOLOGYThe emphasis on online adaptation requires a di�er-ent methodology than other machine learning appli-cations [4]. The �rst two steps are still formulatingthe problem and determining the representation. Theproblem can be as simple as classi�cation or as com-plex as inducing a structured computer program tomimic a person's performance. Both tasks share theneed to train on user data, so they both qualify as per-sonalization tasks. The representation depends on theproblem, but e�cient access and modi�cation is moreimportant in personalization because learning gener-ally occurs online.Once the problem and representation are set, one ormore learning algorithms for solving the problem fromdata are chosen, and they run on sample training data.After suitable re�nement and performance evaluation,the learning system itself is �elded.Fielding is much more complicated than objective ma-chine learning applications because the entire learning



process must be automated and integrated with theapplication to be personalized. The system must auto-matically acquire training data, automatically invokethe induction at the appropriate time, and automati-cally evaluate and present the results in a useful form.In contrast, standard objective applications may re-ceive hand-coded training data, the inductive processis manually repeated until results are satisfactory, andthe �nal representation may be as simple as an instruc-tion sheet on the factory oor.Evaluating the performance of the personalization ap-plication after �elding is similarly complicated. Sci-enti�c evaluation, where possible, consists of compar-ing some performance measure with the personaliza-tion and without, either comparing among di�erentusers or for the same user before and after personaliza-tion. Although personalization clearly has the poten-tial for enormous improvements in e�ciency, it is al-ways necessary to make some assumptions in the test-ing methodology. For example, if a subject improvese�ciency after using the personalization application,we must assume that the personalization caused thee�ciency increase.3 LEARNING ROUTEKNOWLEDGEAlthough o�ce and personal computing have receivedthe most attention for personalization applications,personalizing other device controllers has great poten-tial, such as adapting automatic gearbox controllersto individual driver's behavior [3]. Another applica-tion is automated in-car driving assistance. For exam-ple, such an application with access to a digital mapdatabase can help the user plan a route to a destina-tion. If the user (driver) has some knowledge of thearea surrounding the current location and the desti-nation, personalization should allow the route plannerto bias the route toward familiar roads if the driverwants to minimize his probability of getting lost, ortoward unfamiliar roads if the driver wants to explore.Other possible applications of personalization includepredicting where a user is going and when he will arrivefor several possible routes, and summarizing familiarparts of long route plans. All of these applications re-quire the acquisition and representation of the driver'sroute knowledge. Our system, RouteCompiler, sub-divides the problem into two parts: generating theroads driven from Global Positioning System (GPS)readings, and learning which routes (road segment se-quences) the driver uses between particular origins and

destinations.3.1 GENERATING ROADSFor the task of learning what roads are familiar to thedriver, the input consists of a list of GPS readings,and the output is a directed graph. RouteCompilerworks by taking each of the GPS readings in sequenceand determining whether it lies at an intersection, inwhich case it creates a node in the graph, or betweentwo intersections, in which case the reading is part ofan edge in the graph.RouteCompiler makes several simplifying assumptionsabout the real world and driver behavior that maycause the resulting graph to lose accuracy. It assumesthat the real world consists of roads that are straightlines, and that all intersections are separated by a dis-tance greater than the accuracy of the GPS readings.Also, it assumes that travel by the driver is continuousbetween stopping points, and that therefore movementonly stops at intersections or destinations.3.1.1 The Road RepresentationThe graph module take a series of position and timereadings as input. The system can deal with discon-tinuities in the data, both geographically and tempo-rally, although the completeness of the resulting graphwill obviously su�er. Thus far it uses the time dataonly to determine the sequence of measurements, andto detect intersections based on the times when thevehicle is stopped.The output is a directed graph representing thedriver's route knowledge. The nodes of the graph cor-respond to turns or intersections in the real world. Theedges of the graph correspond to paths between adja-cent nodes. At present RouteCompiler only stores thephysical location for each node, and only the startingand ending nodes for each edge.3.1.2 Converting from Points to GraphRouteCompiler works by examining each new read-ing in order, and then determining whether it �ts inthe partial graph structure which has already beenconstructed, or whether a new node or edge must becreated. The process breaks down into three generalsteps, which the algorithm performs in sequence foreach reading.First, RouteCompiler checks the new position andtime against the prior one to see if they are identical.If they are, then it simply discards the new reading,



