
An Adaptive Interactive Agent
for Route Advice

Seth Rogers
Claude-Nicolas Fiechter

Pat Langley
DaimlerChrysler Research and Technology Center
1510 Page Mill Road, Palo Alto, CA 94304-1135

+1 650 845 2500frogers, fiechter, langleyg@rtna.daimlerchrysler.comAbstract
Current route advice systems present a single route to the
driver based on static evaluation criteria, with little or no
recourse if the driver finds this solution unsatisfactory. In
this paper, we propose a more flexible approach and its im-
plementation in the Adaptive Route Advisor. Our system
behaves more like a human travel agent, using driver pref-
erences, when known, and working with him or her to find
a satisfactory route. The route advisor predicts what route
a driver will prefer based on a model of driver preferences,
and, if the predicted route is unsatisfactory, it generates addi-
tional routes based on interaction with the driver. The route
that the driver eventually selects serves as feedback to im-
prove the preference model. We present a pilot study on us-
ing these route selections to construct a personalized model.
As the preference model becomes more accurate, the need
for interaction decreases and the driver receives better route
advice.1 Introduction
The state of the art in computer technology has advanced to
the point where systems for generating driving directions be-
tween two points are commonplace. There are several web
sites offering street-level driving directions, and several in-
car systems available as an option on purchased or rented
cars. The availability of digital maps and high-capacity,
rapid processors enable this technology, but little attention
has been paid to ensuring that the interface is flexible enough
to deliver satisfactory routes to users who have different
preferences.

Current systems for route advice compute solutions us-
ing a shortest-path algorithm to find the minimal-cost route

from the origin to the destination. Some systems fix the
cost as the estimated travel time, while others let the user
choose between the shortest path, the quickest, or the “most
scenic” one. In all cases, the system then describes the route
to the user with little or no recourse if the driver finds the
route unsatisfactory. These systems disregard the fact that
driving occurs in a rich environment where many factors in-
fluence the desirability of a particular route. For example,
some drivers may prefer the shortest route as long as it does
not have too many turns, or the fastest route as long as it
does not go on the highway. The relative importance of these
factors varies among individuals, and drivers may not know
themselves what they value most in routes.

In this paper, we describe the Adaptive Route Advisor,
an adaptive user interface [6] that recommends routes from
a source address on a road network to a destination address.
We transfer the analogy of a trusted travel agent to our route
advice domain. Given a travel task, the travel agent plans an
initial solution or two, taking into account the client’s prefer-
ences if known. After the travel agent presents the initial op-
tions, the client may request additional solutions that differ
from the initial options along some dimension. For example,
if the client is booking a flight, he or she may request a flight
with a shorter layover, even if that means an increase in cost.
The client and the travel agent continue to work together,
generating and evaluating different solutions, until the client
is satisfied. During this process, the travel agent can reflect
on the choices made by the client and refine his or her model
of the client’s preferences for the next task. This interaction
model is similar to that assumed by the Automated Travel
Assistant [7] for airplane flights, except that system involves
no personalization and the user must explicitly assign values
to preferences.

The Adaptive Route Advisor is designed for in-car use.
It is a Java application that functions as a resource-light net-
work client, suitable for mobile environments with a wire-
less communication infrastructure. The remote servers pro-
vide resource-intensive functions such as routing and geolo-



Initial
preferences

Links,
features Digital Map

Interface Client

Current Traffic
Conditions

User Model

GPS

R
ou

te
 s

el
ec

tio
n

A
ctual driven routes

R
ou

te
 o

pt
io

ns
, t

ra
de

of
fs

Route Server

S
tart and end location

S
hort-term

 preferences

Figure 1: Architecture for the Adaptive Route Advisor. Elements with solid lines are already implemented, whereas elements
with dashed lines are under development.

cation.1 Although the current version does not yet take ad-
vantage of information available from mobile deployment
(primarily current and past locations from the Global Posi-
tioning System) and the interface is not fully optimized for
limited input and output resources common in vehicles, fu-
ture work will embed the Adaptive Route Advisor in a mo-
bile environment.

