
Learning Subjective Functions
with Large Margins

Claude-Nicolas Fiechter FIECHTER@RTNA.DAIMLERCHRYSLER.COM

Seth Rogers ROGERS@RTNA.DAIMLERCHRYSLER.COM

DaimlerChrysler Research and Technology Center, 1510 Page Mill Road, Palo Alto, CA 94304 USA

Abstract
In many optimization and decision problems the
objective function can be expressed as a linear
combination of competing criteria, the weights
of which specify the relative importance of the
criteria for the user. We consider the problem of
learning such a “subjective” function from pref-
erence judgments collected from traces of user
interactions. We propose a new algorithm for that
task based on the theory of Support Vector Ma-
chines. One advantage of the algorithm is that
prior knowledge about the domain can easily be
included to constrain the solution. We demon-
strate the algorithm in a route recommendation
system that adapts to the driver’s route prefer-
ences. We present experimental results on real
users that show that the algorithm performs well
in practice.

1. Introduction

In many optimization and decision problems the desirabil-
ity of a particular solution depends on a number of com-
peting factors or criteria. The solution can be rated along
a number of dimensions, and the overall quality of the so-
lution depends on its combined score on all dimension si-
multaneously.

Most algorithms to solve optimization problems, however,
depend on the existence of a single objective function that
specifies how good each potential solution is. Multi-criteria
problems are typically handled by computing a cost or rat-
ing for each criteria independently and combining these
costs into a single function.

A particularly simple way of combining the costs is to use
a linear combination. In that case the weights in the combi-
nation associated with the different costs specify the rela-
tive importance of the criteria for the user. A domain expert
can sometimes fix these weights, but often the importance
of the different criteria is subjective and varies from user to
user. We therefore think of the weights as forming a model

of the user preferences, and we call such an objective func-
tion asubjectivefunction.1

It is generally difficult or inconvenient to ask the user to
explicitly specify the weights for a subjective function. In
many cases, the user might not even be consciously aware
of the importance he or she gives to the different criteria.
One approach to address this problem is to apply machine
learning techniques to learn those weights from traces of
interactions with the user. In particular, the subjective func-
tion can be inferred from user’spreference judgmentsthat
specify, either implicitly or explicitly, that one solution
should be ranked higher than another (Cohen et al., 1999).
It is often easy to collect these preference judgments un-
obtrusively, by observing the choices the user makes while
interacting with the system.

Gervasio et al. (1999) describe a crisis response scheduling
assistant that takes this approach to infer the most appro-
priate schedule evaluation function for its user. Similarly,
in (Rogers et al., 1999) we describe a route advice sys-
tem that unobtrusively learns a driver’s route preferences
through interaction with that driver. In this paper we ex-
tend that work and describe a new learning algorithm that
seems particularly well-suited to learn subjective functions
from traces of user interactions.

The learning algorithm relies on the basic ideas of Support
Vector Machines (SVM) (Vapnik, 1999; Burges, 1998) but
it takes advantage of the particular structure of the prob-
lem. It is consequently much simpler than a general SVM.
In particular, computing the coefficients of the subjective
function only requires solving a linear program, instead of
the quadratic programming problem that a general SVM
entails. One advantage of the proposed algorithm over
other possible machine learning techniques for learning a
subjective function is that prior knowledge about admissi-
ble coefficients and functions can easily be used to con-
strain the solution. This is particularly important in user
adaptation applications, which often need to infer a user
model quickly, from little data.

1The term was coined by Justin Boyan.

Below, we first briefly describe our adaptive route advice
system, focusing on the route generation component and
on the interface that presents the route options to the user
and gathers preference feedback. We then formalize the
problem of learning the user preference model and describe
the learning algorithm. The following section describes
some experimental results on real (human) subjects and the
conclusion briefly discusses some directions for future re-
search.

2. The Adaptive Route Advisor

The Adaptive Route Advisor is an adaptive user inter-
face (Langley, 1997) that recommends routes on a road
network and adapts to a driver’s route preferences through
interaction with that driver.

