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Brian Yamauchi1 (yamauchi@robotics.stanford.edu)Pat Langley2 (langley@robotics.stanford.edu)Institute for the Study of Learning and Expertise2164 Staunton Court, Palo Alto, CA 94306AbstractIn this paper, we present an approach for mobile robotlocalization designed for use in dynamic environments.Our approach integrates evidence grids within a topo-logical/metric network that can be used for naviga-tion. Place learning consists of associating evidencegrids with places in the topological network. Placerecognition consists of building an evidence grid atthe current location and using a registration proce-dure based on hill climbing to �nd the best match be-tween the current grid and the grids associated withplaces in the network. This approach has been im-plemented on a real mobile robot and has been testedin a real-world o�ce environment containing multipleforms of dynamic change. In these experiments, thisapproach demonstrated robust localization in the pres-ence of transient changes (such as moving people) andlasting changes (such as rearranged furniture) in theenvironment.1. IntroductionA central issue in mobile robotics is localization: howcan a robot use its sensors to determine its location?A particular example is the \kidnaped robot problem"(Engelson, 1994) where, once a robot has explored itsenvironment, it is turned o� and transported to an un-known location. At the new location, the robot mustuse its sensors to survey its surroundings and deter-mine its position based upon the knowledge previouslyacquired about the environment.Many localization strategies combine place learningwith place recognition. Place learning consists of as-sociating perceptions with the locations visited by therobot. Place recognition localizes the robot by �nd-ing the best match between current perceptions andthose associated with each place. While much research1Also a�liated with the Center for the Study of Lan-guage and Information, Stanford University.2Also a�liated with the Robotics Laboratory, Com-puter Science Department, Stanford University.

has been done in place learning and place recognition,most of this work has been limited to static environ-ments that do not change over time. In contrast,human environments are constantly changing: peo-ple walk down hallways and across rooms; they movechairs and desks; they open and close doors. Any lo-calization strategy that relies upon a static world islikely to fail in an environment that contains humanbeings.The goal of our research is to develop methods ofplace learning and place recognition that are robustto the types of change typically encountered in humanenvironments. In particular, this includes both tran-sient changes (such as those caused by people walk-ing past the robot) and lasting changes (such as rear-ranged furniture). In this paper, we describe such amethod, which uses evidence grids for place learningand a grid-matching procedure based on hill climbingfor place recognition. This method has been success-fully implemented on a real mobile robot in a dynamic,real-world o�ce environment, and we present initialresults from experiments with this system.2. Place Learning2.1 Learning a Topological MapThe localization system described in this paper is thenewest component of ELDEN (Exploration and Learn-ing in Dynamic ENvironments), an integrated mobilerobot system developed for exploration, learning, andnavigation in dynamic, real-world environments. Anearlier version of this system, without place learningand place recognition capabilities, is described by Ya-mauchi and Beer (in press).Place learning consists of building an evidence gridfor a region in space and associating it with a place inthe environment. Each place is represented as a nodewithin a topological/metric map, and each node storesthe Cartesian location of the corresponding place. Thetopological component is included for navigation pur-poses, even though it is not used for place recognition.