The pages that follow describe our approach in more de-
tail and present the results of an experiment in personalizing
the user model from rankings of alternative routes. First we
present the overall system architecture, including the route
generation component, the adaptation method that constructs
the user preference model, and the user interface that pres-
ents route options to the user and gathers preference feed-
back. We then report on an experiment adapting a preference
model to human subjects and its results. Finally, we outline
planned improvements to the agent and consider the Adap-
tive Route Advisor’s relevance to other advisory systems.2 System Architecture
The Adaptive Route Advisor requires heavy memory resour-
ces to store the digital map and significant processing re-
sources to compute an optimal route. However, we assume
computational resources in vehicles will be limited in the
near future. The client/server architecture shown in Figure 1
resolves this difficulty by offloading resource-intensive pro-
cesses onto a remote server. This architecture also lets the
routing system use information about the current traffic con-
ditions, which would be available as a centralized service, as
in the Intelligent Traffic Guidance System in Tokyo [3].1Geolocation is mapping a plain English street location to
its place in a digital map structure.

In the figure, portions in the current implementation are
drawn in solid lines and planned extensions in dashed lines.
The interface client is a resource-light process suitable for a
vehicle’s limited computational power that connects to the
servers via a wireless TCP/IP connection. The route server
receives requests from the client and uses the digital map
to compute an optimal route according to preferences in the
user model. Route requests may include short-term changes
in the preference model to reflect unusual situations or cor-
rections in the model.

The system initializes the agent with a default user model
and refines this model with feedback from interaction with
the interface. Future versions will also allow feedback from
direct sensing of the driver’s preferred routes using the Glo-
bal Positioning System. Section 4 discusses these extensions
in more detail.2.1 The Routing Algorithm
The generative component of the Adaptive Route Advisor is
a routing algorithm that plans a path through a digital map
from a starting point to a destination. The planner represents
the digital map as a graph, where the nodes are intersections
and the edges are parts of roads between intersections. Our
digital maps provide four attributes for each edge: length, es-
timated driving time, turn angle to connected edges, and road
class (e.g., highway, freeway, arterial road, local road). The
planner refers to these digital maps to minimize the weighted
sum of the driving time, distance, number of turns, number
of intersections, and distance on each road class.

The routing algorithm finds a path from a designated
source node, usually the current position, to a designated
destination. The cost of an edge is computed as a weighted



sum of its attributes,c =Xi (wi � ai):
The weight vector plays the role of a user preference model
that defines the relative importance of the attributes. The
system uses an optimized version of Dijkstra’s shortest path
algorithm [2] to find the path with the minimal sum of the
costs for the edges in the path.2.2 Constructing the User Model
Although weighting each edge attribute creates a flexible
cost function for the planner, the space of possible models
is a continuum with as many dimensions as there are at-
tributes. It would be difficult and inconvenient for a user
to specify his relative preference for each attribute. Instead,
our system automatically induces a driver’s preferences from
his route choices. We have implemented a perceptron-style
training algorithm [8], which we call thedifferential per-
ceptron, that processes a sequence of interactions with the
planner and produces a weight vector that models the pref-
erences expressed. In this way, as the driver uses the inter-
face, it adapts itself to his preferences. This is reminiscent of
the way in which Hermens and Schlimmer’s system for fill-
ing out repetitive forms [5] adapts itself to a particular usage
pattern and predicts defaults values based on those observed
in previous interactions.

We define an interaction with the planner to be the pre-
sentation of a set ofN generated routes and feedback from
the user indicating which route is preferable. This is com-
pletely unobtrusive to the user, because he or she evaluates a
set of routes and selects one as part of the route advice pro-
cess. For training, we expand the interaction intoN�1 pairs,
representing the fact that the selected route is preferable to
each of the presented alternatives. These training pairs can
be used to improve the user model in a simple manner. If,
out of the two routes in a training pair, the route preferred
by the current user model is not the one the user selected,
the adaption method increases the weights corresponding to
the features in the selected route and decreases those corre-
sponding to the features in the other route.