2.1 The Routing Algorithm and User Model

The generative component of the Adaptive Route Advisor
is a routing algorithm that plans a path through a digital
map from a starting point to a destination. The planner
represents the digital map as a graph, where the nodes are
intersections and the edges are parts of roads between in-
tersections. Our digital maps provide four attributes for
each edge: length, estimated driving time, turn angle to
connected edges, and road class (e.g., highway, freeway,
arterial road, local road). Based on these attributes 14 fea-
tures of a route are computed, including its estimated driv-
ing time, distance, number of left, right, and U-turns, num-
ber of intersections, and distance on each road class. The
cost of a route is computed as a weighted sum of its fea-
tures and the system uses an optimized version of Dijk-
stra’s shortest path algorithm (Dijkstra, 1959) to find the
path with the minimum cost.

As discussed above, the weights in the objective function
play the role of a user model. The system is initialized with
a default user model and the model is refined with feedback
from interaction with the planner. More specifically, we de-
fine an interaction with the planner to be the presentation of
a set ofN generated routes for a particular routing task and
feedback from the user indicating which route is prefer-
able. This is completely unobtrusive to the user, because
he or she evaluates a set of routes and selects one as part
of the route advice process. From the interaction we de-
rive N�1 preference judgments, representing the fact that
the selected route is preferable to each of the presented al-
ternatives, and the learning algorithm processes a sequence
of interactions to produce a weight vector that models the
preferences expressed. We discuss the learning algorithm
itself in Section 3.

In later interactions with that particular user the routing al-
gorithm uses the weights thus computed in its cost function.

Figure 1.The trip request panel.

In this way, as the driver uses the interface, it adapts itself
to his or her preferences. Note that since the routing al-
gorithm is optimal on the cost function, the resulting route
is guaranteed to have the lowest cost for that user model
among all routes between the same two nodes. In other
words, the routes computed are always Pareto optimal, in
that there can be routes that are better along each of the
dimensions (features) independently, but none that can be
better simultaneously on all dimensions.

2.2 The Interaction Module

When started, the Route Advisor displays its trip request
panel as pictured in Figure 1. In the current implementa-
tion, the user specifies origin and destination in a postal
address style, and identifies him or herself for the purpose
of loading the user model.

After requesting a route, the route summary panel appears,
as displayed in Figure 2(a), providing a list of route options.
The routes are presented in terms of seven attributes: total
time, number of intersections, number of left turns, right
turns and U-turns, total distance and distance on highways.

Initially the system computes and presentstwo routes to
the user. The first is computed using the current preference
model as the weight vector for the routing cost function.
It is therefore the route that the system considers optimal
for the user. The second route uses novel weights, selected
from a small set of prototypical user models. It is inferior
according to the current user model but is presented in an
attempt to explore new directions in the space of preference
models. Presenting at least two route options forces the
user to make a choice and provide some feedback to the
system.

The map displays the selected route, as shown in Fig-
ure 2(b), and the turn directions for the route are available
in a separate tabbed panel. Clicking “Select” indicates that
the highlighted route is satisfactory and returns to the trip

(a) The route selection panel. (b) The map window.

Figure 2.Initially, the Adaptive Route Advisor presents two two alternative routes to the user. The best route according to the current
user-model is highlighted.

panel. The route advisor assumes that the highlighted route
is preferable to the alternative routes and updates the user
model. Clicking “Cancel” returns to the trip panel but does
not update the model.

The “Modify” panel lets the user generate a new route that
is faster, shorter, has fewer turns, has fewer intersections,
or has less or more highway than the selected route. The
implicit assumption is that the driver is willing to accept
routes that are somewhat worse on other attributes if he
or she can find one that is better on the selected attribute.
The Adaptive Route Advisor searches for new routes that
satisfy the improvement request by updating the attribute
weights in the appropriate direction. This approach to nav-
igating through the space of possible solutions is similar to
“tweaking” in Burke et al.’s RENTME system (Burke et al.,
1996). In that system, the user can navigate a database of
apartments for rent by asking for an apartment that is ei-
ther cheaper, bigger, nicer, or safer than the one currently
displayed.