since it contains no new information. If the two read-ings are not identical, the algorithm checks them forgeographic or temporal discontinuity. If such a breakexists, then the new reading is either part of the graphor a new node.If the new point represents neither an identical pointnor a discontinuity, then RouteCompiler evaluates thenew point against the current graph structure to see ifit is in a known node or edge. If so, then if the previouspoint was also part of the known graph, then nothingneeds to be done. If the previous point was part of anew edge, then the algorithm adds the completed newedge to the graph.If the new point is not part of the known structure,then RouteCompiler is in the process of extending anedge or creating a new edge. It evaluates each newpoint in terms of its distance from the line �tting thepoints which make up the edge thus far. If the distanceis above a certain threshold, then it creates a new nodeand a new edge; otherwise we just extend the edge.After the graph-building algorithm executes, the re-sulting graph will contain a set of nodes representingpoints where the GPS data starts, stops, turns, or isdiscontinuous, and a set of edges, representing the GPSpoints between two nodes.3.2 LEARNING ROUTESGiven a directed graph of roads familiar to a driver, itis possible to generate a grammar for possible routesbetween two points. We represent the route knowledgeas a context-free grammar instead of a simple �nitestate machine to capture knowledge at varying levelsof detail.3.2.1 The Route RepresentationThe input to this algorithm is a single origin and singledestination directed graph. From the graph, we can�nd for each node in the graph all nodes followingthat node, which we call descendants.Given the source, destination and the graph, the al-gorithm generates a context-free grammar to capturethe route knowledge of the paths driven by the driver.In this grammar, the terminal and non-terminal sym-bols are pairs of nodes. An example of the input andoutput is in Figure 1.In Figure 1, p(a j) is a non-terminal symbol that rep-resents the path from a to j. We will use (a j) as ashorthand for entire graph. Likewise, p(b h) is an-

other non-terminal for the sub-path from b to h andp(b g) a shorthand for sub-graph from b to g. p(b c)is a terminal symbol for the arc from b to c.3.2.2 Extracting a Grammar from a GraphA rewrite rule describes a path from the �rst node inthe symbol to the second node. RouteCompiler createsrewrite rules to consolidate chains of nodes and mergemultiple branches from a node.Consolidation is a linear-time process that starts fromone node and continues toward the destination. Whenthe algorithm reaches a branch-out node, it stops tem-porarily and calls the merging process to remove thebranching. When merging process returns, the consol-idation continues. RouteCompiler generates the com-plete grammar by consolidating the graph betweensource and destination. In Figure 1, the rewrite rulesfor p(a j) and p(h j) are the result of consolidation.If a node has more than two descendants, RouteCom-piler performs pairwise merging. A side e�ect of thepairwise merging is replacing the two branches by onearc that goes from the node to the converging node ofthe two branches. This merging process stops whenthe number of outgoing arcs is reduced to one, i.e.there is no more branching. If there are more thantwo branches from a node, the pairwise merging is or-dered so that the pair of branches that converge earli-est merge �rst. In Figure 1, the rewrite rules for p(b h)and p(b g) are the result of merging.The �nal grammar describes possible routes at di�er-ent levels of abstraction. The most abstract route isany path from the origin to the destination, and theroute becomes more speci�c after each application ofa rewrite rule.3.3 EVALUATIONLike other applications of personalization, perfor-mance evaluation is di�cult. However, it is possi-ble to evaluate the route knowledge itself. The al-gorithms trained on both synthetic and real data. Asimulated GPS locator generated noisy synthetic datafrom traversing random maps. The real GPS datasource was in a car in eastern Washington state, sub-ject to the standard Selective Availability error char-acteristics. The data spanned several hours of drivingand consisted of hundreds of points.Comparing the directed graph road representation toa digital map of the area can verify that nodes corre-spond to intersections and edges correspond to roads.