More precisely, the system represents routes with a vec-
tor ~x containing its measurable attributes. Given an initial
weight vector~w, it estimates the cost of a route to be the lin-
ear productc = ~w � ~x. If route~x1 is rated better than route~x2 and the cost of~x1 is lower than that of~x2, the weights
are consistent and do not need modification. If the cost of~x1
is higher than that of~x2, the system applies the differential
perceptron update rule to~w, which decreases the cost of~x1
and increases the cost of~x2 using�~w = �~x2 � �~x1 = �(~x2 � ~x1);
where� is the learning rate. For each pass through all avail-
able training data, the learning algorithm adds�~w to ~w and

continues running through the training data until the weights
stop changing or it has performed a maximum number of
iterations, which is set to 5,000 in the current system.2

Once the differential perceptron algorithm finds a weight
vector that best predicts preferable routes as a weighted sum
of attributes, the routing algorithm uses this weight vector in
its cost function. Since the routing algorithm is optimal on
the cost function, the resulting route is guaranteed to have
the lowest cost for that user model among all routes between
the same two nodes. In other words, the routes computed
are always Pareto optimal, in that there can be routes that
are better along each of the dimensions (attributes) inde-
pendently, but none that can be better simultaneously on all
dimensions.2.3 The Interaction Module
When started, the Route Advisor client locates the servers
it needs and displays a route request screen, like the one
pictured in Figure 2. In the current implementation, the
user specifies origin and destination in a postal address style,
and identifies him/herself for the purpose of loading the user
model. An in-car implementation could simplify this screen
by providing the current location as a default starting point
and the most frequent car driver as a default user identity.
The driver could select a destination from a list of most com-
mon destinations.

After requesting a route, the main interaction window ap-
pears, as displayed in Figure 3(a), providing a list of cur-
rent route options and two menus, “Route” and “Modify.”
The current routes are presented in terms of nine attributes:
total time, number of intersections, number of left turns,
right turns and U-turns, total distance, and distances on three
classes of roads. Initially the agent presents two routes to
the user. The first uses the current preference model as the
weight vector for the routing cost function. The second route
uses novel weights, selected from a small set of prototypical
user models, in an attempt to explore new directions in the
space of preference models.

Presenting at least two route options forces the user to
make a choice and provide some feedback to the agent. The
turn directions for the selected route are shown in the field
below the route list and the map displays the selected route,
as shown in Figure 3(b). Clicking “Select” indicates that the
highlighted route is satisfactory and closes the window. The
route advisor assumes that the highlighted route is prefer-
able to the alternative routes and updates the user model.
Clicking “Cancel” closes the window but does not update
the model.

The “Modify” menu lets the user generate a new route
that is faster, shorter, has fewer turns, has fewer intersec-
tions, or has less or more highway than the selected route.2Although the system can update the perceptron on-line
after each new training example, the experiment described
in Section 3 trains on a fixed set of examples.



Figure 2: The route request window for the Adaptive Route Advisor.

(a) (b)

Figure 3: Initially, the user is shown two alternative routes, the best route according to the current user model being highlighted
in the route selection window (a) and displayed in the map window (b).

(a) (b)

Figure 4: The user can generate additional alternatives by selecting a route in the selection window (a) and choosing a mod-
ification from the “Modify” menu; the resulting route also appears in the map window (b). Here the user generated the third
route by selecting the first choice in the selection window and choosing “More Highway” from the “Modify” menu.



A
B
C
D

Figure 5: Sample task for the subjects. The starting point is the box at the upper left and the ending point is the box at the lower
right. A is the route with fewest turns,B is the fastest route,C is the route with fewest intersections, andD is the shortest
route.

The implicit assumption is that the driver is willing to ac-
cept routes that are somewhat worse on other attributes if he
or she can find one that is better on the selected attribute.
This approach to navigating through the space of possible
solutions is similar to “tweaking” in Burke et al.’s RENTME

system [1]. In that system, the user can navigate a database
of apartments for rent by asking for an apartment that is ei-
ther cheaper, bigger, nicer, or safer than the one currently
displayed.