The interface described above simultaneously and seam-
lessly fulfills two functions in the Adaptive Route Advi-
sor. First, it lets the users easily find routes they like by
giving them choices and letting them interactively modify
the routes proposed. Second, it unobtrusively collects the
preference judgments that the learning algorithm needs to
refine the user model and adapt to a particular driver.

3. Learning Algorithm

As discussed above, the learning algorithm in the Adaptive
Route Advisor processes a sequence of interactions with
the planner to produce a weight vector that models the user

preferences. These preferences are expressed in the form
of pairs of routeshR1;R2i for which the user ranked route
R1 as preferable to routeR2.

In general we formalize the problem of learning a subjec-
tive function from preference judgments as follows. We
assume that each potential solution is characterized by a
n-dimensional vector of real numbers that specify the cost
of the solution alongn, not necessarily independent, di-
mensions. In general, these costs can be simple numeric
attributes of the solution or complex functions computed
from several features of the solution.

We are given a setD of m preference judgments

xg

d;xb
d

�
(d = 1; : : : ;m), with xg

d;xb
d 2 ℜn, indicating that the user

prefers a solution with costxg
d over one with costxb

d. Our
goal is to determine a subjective functionf : ℜn 7! ℜ that
is consistent with those judgments. Specifically, we would
like that f (xb

d)> f (xg
d) for d = 1; : : : ;m.

Here we restrict ourselves to subjective functions that are
linear combinations of the individual costs, i.e.,f (x) =
w � x, with w;x 2 ℜn.2 The vectorw = (w1;w2; : : : ;wn)
forms our user model and specifies the relative importance
of the competing criteria for the user. A large positive value
for the weightwi (relative to the other weights) indicates
that the user wants to reduce the associated cost as much
as possible, whereas a weight close to zero indicates the
user does not mind solutions that are costly along that di-
mension. In general, if a rational user has the choice be-
tween two solutions that differ on a single dimension, he

2Since we are only concern with the relative cost of solutions
there is no need to include an additive term in the subjectivefunc-
tion as it would cancel out.

X1

X2

-X2
-X1

-X3

X3

w

Figure 3.Each preference judgment

xg

d;xb
d

�
defines a positive in-

stancexd and a negative instance�xd for the linear classifier.

or she should prefer the solution with the lower cost on
that dimension. We therefore assume that thewi ’s are non-
negative, and do not consider the rare instances where a
user truly prefers a higher cost.

The restriction to linear models is not as stringent as it
might appear at first, since the cost components themselves
can be non-linear functions of the attributes of the solu-
tions. Moreover, we believe that a simple representation,
with a limited number of parameters, is generally prefer-
able when learning a user model. Indeed, in those appli-
cations, it is often more important to quickly acquire an
approximate model of the user preferences from a limited
number of user interactions than to achieve the highest pos-
sible asymptotical accuracy. The experimental results de-
scribed in Section 4 illustrate this point.

With this representation, every preference judgment

xg

d;xb
d

�
corresponds to a linear constraint onw, namely

w � �xb
d�xg

d

� > 0. We can interpret these constraints as
training instances for an induction algorithm that learns a
linear classifierw. Specifically,xd = �

xb
d�xg

d

�
represents

a positive instance and�xd represents a negative instance
(see Figure 3).

Any supervised learning technique that is capable of rep-
resenting a linear classifier can thus be applied to learn
the weights of the subjective function from the preference
judgments. A previous version of the Adaptive Route Ad-
visor (Rogers et al., 1999), for instance, used a perceptron
algorithm.

The algorithm that we describe here is based on the basic
ideas of Support Vector Machines (SVMs) and attempts to
maximize the margin of the classifier, which is the mini-
mum distance between the hyperplane defined by the clas-
sifier and the training points. There is a strong theoretical
motivation for maximizing the margin of a classifier that
stems from a result in statistical learning theory (Vapnik
1999) that relates a bound on the generalization error of a
classifier to the size of its margin. It also has a very intu-
itive interpretation: classifiers with larger margins are more

X1

X2

-X2

-X3

X3

-X1

X1

X2

-X2

X3

-X3

-X1

Margin

Figure 4.Small margin versus large margin linear classifier.

robust. Both classifiers in Figure 4 correctly classify the
training instances, but the second one has a larger margin
and is more likely to correctly classify a new instance.