Each place corresponds to a region �ve feet in diam-eter. We selected this place size so that the topologicalmap could represent the traversable paths through theenvironment for a robot that is roughly two feet in di-ameter. The maximum reliable range for the sonarsensors is roughly �fteen feet, so each grid covers anarea with a �fteen foot radius, and there is substantialoverlap between adjacent grids.Initially the robot starts with an empty map. Therobot's starting location becomes the �rst place in thenew map. As the robot moves through the world, thesystem creates a new place whenever the robot movesout of the space contained in the existing place regions,and creates a topological link between the new placeand the place corresponding to the robot's previouslocation. The system also builds a new grid, whichit associates with the place unit. Currently the pathstaken to explore the world are determined manually,but we plan to automate this exploration procedure inthe future.2.2 Constructing Evidence Grids2.2.1 Prior Probabilities and Sensor ModelsEvidence grids are a spatial representation developedby Moravec and Elfes (1985) that describe space asa Cartesian grid where each cell has a certain prob-ability of being occupied. Initially, each of these cellprobabilities is set to the estimated prior probabilityof cell occupancy. For example, if one quarter of thespace in a given area is occupied, one might set theprior probability to 0.25. (In practice, evidence gridstend to be insensitive to errors in the prior probability,and an estimate of 0.5 generally works well.)Each time the robot receives a sensor input, the ev-idence grid is updated using the corresponding sensormodel. Each sensor model describes the probabilitythat cells are occupied given the reading received. Thismodel depends on the characteristics of the individualsensor. For example, a sonar sensor emits a pulse ofsound in a cone that expands as it gets farther fromthe transducer. When this pulse hits an obstacle, it isreected back to the sensor. A range reading of R in-dicates that an obstacle has been detected somewherealong the sonar arc at range R, so the occupancy prob-ability of all cells along this arc should be increased.At the same time, this reading indicates that no ob-stacle was detected at a range closer than R, so all cellswithin the sonar cone at ranges less than R should havetheir occupancy probability reduced. Cells at rangesbeyond R are not a�ected, since the obstacle at rangeR prevented the sonar from obtaining any informationabout them. In practice, we use a similar, but morerealistic, sonar model that also considers sonar atten-uation at the edges of the sensor cone and reducedlikelihood of sonar returns at longer ranges.

One of the major advantages of the evidence-gridrepresentation is its ability to fuse sensor information.Any number of sensor readings from any number ofsensors can be combined as long as models exist foreach sensor type.2.2.2 Updating Evidence GridsFormally, evidence grids provide a means for combin-ing information from sensor readings in an elegant way(Moravec, 1988). If X represents information such asa sensor reading, then p(ojX) is the probability that acell is occupied given X , and p(:ojX) is the probabil-ity that this cell is not occupied given X . Thus, fromBayes' theorem:p(ojX)p(:ojX) = p(X jo)p(X j:o) � p(o)p(:o)where p(X jo) is the probability of receiving informa-tion X given that this cell is occupied, p(X j:o) isthe probability of receiving information X given thatthis cell is not occupied, p(o) is the prior probabilitythat any given cell is occupied, and p(:o) is the priorprobability that any given cell is unoccupied, wherep(:o) = 1� p(o).If A represents the current grid state and B repre-sents the information from a new sensor reading, thencell occupancy probabilities can be combined using:p(ojA \ B)p(:ojA \ B) = p(ojA)p(:ojA) � p(ojB)p(:ojB) :This expression assumes that A and B represent inde-pendent information, which is not true when a partic-ular point can be sensed more than once (by the sameor di�erent sensors). In practice, this approximationmeans that the overall occupancy results tend to be ac-curate, but the numerical occupancy probabilities arenot reliable. For example, if the sonar cones overlapfor two sensor readings, the cells in the overlap willhave their probabilities increased or decreased twice,as if the two sensor readings provided independent in-formation about the structure within these region.Konolige (1995) presents one approach to dealingwith this problem. In this scheme, pose information isstored with each cell, indicating the incident directionof each sonar reading. The method considers only the�rst sonar reading from a particular direction for eachcell { it ignores subsequent readings. This approachworks well in static environments, but is not well-suited to dynamic environments, since the early stateof the world will become \frozen" into the grid, and thegrid will not be updated to reect future changes thatoccur in the world. Instead, our approach accumulatesmultiple sensor readings over time, using the standardevidence grid formulation, and then we design our grid