The Adaptive Route Advisor searches for new routes that
satisfy the improvement request by modifying the weights it
places on attributes, increasing the weight of the selected at-
tribute, and decreasing the other weights. Since slight changes
in the weight vector may result in the same route, the system
continues modifying the weights until the resulting route is
different. For example, Figure 4 shows a route with more
highway that has been added to the route list. If the user is
unsatisfied with all the alternatives listed, the “Route” menu
lets the user generate an entirely new route as different as
possible from all those displayed. The route advisor does
this by adding a “penalty” in the cost function to all seg-
ments used by one of the displayed routes.

The interface described above simultaneously and seam-
lessly fulfills two functions in the Adaptive Route Advisor.
First, it lets the users easily find routes they like by giv-
ing them choices and letting them interactively modify the
routes proposed. Second, it unobtrusively collects the infor-
mation that the learning algorithm needs to refine the user
model and adapt to a particular driver.

3 Testing the Adaptation Algorithm
In order to test the adaptation algorithm apart from the other
functionality of the Adaptive Route Advisor, we simulated
a series of interactions on paper with human subject evalu-
ations of planner output. The test consisted of 20 tasks that
involved trips between intersections in the Palo Alto area. To
compensate for the lack of interactivity, we produced four
routes for each task instead of two. Since we had no op-
portunity to build user models, we used exploratory weight
vectors with a unit weight for one attribute and zero for the
rest, creating routes optimized for time, distance, number of
intersections, and number of turns, respectively. We plotted
the four routes, labeled randomlyA throughD, on a map
of Palo Alto. We presented the tasks in a different random
order for each subject. Figure 5 shows an example of one of
the tasks and its four route choices.

We asked the subjects to evaluate the routes for each task
and rank them in preference order, using 1 for best and 4
for worst. Since a ranking of four routes gives six indepen-
dent binary preferences (A better/worse than B, C, D; B bet-
ter/worse than C, D; C better/worse than D), each subject
provided6 � 20 = 120 training instances.

We trained the perceptron for 100,000 epochs (� = 0.001)
for each subject, then looked for some way to compare the
resulting user models. Since the cost of a route is a relative
measure, the relative values of the weights are more infor-
mative than the absolute values. We will refer to the ratio of
two weights between two attributes as theirexchange rate,



because they define how much of one attribute a driver is
willing to give up to improve another attribute. For example,
if the exchange rate between time and turn weights is 30,
the driver is willing to drive up to 30 seconds longer to save
one turn, but no more. Figure 6 shows the exchange rates
between distance and the other three attributes.

The results indicate that route preferences differ widely
across people. Some subjects, such as 11 and 16, are ap-
parently willing to go to great distances to improve their
route on some other attribute. Other subjects, such as 9 and
17, would sacrifice other attributes to reduce the distance at-
tribute. The most surprising result is that many subjects have
negativeexchange rates. For example, the distance/turns ex-
change rate for Subject 10 is�1027. This means that, given
two routesA andB, if routeA has one more turn than routeB, it will have a lower cost if it is more than1027 feetlonger
thanB. Besides its intuitive difficulties, it is inconvenient
to use these weights directly for planning because it means
some edges could have a negative cost. We believe these
negative weights come from the bias in the training data to-
ward optimal routes on some attribute. For example, the fact
that drivers prefer shorter routes, other factors being equal,
is not explicitly represented in the training data. Our fu-
ture work will include using such background knowledge to
eliminate negative exchange rates.

To evaluate the advantage of using a personalized model
versus a single fixed model, we also created an aggregate
training set of all120 � 24 = 2880 instances. Figure 7
compares the accuracy of the personalized model to the ag-
gregate model. As expected, the accuracy of the aggregate
model is poor, hovering around chance (50%), even though it
was learned from 24 times as much training data as individ-
ual models. The personalized model is uniformly better than
chance and the aggregate model, but still far from perfect.
Some possible sources for this model failure are that people
are inherently inconsistent or that our model space does not
represent some important attributes in drivers’ route prefer-
ences. For example, people may dislike a certain road or
intersection, which affects the rankings for some tasks but
not others. Future studies will include additional informa-
tion about the routes and measure the subjects’ consistency
on redundant tasks.4 Directions for Future Work
The results of our initial experiment indicate that it is pos-
sible to learn a cost function that predicts driver preferences
with reasonable accuracy. More importantly, this cost func-
tion serves as a user model for generating routes that will be
satisfactory to the driver. The Adaptive Route Advisor can
be made more powerful and useful through additional work
in five key areas: use of personalized attributes, better street
descriptions, use of direct driving feedback, a more effective
interface, and better model induction.

