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Abstract

In this paper, we present an approach for mobile robot,
localization designed for use in dynamic environments.
Our approach integrates evidence grids within a topo-
logical /metric network that can be used for naviga-
tion. Place learning consists of associating evidence
grids with places in the topological network. Place
recognition consists of building an evidence grid at
the current location and using a registration proce-
dure based on hill climbing to find the best match be-
tween the current grid and the grids associated with
places in the network. This approach has been im-
plemented on a real mobile robot and has been tested
in a real-world office environment containing multiple
forms of dynamic change. In these experiments, this
approach demonstrated robust localization in the pres-
ence of transient changes (such as moving people) and
lasting changes (such as rearranged furniture) in the
environment.

1. Introduction

A central issue in mobile robotics is localization: how
can a robot use its sensors to determine its location?
A particular example is the “kidnaped robot problem”
(Engelson, 1994) where, once a robot has explored its
environment, it is turned off and transported to an un-
known location. At the new location, the robot must
use its sensors to survey its surroundings and deter-
mine its position based upon the knowledge previously
acquired about the environment.

Many localization strategies combine place learning
with place recognition. Place learning consists of as-
sociating perceptions with the locations visited by the
robot. Place recognition localizes the robot by find-
ing the best match between current perceptions and
those associated with each place. While much research
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has been done in place learning and place recognition,
most of this work has been limited to static environ-
ments that do not change over time. In contrast,
human environments are constantly changing: peo-
ple walk down hallways and across rooms; they move
chairs and desks; they open and close doors. Any lo-
calization strategy that relies upon a static world is
likely to fail in an environment that contains human
beings.

The goal of our research is to develop methods of
place learning and place recognition that are robust
to the types of change typically encountered in human
environments. In particular, this includes both tran-
sient changes (such as those caused by people walk-
ing past the robot) and lasting changes (such as rear-
ranged furniture). In this paper, we describe such a
method, which uses evidence grids for place learning
and a grid-matching procedure based on hill climbing
for place recognition. This method has been success-
fully implemented on a real mobile robot in a dynamic,
real-world office environment, and we present initial
results from experiments with this system.

2. Place Learning
2.1 Learning a Topological Map

The localization system described in this paper is the
newest component of ELDEN (Exploration and Learn-
ing in Dynamic ENvironments), an integrated mobile
robot system developed for exploration, learning, and
navigation in dynamic, real-world environments. An
earlier version of this system, without place learning
and place recognition capabilities, is described by Ya-
mauchi and Beer (in press).

Place learning consists of building an evidence grid
for a region in space and associating it with a place in
the environment. Each place is represented as a node
within a topological/metric map, and each node stores
the Cartesian location of the corresponding place. The
topological component is included for navigation pur-
poses, even though it is not used for place recognition.



Each place corresponds to a region five feet in diam-
eter. We selected this place size so that the topological
map could represent the traversable paths through the
environment for a robot that is roughly two feet in di-
ameter. The maximum reliable range for the sonar
sensors is roughly fifteen feet, so each grid covers an
area with a fifteen foot radius, and there is substantial
overlap between adjacent grids.

Initially the robot starts with an empty map. The
robot’s starting location becomes the first place in the
new map. As the robot moves through the world, the
system creates a new place whenever the robot moves
out of the space contained in the existing place regions,
and creates a topological link between the new place
and the place corresponding to the robot’s previous
location. The system also builds a new grid, which
it associates with the place unit. Currently the paths
taken to explore the world are determined manually,
but we plan to automate this exploration procedure in
the future.

2.2 Constructing Evidence Grids
2.2.1 PRIOR PROBABILITIES AND SENSOR MODELS

Evidence grids are a spatial representation developed
by Moravec and Elfes (1985) that describe space as
a Cartesian grid where each cell has a certain prob-
ability of being occupied. Initially, each of these cell
probabilities is set to the estimated prior probability
of cell occupancy. For example, if one quarter of the
space in a given area is occupied, one might set the
prior probability to 0.25. (In practice, evidence grids
tend to be insensitive to errors in the prior probability,
and an estimate of 0.5 generally works well.)

Each time the robot receives a sensor input, the ev-
idence grid is updated using the corresponding sensor
model. Each sensor model describes the probability
that cells are occupied given the reading received. This
model depends on the characteristics of the individual
sensor. For example, a sonar sensor emits a pulse of
sound in a cone that expands as it gets farther from
the transducer. When this pulse hits an obstacle, it is
reflected back to the sensor. A range reading of R in-
dicates that an obstacle has been detected somewhere
along the sonar arc at range R, so the occupancy prob-
ability of all cells along this arc should be increased.