matching function (described in Section 3) to be toler-ant to the uncertainty in cell occupancy probabilities.2.2.3 Advantages of the ApproachAccumulating multiple readings over time is an e�ec-tive method of �ltering out transient changes. Con-sider a person walking past the robot as it maps a par-ticular region of space. This person's path will covermany grid cells, but each only for a brief moment.Each sonar reading that reects from the person willincrease the occupancy probability of the correspond-ing cells. However, each cell will only be occupiedbriey, so all of the other sonar readings incident onthis cell will reduce its occupancy probability. As aresult, the cells along this path will have a low occu-pancy probability despite the person's passage.In addition to providing an e�ective method forcombining data from multiple sensor readings, ev-idence grids have two other advantages for use indynamic environments. First, they can be updatedquickly. Using a logarithmic transformation of theequations described above, each cell update can becomputed with a single addition. Second, smallchanges in the environment tend to produce smallchanges to the corresponding grid representation. Thisproperty is important for handling lasting changes inthe environment.One exception to the second property is the case ofspecular reections, which occurs when a sonar pulsehits a at surface and reects away from (rather thanback to) the sensor. As a result, the sensor registersa range that is substantially larger than the actualrange. Because of this, a small change in the angleof a surface could potentially result in a substantialchange to the evidence grid. Konolige (1995) also sug-gests a method for dealing with specular reections byignoring all sonar readings if they would imply thatpreviously occupied cells are unoccupied (as would oc-cur if a specular reection were to overlap an obstacle).However, this would not work for dynamic environ-ments, since a previously occupied space may actuallyhave become unoccupied due to changes in the world.Instead, during the construction of each evidence grid,our method rotates the sonar sensors through a rangeof angles equivalent to the width of the sonar arc. Asa result, if both specular and non-specular reectionsare possible from a given viewpoint, then both will beincorporated into the evidence grid.We used a Nomad 200 mobile robot, shown in Fig-ure 1, in our research. This robot is equipped with six-teen sonar sensors, evenly spaced around the base at22.5 degree intervals. In order to build each evidencegrid, the robot remains at the center of the place re-gion and takes eleven sets of sixteen sonar readings attwo degree intervals (for a total of 176 sonar readingsfor each grid).

Figure 1: The Nomad 200 mobile robot.3. Place RecognitionPlace recognition in ELDEN consists of building a newevidence grid at the current location and matchingthis grid (the recognition grid) against all of the gridsthat have been previously associated with places in theworld (the learned grids). The system translates androtates the recognition grid to �nd the best �t witheach of the learned grids.ELDEN uses a multiple resolution hill-climbing al-gorithm to search the space of possible translationsand rotations. Figure 2 illustrates the translation op-erators considered during a single step of this searchprocess. The hill-climbing algorithm starts with thenull translation and rotation, then takes steps in thespace of possible translations and rotations in orderto maximize the match between the recognition gridsand each learned grid.Translations and rotations are de�ned over evidencegrids in a straightforward way. The origin of the coor-dinate frame is located at the center of each grid, cor-responding to the robot's position when it constructedthe grid. Each cell in the recognition grid is translatedby displacing the point corresponding to the center ofeach cell and determining into which cell the new pointwould fall in the learned grid. Each cell in the recog-nition grid is rotated by computing the vector fromthe origin to the center of the cell, then rotating this



Figure 2: Translating and rotating a recognition gridto align it with a learned grid during place recognition.vector around the origin, and determining into whichcell the new vector would fall in the learned grid.The system computes a match score for each pair ofcorresponding cells in the recognition grid and in thelearned grid. The match metric is given by:sij = 8><>: 1 if pi > p0 and pj > p01 if pi < p0 and pj < p01 if pi = p0 and pj = p00 otherwisewhere sij is the match score for corresponding cells iand j, pi is the probability that cell i is occupied, pjis the probability that cell j is occupied, and p0 is theprior probability that any cell is occupied. This scoreis summed over all of the corresponding cells, and thetotal is the match score for the learned grid given thecurrent transformation.We developed this match metric to deal with theproblem of non-independent sensor readings. The mul-tiple sonar readings taken to �lter transient changesand deal with specular reections are not independent.As a result, the occupancy probabilities in the evidencegrid do not accurately reect the precise probabilitythat each cell will be occupied. However, what is reli-able is whether each cell is more likely or less likely tobe occupied than the prior probability (or whether ithas not been sensed at all, in which case it will be equalto the prior probability). Thus, the match metric in-creases the match score whenever two correspondingcells are either both more likely to be occupied, lesslikely to be occupied, or unsensed in both the recogni-tion grid and the learned grid.The hill-climbing algorithm applies this process it-eratively to �nd the best transformation between therecognition grid and each learned grid. The step sizefor hill climbing is initially set to 7.5 inches and 5 de-grees and is halved when a local maximum is reached,in order to more precisely locate this maximum. Thesystem repeats this process twice. When it reaches