-���� -@@@R - -@@@R -6- -a b c d
e fg h i j p(a j) :- p(a b) , p(b h) , p(h j) .p(b h) :- p(b g) , p(g h) .p(b h) :- p(b c) , p(c d) , p(d h) .p(b g) :- p(b g) .p(b g) :- p(b e) , p(e f) , p(f g) .p(h j) :- p(h i) , p(i j) .Figure 1: A sample graph and its corresponding grammarExperiments with synthetic maps show that Route-Compiler is very sensitive to noise in the GPS readings.With a mean error of 15 meters, there are approxi-mately 1.5 times as many \false intersections" as realones, although most true intersections are identi�ed.As accuracy decreases, the error ratio increases lin-early. On real GPS data, node errors average approx-imately 60 meters North-South and 80 meters East-West, which is consistent with an average error ofabout 100 meters in the GPS data itself. Future workusing the digital map to correct GPS errors shouldimprove the accuracy of the graph.The hierarchical nature of the route grammar is de-signed to identify important intersections and subdi-vide routes at these nodes. Therefore, the grammarshould include paths between important intersectionshigher in the parse tree. In a subset of real GPS datawhere a driver used three routes between two nodes,the mean height for four-connected nodes was 1, three-connected was 1.25, and two-connected was 2.17.4 APPLICATIONS: FUTUREWORKThe �nal evaluation must test the knowledge on someperformance task. The route planning application willuse the route grammar to bias a path toward familiarroads. Since nonterminals in the grammar are assumedto be \chunks" or macros familiar to the user, thenonterminals themselves are added to the digital mapas primitive edges. Dykstra's algorithm searches thegraph for the least expensive path using a cost functionfor each edge. Unlike typical path planning edge costs,each edge cost has two components, an estimatedtravel time and the level of the edge in the grammar,where unfamiliar edges are level zero. A weightingparameter F combines the costs= F + (1� F )

For F = 1, familiar roads are always preferred whenavailable. For F = 0, the algorithm does not considerfamiliarity. The weighting parameter also depends onthe personal preferences of the driver and can be setmanually or learned. This planning technique tends toplan at the most abstract levels of the driver's routeknowledge, so it describes the path abstractly as well,and interaction with the driver adds detail on-demand.The evaluation criterion for this enhanced route plan-ner is the satisfaction of the driver with the proposedroute. Since this is not possible to measure directly,one possible indirect measurement is providing driverswith a number of possible routes. For example, thedrivers could receive the shortest route, the route withfewest turns, and the most familiar route. Whicheverroute actually driven is assumed to be the most satis-factory. However, it may be possible to detect that adriver is unsatis�ed with his choice if he/she leaves thechosen route at some point or otherwise indicates di�-culty with the route. In any case, it is clear that eval-uation of performance in this task is more challengingthan machine learning applications with a universalstandard of truth.5 CONCLUSIONThis paper has identi�ed an important applicationtype for machine learning that has not been as yetwidely recognized: personalization. The primary dis-tinguishing feature between personalization applica-tions and objective applications is that the trainingdata for personalization by de�nition is not avail-able until the application is �elded, since the userhim/herself trains the system. This requires develop-ers to be more careful designing the system, becausethey will not have the opportunity to test the learningalgorithm when �elded before the users are a�ected bythe results of the system.Although more di�cult, this machine learning appli-



cation type has potential in many areas. We believethat one of the most interesting of these applicationslies in the automotive domain. Just as drivers cus-tomize the physical environment in the car's interiorby adjusting seats and mirrors, personalization shouldalso let drivers customize their information environ-ment. One important example involves personaliza-tion of route planning to incorporate familiar routes.This personalization can be embedded in interactiveroute planners available today, but future informationenvironments may need personalization in areas likepreferred restaurant types, preferred driving style, andpreferred maintenance schedule. Over time, personal-ization will turn a generic factory-tuned informationassistant into a pro-active, indispensable partner formobile e�ciency.References[1] AAAI. Acquisition, Learning & Demonstration:Automating Tasks for Users, Spring Symposium,Menlo Park, CA, March 1996. AAAI Press. Tech-nical Report SS-96-02.[2] L. A. Hermens and Je�rey C. Schlimmer. Amachine-learning apprentice for the completion ofrepetitive forms. IEEE Expert, 9:28{33, 1994.[3] K. J. Hunt and R. N. Shorten. Adaptive automaticgearbox control using splines and radial basis func-tion neural networks - concepts. Technical report,DaimlerBenz Berlin, Berlin, March 1997.[4] Pat Langley and Herb A. Simon. Applications ofmachine learning and rule induction. Communica-tions of the ACM, 38:55{64, November 1995.[5] W. J. Leech. A rule-based process control methodwith feedback. Advances in Instrumentation,41:169{175, 1986.[6] Patti Maes. Agents that reduce work and infor-mation overload. Communications of the ACM,37(7):30{40, July 1994.[7] Dunja Mladenic. Personal webwatcher: Implemen-tation and design. Technical Report IJS-DP-7472,Carnegie Mellon University, Pittsburgh, PA, Octo-ber 1996.