One source of error in the experiment was the limited
and impersonal nature of the route descriptors. As Haigh
and Veloso [4] note, the descriptor set may not represent all
factors relevant to a driver. An in-car navigation system is
particularly well situated to use personalized attributes, be-
cause it can constantly monitor the driver’s behavior using
traces from a Global Positioning System. In particular, we
can assume that the routes a person drives are desirable by
that person’s true internal cost function3 and use information
about familiar routes when planning new ones.

The planner could represent familiarity as a binary vis-
ited/not visited value for each edge, or it could try to repre-
sent the degree of familiarity as a continuous value. How-
ever, with an additional assumption that sequences of famil-
iar edges (subroutes) are more desirable than isolated fa-
miliar edges, we have developed a familiarity preproces-
sor [9] that groups sequences of road edges between com-
monly used intersections into higher-level links, similar to
disjunctive macro-operators. A macro link between two in-
tersections represents all distinct routes the driver has used
between these intersections. These macro links are hierar-
chically organized, with some links recursively incorporat-
ing smaller macro links. The largest macro links represent
entire trips, such as the drive from home to work. Includ-
ing these macro links affects the planner in three ways: it
uses sequences of familiar edges as primitives, it shortens
the edge-by-edge description of the route by summarizing
familiar sequences, and it biases the route description toward
using familiar segments.

We can improve street descriptions by accessing existing
geographic databases and by generating new ones. Current
databases provide information about the location and types
of businesses, as well as demographic information. In future
work, we will generate new geographic databases by collect-
ing and analyzing traces of trips from a Global Positioning
System. Analyzing the trajectories of many cars along the
same edge provides average speed models for different times
of day, the location of traffic controls, and number of lanes.
An advantage to the client/server architecture is that clients
can serve as a distributed sensor network to sample road con-
ditions and provide dynamic updates to the digital map for
more accurate routing. Some possible dynamic attributes in-
clude transit time, congestion, and road or lane closures.

Besides interacting with the interface, another form of
feedback comes from observing the routes actually driven.
If the driver does not take the route the user model predicted,
the new route is presumably better than the predicted route,
and this will generate a new instance for the personalization
module. This type of feedback may include more classi-
fication noise than direct feedback because there is no di-
rect evidence that the driver liked his route or even that he
or she was not lost. However, if the driver usually follows3Situations in which this assumption does not hold include
cases where the driver is lost and where he is following di-
rections.



-1500

-1000

-500

0

500

1000

1500

1 3 5 7 9 11 13 15 17 19 21 23

D
is

ta
nc

e 
E

xc
ha

ng
e 

V
al

ue
 in

 M
et

er
s

Subject Number

1 Second
1 Intersection

1 Turn

Figure 6: Exchange rates for three of the attributes with respect to distance, computed from all the data for each subject. High
positive values for an attribute indicate that shorter distance is less important than reducing that attribute, near zero values
indicate that shorter distance is more important, and high negative values indicate that longer distance is more preferable.

0

25

50

75

100

1 3 5 7 9 11 13 15 17 19 21 23

P
er

ce
nt

 C
or

re
ct

Subject Number

Individualized model
Aggregate model

Figure 7: Comparison between the accuracy of the personalized models and thatof the aggregated model. The accuracy was
computed using a ten-fold cross validation. The error bars mark one standard deviation.



routes because of his own preferences, the noise should can-
cel out after sufficient training data. These indirect forms of
feedback are less intrusive than that required by our current
system, where the user must explicitly select the route he
prefers.

The current user interface is tuned to exhibit the function-
ality of the agent. To deploy the Adaptive Route Advisor in a
car, we will need to partly redesign the interface to take into
account the limited input and output facilities. For instance,
the menu for modifying the routes might be replaced by a
panel of buttons that the user can activate through a touch
screen. We will also need to evaluate the in-car user inter-
face with drivers to ensure that the capabilities of the route
advisor are easily and intuitively available to drivers.