Figure 3: Topological/metric map of learned places.a local maximum using the minimum step size (1.875inches and 1.25 degrees), it stops the search and usesthe score for the current transformation as the overallmatch score for the learned grid. The search also stopsif the translation exceeds half of the place region ra-dius (1.25 feet) or the rotation exceeds the maximumexpected compass error (10 degrees).The system repeats this process for each of thelearned grids, and selects the grid with the maximummatch score as the winner. The localization systemconcludes that the robot is currently at the place cor-responding to the winning grid. In addition, the grid-matching procedure outputs the best transformationbetween the recognition grid and the winning grid; incombination with the stored Cartesian location of thecorresponding place, this information can be used todetermine the robot's precise location.4. Experimental ResultsWe conducted experiments using a real mobile robotin an unmodi�ed o�ce environment, where obstaclesincluded chairs, tables, desks, bookshelves, worksta-tions, bicycles, and a copy machine. Dynamic changewas present in both transient and lasting forms. Tran-sient changes were caused by people moving throughthe environment, during both place learning and placerecognition. Lasting changes occurred when peoplerearranged chairs, added and removed bicycles, andopened and closed doors.
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Figure 4: The learned (a) and recognition (b) grids for place 41.Figure 3 shows the topological/metric map con-structed as the robot moved through the environment,including the place locations and the topological linksconnecting these places. The system learned a total of47 places, each with an associated evidence grid. Thetime required to build each evidence grid was approx-imately thirty seconds, with most of the time spentin sensorimotor control (performing the ten two de-gree rotations necessary to collect eleven sets of sonarreadings and triggering the sixteen sonar sensors ateach position). The time required for each place recog-nition was approximately �ve minutes (including thetime required to build the recognition grid) using aDecStation 3100, with most of the time spent in thegrid-matching procedure. We plan to transfer this sys-tem to faster hardware in the near future, which shouldgreatly reduce the time required for place recognition.Figure 4 (a) shows the evidence grid learned forplace 41, which corresponds to a corner where twowalkways intersect. The robot's position is indicatedby the large circle, with the line giving the robot'sheading. In all of these �gures, the robot is facing duenorth, as determined by the onboard compass. Whitespace indicates cells with occupancy probabilities lessthan the prior probability of occupancy, while circlesdenote cells with occupancy probabilities greater thanthe prior probability. Dots mark cells with occupancyprobability equal to the prior probability (meaningthat they are not visible from the robot's position).Figure 4 (b) shows the recognition grid constructedby the robot at place 41 during testing. The systemcorrectly matched this grid to the learned grid for place