In our setting the margin of a classifierw with respect to
a training instancexd for which x �w= b (b> 0) is given
by 2� b=kwk. Here,kwk denotes the Euclidean norm of
w. Hence, one way to find a classifier that maximizes the
margin is to find a vectorw with minimum norm that keeps
the separation (b) of all training instances above a fixed
threshold.3 In a general SVM this results in a quadratic pro-
gramming problem. Here, however, since we know that the
components ofw must be non-negative we can minimize
the 1-norm ofw instead of its Euclidean norm to achieve a
similar result while solving only alinear program.4 Specif-
ically, we can find a classifier with large margin by solving
the following problem:

minimize
n

∑
j=1

wj

subject to w�xd � 1; d= 1; : : : ;m (1)

wj � 0; j = 1; : : : ;n (2)

Note that the above linear program only has a solution
when the data are linearly separable. We can easily ex-
tend the formulation to the general, non-separable case by
transforming the constraints (1) into “soft” constraints and
penalizing the constraint violations (Burges, 1998). More
precisely, we introduce positive slack variablesξd (d =
1; : : : ;m) in the constraints and add a penalty on those vari-
ables in the objective function:

minimize
n

∑
j=1

wj +c � m

∑
d=1

ξd

3Since jointly scalingw andb does not affect the solution or
its margin we can fix the threshold to an arbitrary value and we
setb= 1.

4If w j � 0 (j = 1; : : : ;n) then∑n
j=1 w j=pn� kwk �∑n

j=1 w j .
Therefore, in relatively low-dimensional problems, minimizing
∑n

j=1 w j is a reasonable approximation to maximizing the margin.

subject to w�xd � 1�ξd; d= 1; : : : ;m
wj � 0; j = 1; : : : ;n
ξd � 0; d= 1; : : : ;m

Here,c is a parameter that specifies the importance of mini-
mizing the training error relative to maximizing the margin.

We can apply a linear programming algorithm, like the
Simplex algorithm (see Chvatal, 1983) to efficiently solve
the above linear program and compute the coefficientsw
of the subjective function. One advantage of this approach
over other supervised learning algorithms for this problem
is that it can be implemented in a truly on-line fashion. Ev-
ery time the user provides a new preference judgment the
system can update the subjective function without having to
retrain the learning algorithm on all the data. The system
simply adds the constraint associated with the new pref-
erence judgment to the linear program and revise the cur-
rent solution to take new constraint into account. This can
be done efficiently within the Simplex algorithm, without
having to reconsider all the constraints (Chvatal, 1983). In
particular, if the new constraint is satisfied by the current
solutionw (i.e., if its associated slack variable is null) then
w is still optimal and no work is necessary.

The main benefit of the Large Margin algorithm, however,
is that prior knowledge about the domain can easily be in-
cluded in the form of additional constraints on the solution.
Such constraints are especially useful when the subjective
function must be inferred from a limited amount of data.
This will often be the case in the context of Adaptive User
Interfaces where we do not want to subject the user to a
long “training phase” before starting to adapt to his or her
preferences.

In the absence of such constraints, the preferences judg-
ments collected might not be enough to rule out bad solu-
tions. This can be particularly damaging when the inferred
subjective function is later used to generate a recommen-
dation. For example, in the Adaptive Route Advisor, we
know that regardless of their particular route preferences
(e.g., whether they like to drive on highways or not), drivers
will always want routes that are reasonably short and fast.
However, the previous version of the system would some-
time suggest a route that was 50 miles longer because it
avoided one mile of local road and previous interactions
indicated that the driver disliked those. It is precisely to be
able to avoid “aberrant” recommendations like these that
the Large Margin algorithm was developed.