We are also exploring other inductive methods for adapt-
ing the user model, such as regression over the preference
rankings, multi-layer neural networks, and principal com-
ponents analysis. A critical property of prospective meth-
ods is that the model be able to generate a numeric cost for
partial and complete routes. We are also investigating more
flexible model representations, such as adjusting the weight
vector based on task characteristics. For example, a driver
may always want the fastest route to work but prefer a more
leisurely drive home. Results from any method could im-
prove with some background knowledge about the domain
and more relevant attributes for the street descriptions. We
can improve our evaluation by determining the fraction of
modeling errors that are due to driver inconsistency, which
we can measure by including some redundancy in our ex-
perimental tasks. Our final goal is an agent with a flexible,
usable interface that accurately adapts itself to its user over
time.5 Conclusions
Route recommendation for driver is a knowledge-rich prob-
lem where the criteria for making decisions (the attributes
of the edges) and the relative weight of the attributes (cost
function) can be personalized. The Adaptive Route Advi-
sor serves as a intermediary agent between the driver and
the complex digital map. The agent and the driver interact
to generate multiple route options, giving the driver a more
satisfactory route than he or she would receive from a single-
option route planner, and providing feedback from the driver
that reflects his or her route preferences. The agent encodes
these preferences in a user model that the agent uses to pre-
dict which route the driver will find most appealing.

Although interaction is in the driver’s best interest if he
or she wants a satisfactory route, the agent does not require
it, and ideally interaction will become less necessary as the
agent better approximates the driver’s cost function. This
low interaction requirement is crucial for in-car decision
making where the driver’s attention is necessarily focused
elsewhere.

In general, our approach to developing advice agents is to
automatically and unobtrusively acquire value judgments by
observing the user’s actions in a domain, and to utilize inter-
action as an additional source of value judgments. The agent
generates a solution using its current user model, receives
feedback from the user if its model is inaccurate, and cor-
rects its model in areas relevant to the problem being solved.Acknowledgments
The authors would like to thank Daniel Russakoff for prepar-
ing and running the experiment, and Renée Elio for many
helpful comments and discussions.References
[1] Robin D. Burke, Kristian J. Hammond, and Benjamin C.

Young. Knowledge-based navigation of complex in-
formation spaces. InProceedings of the Thirteenth
National Conference on Artificial Intelligence, pages
462–468, Portland, OR, 1996. (Cambridge, MA: AAAI
Press/MIT Press).

[2] E. W. Dijkstra. A note on two problems in connexion
with graphs.Numerische Mathematik, 1:269–271, 1959.

[3] Peter Hadfield. Smart cars steer round traffic jams.New
Scientist, April 26 1997.

[4] Karen Zita Haigh and Manuela M. Veloso. Route plan-
ning by analogy. InProceedings of the International
Conference on Case-Based Reasoning, pages 169–180,
Sesimbra, Portugal, 1995. (Berlin, Germany: Springer-
Verlag).

[5] Leonard A. Hermens and Jeffrey C. Schlimmer. A
machine-learning apprentice for the completion of repet-
itive forms. IEEE Expert, 9:28–33, 1994.

[6] Pat Langley. Machine learning for adaptive user inter-
faces. InProceedings of the 21st German Annual Con-
ference on Artificial Intelligence, pages 53–62, Freiburg,
Germany, 1997. Springer.

[7] Greg Linden, Steve Hanks, and Neal Lesh. Interactive
assesment of user preference models: The Automated
Travel Assistant. InUser Modeling: Proceedings of the
Sixth International Conference, pages 67–78, Vienna,
New York, 1997. Springer Wien New York.

[8] Nils J. Nilsson.Learning machines. McGraw-Hill, New
York, 1965.

[9] Seth Rogers, Pat Langley, Bryan Johnson, and Annabel
Liu. Personalization of the automotive information en-
vironment. InProceedings of the workshop on Machine
Learning in the real world; Methodological Aspects and
Implications, pages 28–33, Nashville, TN, 1997.