41 despite a number of di�erences. First, the robot waspositioned at slightly di�erent locations, so that itsviews of the lower corridor extended di�erent lengths.Second, variability in the compass caused the robot'sperception of \due north" to be slightly di�erent in thetwo cases, resulting in shifted orientations. The rota-tional component of the transformation space searchedduring grid matching compensates for this angular un-certainty. Third, two specular reections are presentin the recognition grid that were not present in thelearned grid. However, these specular reections werenot always present, so by taking multiple readings atdi�erent rotation angles, the system could perceive thesurfaces from which the sonar beams reected.Figure 5 shows the learned grid and recognition gridfor a more complex place area. On the left side of thisarea is a wall containing open doorways leading to of-�ces. On the right side is a large open area containingchairs, desks, and workstations. The clear area in thelower-left corner of this area is actually a (permanent)specular reection caused by a whiteboard. This sur-face is su�ciently smooth that it acts as a mirror forthe sonar, consistently reecting all of the beams orig-inating near the center of this area. In this case, thesereections can actually be useful as a distinguishingfeature of this place, but only if the place regions aresu�ciently small that the angle of reection is similarduring learning and recognition.People walked past the robot during both placelearning and place recognition, but the use of multi-ple sensor readings allowed the corresponding transientchanges to be �ltered out of these grids. The chairs
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Figure 5: The learned (a) and recognition (b) grids for place 26.on the right side of the room were rearranged betweenthe times that these two grids were constructed and,in addition, a bicycle (not present in the learned grid)was present in the upper-central region of the areaduring place recognition. Despite these changes, thelocalization system was able to correctly match therecognition grid with the learned grid.In order to measure the e�ects of larger lastingchanges, we removed the whiteboard that was caus-ing the specular reection in the learned grid, appar-ent in Figure 5 (a). As a result, the robot detectedthe wall itself rather than a specular reection, giv-ing the recognition grid Figure 5 (c). In spite of thesubstantial di�erence between the learned grid and thenew recognition grid, the place recognition system stillsuccessfully identi�ed the robot's location.Overall, the robot was able to localize itself accu-rately throughout the environment. In most placesthe robot localized itself with 100% accuracy, alwaysdetermining the correct place. In the remaining 10%of the places, the robot localized itself correctly threeout of four times. These results are preliminary, butpromising, and we plan more precise, quantitative per-formance measurements in the near future.5. Related WorkMuch research has been conducted on place recog-nition for mobile robots using a variety of tech-niques and knowledge structures, including distinc-tive places (Kuipers & Byun, 1993), gateways (Kor-tenkamp, 1993), image signatures (Engelson, 1994),

and landmarks (Greiner & Isukapalli, 1996). However,none of this research has addressed the issue of placerecognition in dynamic environments, where the ap-pearance of places may change over time.In our previous research, we have described a systemthat builds evidence grids for di�erent places and usescase-based techniques for place recognition (Langley &Peger, 1995). However, we tested this approach onlyin static environments. We have also conducted re-search on robot localization in dynamic environmentsusing evidence grids (Yamauchi, 1996), but that workwas aimed at correcting dead-reckoning errors usinga grid constructed for a single home location. Theapproach we have described in this paper combinesthe capability for place learning and place recognitionwith robustness to dynamic changes, both transientand lasting.Schiele and Crowley (1994) have done work on po-sition estimation based on matching line segments ex-tracted from evidence grids using Hough transformsand Kalman �ltering. However, their research has onlydealt with static environments, and it is unclear howrobust these techniques would be in dynamic ones.Schultz and Grefenstette (1995) have reported amethod for continuous localization using evidencegrids. In their work, local grids constructed by therobot are continuously registered with a global grid todetermine the robot's position. Our approach di�ersin using evidence grid localization as a part of a topo-logical exploration and navigation system, rather thanas a means for building a global evidence grid.



Figure 6: The recognition grid for place 26 after re-moving the source of specular reection.6. ConclusionsIn this paper, we have presented a method for placelearning and place recognition in dynamic environ-ments. Place learning consists of associating evidencegrids with places corresponding to nodes within atopological/metric map. Place recognition consists ofbuilding an evidence grid for the robot's current loca-tion and using a hill-climbing search to �nd the bestmatch between this grid and the previously learnedgrids. By taking multiple sets of sonar readings, tran-sient changes can be �ltered out of each grid. By ro-tating the robot through a small angle between eachset of readings, specular reections can be representedconsistently within each grid.We have implemented this method on a real mobilerobot and tested it in a real-world o�ce environment.In these tests, the robot was able to localize itself suc-cessfully, despite the presence of people moving pastthe robot during place learning and place recognition,and despite changes in the arrangement of furnitureoccurring in the interval between place learning andplace recognition. We plan additional experiments toprovide a more precise quantitative measure of the sys-tem's performance and its robustness to transient andlasting changes.AcknowledgementsWe owe thanks to Hans Moravec for making his evi-dence grid software available for use, to Alan Schultzand Bill Adams for many useful discussions and for
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