In the new version of the Adaptive Route Advisor the type
of bad solutions above was prevented by adding to the lin-
ear program a constraint that the combined weight of the
“total distance” and “estimated time” features inw must
represent at least 10% of the total weight. The system in-
cludes similar constraints to express other common-sense

knowledge about route preferences, like that even a driver
that usually prefers route with fewer left turns will not want
to do a right turn followed by a U-turn to avoid a left turn.

4. Experimental Results

In order to compare its bias against the route preferences
of real users, we tested the Large Margin algorithm as well
as several other adaptation algorithms with human partici-
pants. Each participant filled out a questionnaire consisting
of 20 tasks that involved trips between intersections in the
Palo Alto area. We produced four routes for each task us-
ing weight vectors with a unit weight for one attribute and
zero for the rest. This created routes optimized for time,
distance, number of turns, and number of intersections. We
plotted the four routes, labeled randomlyA throughD, on a
map of Palo Alto. To avoid ordering effects, the tasks were
randomly reordered for each questionnaire. Figure 5 shows
an example of one of the tasks and its four route choices.

We asked the participants to evaluate the routes for each
task and rank them in preference order. To control for con-
text (e.g., whether the driver is in a hurry or sightseeing),
the participants were instructed to imagine that it is Sun-
day afternoon, and they are going out on errands. Since an
ordering of four items gives six independent binary prefer-
ences (A better/worse than B, C, D; B better/worse than
C, D; C better/worse than D), each participant provided
6 � 20= 120 training instances. The features for each in-
stance were four metrics describing the route: distance, es-
timated duration, number of turns, and number of intersec-
tions. More descriptive features would have been helpful,
such as lane merges or traffic lights, but they were not avail-
able in our digital map.

4.1 Adaptation Algorithms

Besides the Large Margin algorithm, we tested three other
learning methods: perceptron training (Nilsson, 1965) as
in the previous version of the Adaptive Route Advisor,
SANE (Moriarty, 1997), and a search over lexicographic
orderings.

As described in the previous section, both the Large Margin
algorithm and the perceptron algorithm implement simple
linear classifiers. To test whether a more powerful repre-
sentation would be beneficial we also implemented a multi-
layer neural network. The hidden layer in this network
combines the input features into possibly more meaningful
features, and next combines these features into a route cost.
The most natural formulation of the problem, as previously
implemented in the perceptron, is to have one input node
for each of the route features, and one output node rep-
resenting the subjective cost of the route. Standard back-
propagation, however, is not directly applicable, since only

A
B
C
D

Start

End

Figure 5.Sample task for the participants. The starting point is the box at the upper left and the ending point is the box at the lowerright.
A is the route with fewest turns,B is the fastest route,C is the route with fewest intersections, andD is the shortest route.

relative rankings, not absolute costs, are readily available
from the training data. Instead, we found a more natural
training signal to be reinforcement learning-style positive
feedback if the relative ordering of two routes is correct or
negative if the ordering is incorrect. The SANE (Symbi-
otic, Adaptive Neuro-Evolution) system (Moriarty, 1997)
evolves neural network weights through such weak feed-
back. SANE is an evolutionary algorithm that manages a
population of neurons, constructs neural networks with a
fixed configuration from the neurons in each generation,
and evaluates the networks. The neurons and weights par-
ticipating in the most effective networks reproduce to the
next generation. SANE’s adaptation has been shown to be
fast and accurate over several task domains.

Another natural approach to evaluating routes is a lexi-
cographic (orfuzzy-lexicographic) comparison on the fea-
tures. This involves generating an ordering on the features,
such as[Time, Distance, Turns, Intersections],
and comparing the features of two routes in that order. If a
route is (significantly) better than another for one feature,
it is preferred. Otherwise, the comparison goes to the next
feature in the ordering. In the fuzzy version used here, the
amount by which a feature has to be better for the whole
route to be considered better is computed as the product of
a significance parameterλ with the standard deviationσ
of the values for that feature. For example, supposeλ = 1

and time is the most important feature. If there is a route
that is less than one standard deviation faster than all other
routes, the system predicts the user will prefer it. Other-
wise, the system examines the next feature in the ordering.
If no single route dominates, the system randomly selects a
route. In domains such as this with small feature sets, the
adaptation algorithm can find the best ordering by explic-
itly enumerating all possible orderings.

4.2 Results

Previous experiments with this data set (Rogers et al.,
1999) established that personalized cost functions are more
accurate than a generic cost function, implying that differ-
ent users really have different preferences in this domain.
The goal of the experiments described here was to find the
adaptation algorithm that best induces personalized models
for generating satisfactory new routes. Figure 6 presents
the testing accuracy of the four adaptation algorithms on
each participant. For each algorithm, we measure the accu-
racy with ten-fold cross validation. The costc of misclassi-
fication in the large margin algorithm was set to 2, and we
included all weight constraints described in Section 3. The
perceptron was trained for 100,000 epochs with a learning
rateη= 0:001. The lexicographic search estimated the sig-
nificance parameterλ for each possible ordering via cross
validation. SANE trained a network with five hidden units.

0

20

40

60

80

100

1 4 7 10 13 16 19 22

P
er

ce
nt

 C
or

re
ct

Subject Number

Large Margin
Perceptron

Lexicographic
SANE

Figure 6.Accuracy of each adaptation technique. The accuracy was computed using ten-fold cross validation.

For this data set, the large margin, perceptron, and lexico-
graphic testing accuracies are very similar. They all per-
formed significantly better than chance (50%), but they did
not reach 100% performance, even on the training data. For
the large margin and perceptron training, this indicates that
the human preference data is not linearly separable.

SANE’s accuracy, on the other hand, is significantly lower
even though its representation is more flexible. There does
not appear to be enough training data for SANE to accu-
rately tune the neural network. This seems to corrobo-
rate the intuition that in adaptive user interfaces applica-
tion, where it is important for the system to quickly ac-
quire an approximate model of the user’s preferences, sim-
pler representations can learn more accurate models with
little data. Other studies of testing accuracy versus rep-
resentational complexity for a given training set support
this finding, such as the comparison of naive Bayes nets
to more powerful classifiers (Langley et al., 1992; Domin-
gos & Pazzani, 1997), as well as the comparison of 1-level
decision trees (decision “stumps”) to full decision-tree in-
duction (Holte, 1993).

Although the lexicographic ordering performs well on this
data set it is not in general a convenient representation to
use in a linear optimization algorithm. In the route ad-
visor, for instance, for any given weight vector designed
to emulate the lexicographic ordering, there may be a pair
of routes that violates that ordering, where the values of
a lower-ranked feature of the lexicographically-preferred

route is so superior that it overwhelms the first feature.
I.e., for any weight vectorw and routex, there may exist
a routey such thatx is lexicographically preferable toy
(x1 < y1�λ �σ1) butw1 �x1+w2 �x2 > w1 �x1+w2 �y2.

By contrast, both the perceptron training and the large mar-
gin algorithm use a linear combination of weights to repre-
sent preferences, leading to efficient optimal path calcula-
tions. Although the accuracies of the two algorithms were
comparable, we observed that the model learned by the per-
ceptron for some participants had negative weights on some
features. This did not hurt the performance of the percep-
tron on the testing set, because many cost functions give
equivalent results on small testing sets such as ours. How-
ever, it means thathigher values for those features makes
the route more desirable, which is quite counter-intuitive
and would probably lead to very poor route recommenda-
tions on some tasks. Even though the large margin algo-
rithm with constraints did not perform significantly better
than perceptron training, we have found that the constraints
let the large margin algorithm generate models that are con-
sistent with our common-sense knowledge of route prefer-
ences, and therefore more likely to produce good advice.

5. Conclusions

To build systems that help their users solve optimization
or decision problems it is often desirable to learn a user’s
subjective function from preference judgments. We have
presented a large margin algorithm that we think is particu-

larly well suited for that task. In particular prior knowledge
about the domain can easily be used to constrain the models
the algorithm generates.

We have demonstrated the algorithm in the Adaptive Route
Advisor system and presented here some experimental re-
sults on real users that show that the algorithm is competi-
tive. We have also conducted more systematic experiments
on synthetic users that show that the algorithm quickly con-
verges toward good models of the user’s route preferences,
in a few interactions with the user. These results will be
described in a longer version of the paper.

Several researchers have investigated the problem of learn-
ing preference models or rankings from ordered pairs of
instances. Utgoff and Saxena (1987), for example, use a
decision tree induction algorithm to learn a boolean pref-
erence predicateP(x;y) that indicates whether a statex
should be preferred to a statey in a search control prob-
lem. Tesauro (1989) describes a connectionist approach for
a similar task, and Cohen et al. (1999) use a version of Fre-
und and Schapire’s Hedge algorithm to learn a probabilistic
form of a preference predicate, as a step toward identify-
ing a total ordering of the instances. The “State Preference
Method” in (Utgoff & Clouse, 1991) is the closest in spirit
to ours and tries to identify a linear evaluation function for
search control using a form of the perceptron training rule.

The work presented here can be extended in several ways.
We are particularly interested in testing the large margin
algorithm in other adaptive recommendation systems to
see how it performs in different domains. In the Adap-
tive Route Advisor, we want to address the problem of the
context for the route recommendation. The driver is likely
to prefer different routes depending on the time of day or
whether he or she is sightseeing or going to an important
business meeting. One simple approach would be to build
a separate model for each context. We are more interested
in a solution that would automatically “cluster” the prefer-
ences into appropriate contexts.

References

Burges, C. (1998). A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2, 121–167.

Burke, R., Hammond, K., & Young, B. (1996).
Knowledge-based navigation of complex information
spaces. Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence(pp. 462–468). Cam-
bridge, MA: AAAI Press/MIT Press.

Chvatal, V. (1983). Linear programming. New York:
Freedmand and Co.

Cohen, W., Schapire, R., & Singer, Y. (1999). Learning to
order things.Journal of Artificial Intelligence Research,
10, 243–270.

Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs.Numerische Mathematik, 1, 269–271.

Domingos, P., & Pazzani, M. (1997). On the optimality of
the simple bayesian classifier under zero-one loss.Ma-
chine Learning, 29, 103–130.

Gervasio, M., Iba, W., & Langley, P. (1999). Learning user
evaluation functions for adaptive scheduling assistance.
Proceeding of the Sixteenth International Conference on
Machine Learning. San Francisco: Morgan Kaufman.

Holte, R. C. (1993). Very simple classification rules per-
form well on most commonly used datasets.Machine
Learning, 11, 63–90.

Langley, P. (1997). Machine learning for adaptive user in-
terfaces.Proceedings of the 21st German Annual Con-
ference on Artificial Intelligence(pp. 53–62). Freiburg,
Germany: Springer.

Langley, P., Iba, W., & Thompson, K. (1992). An anal-
ysis of bayesian classifiers.Proceedings of the Tenth
National Conference on Artificial Intelligence(pp. 223–
228). Cambride, MA: MIT Press.

Moriarty, D. E. (1997).Symbiotic evolution of neural net-
works in sequential decision tasks. Doctoral dissertation,
University of Texas at Austin, Austin, TX.

Nilsson, N. J. (1965). Learning machines. New York:
McGraw-Hill.

Rogers, S., Fiechter, C.-N., & Langley, P. (1999). An adap-
tive interactive agent for route advice.Proceedings of the
Third International Conference on Autonomous Agents.
New York: ACM Press.

Tesauro, G. (1989). Connectionist learning of expert pref-
erences by comparison training.Neural Information
Processing Systems(pp. 99–106). San Mateo: Morgan
Kaufman.

Utgoff, P., & Clouse, J. (1991). Two kinds of training infor-
mation for evaluation function learning.Proceedings of
the Ninth Conference on Artificial Intelligence(pp. 596–
600). Menlo Park, CA: AAAI Press/MIT Press.

Utgoff, P., & Saxena, S. (1987). Learning a preference
predicate.Proceedings of the Fourth International Work-
shop on Machine Learning(pp. 115–121). Los Altos,
CA: Morgan Kaufman.

Vapnik, V. (1999).Statistical learning theory. New York:
Wiley and Sons, Inc.