At the same time, this reading indicates that no ob-
stacle was detected at a range closer than R, so all cells
within the sonar cone at ranges less than R should have
their occupancy probability reduced. Cells at ranges
beyond R are not affected, since the obstacle at range
R prevented the sonar from obtaining any information
about them. In practice, we use a similar, but more
realistic, sonar model that also considers sonar atten-
uation at the edges of the sensor cone and reduced
likelihood of sonar returns at longer ranges.

One of the major advantages of the evidence-grid
representation is its ability to fuse sensor information.
Any number of sensor readings from any number of
sensors can be combined as long as models exist for
each sensor type.

2.2.2 UPDATING EVIDENCE GRIDS

Formally, evidence grids provide a means for combin-
ing information from sensor readings in an elegant way
(Moravec, 1988). If X represents information such as
a sensor reading, then p(o|X) is the probability that a
cell is occupied given X, and p(—o|X) is the probabil-
ity that this cell is not occupied given X. Thus, from
Bayes’ theorem:
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where p(X|o) is the probability of receiving informa-
tion X given that this cell is occupied, p(X|-o) is
the probability of receiving information X given that
this cell is not occupied, p(o) is the prior probability
that any given cell is occupied, and p(—o) is the prior
probability that any given cell is unoccupied, where
p(-0) =1 —p(o).

If A represents the current grid state and B repre-
sents the information from a new sensor reading, then
cell occupancy probabilities can be combined using:
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This expression assumes that A and B represent inde-
pendent information, which is not true when a partic-
ular point can be sensed more than once (by the same
or different sensors). In practice, this approximation
means that the overall occupancy results tend to be ac-
curate, but the numerical occupancy probabilities are
not reliable. For example, if the sonar cones overlap
for two sensor readings, the cells in the overlap will
have their probabilities increased or decreased twice,
as if the two sensor readings provided independent in-
formation about the structure within these region.

Konolige (1995) presents one approach to dealing
with this problem. In this scheme, pose information is
stored with each cell, indicating the incident direction
of each sonar reading. The method considers only the
first sonar reading from a particular direction for each
cell it ignores subsequent readings. This approach
works well in static environments, but is not well-
suited to dynamic environments, since the early state
of the world will become “frozen” into the grid, and the
grid will not be updated to reflect future changes that
occur in the world. Instead, our approach accumulates
multiple sensor readings over time, using the standard
evidence grid formulation, and then we design our grid



matching function (described in Section 3) to be toler-
ant to the uncertainty in cell occupancy probabilities.

2.2.3 ADVANTAGES OF THE APPROACH

Accumulating multiple readings over time is an effec-
tive method of filtering out transient changes. Con-
sider a person walking past the robot as it maps a par-
ticular region of space. This person’s path will cover
many grid cells, but each only for a brief moment.
Each sonar reading that reflects from the person will
increase the occupancy probability of the correspond-
ing cells. However, each cell will only be occupied
briefly, so all of the other sonar readings incident on
this cell will reduce its occupancy probability. As a
result, the cells along this path will have a low occu-
pancy probability despite the person’s passage.

In addition to providing an effective method for
combining data from multiple sensor readings, ev-
idence grids have two other advantages for use in
dynamic environments. First, they can be updated
quickly. Using a logarithmic transformation of the
equations described above, each cell update can be
computed with a single addition. Second, small
changes in the environment tend to produce small
changes to the corresponding grid representation. This
property is important for handling lasting changes in
the environment.

One exception to the second property is the case of
specular reflections, which occurs when a sonar pulse
hits a flat surface and reflects away from (rather than
back to) the sensor. As a result, the sensor registers
a range that is substantially larger than the actual
range. Because of this, a small change in the angle
of a surface could potentially result in a substantial
change to the evidence grid. Konolige (1995) also sug-
gests a method for dealing with specular reflections by
ignoring all sonar readings if they would imply that
previously occupied cells are unoccupied (as would oc-
cur if a specular reflection were to overlap an obstacle).
However, this would not work for dynamic environ-
ments, since a previously occupied space may actually
have become unoccupied due to changes in the world.
Instead, during the construction of each evidence grid,
our method rotates the sonar sensors through a range
of angles equivalent to the width of the sonar arc. As
a result, if both specular and non-specular reflections
are possible from a given viewpoint, then both will be
incorporated into the evidence grid.

We used a Nomad 200 mobile robot, shown in Fig-
ure 1, in our research. This robot is equipped with six-
teen sonar sensors, evenly spaced around the base at
22.5 degree intervals. In order to build each evidence
grid, the robot remains at the center of the place re-
gion and takes eleven sets of sixteen sonar readings at
two degree intervals (for a total of 176 sonar readings
for each grid).

Figure 1: The Nomad 200 mobile robot.

3. Place Recognition

Place recognition in ELDEN consists of building a new
evidence grid at the current location and matching
this grid (the recognition grid) against all of the grids
that have been previously associated with places in the
world (the learned grids). The system translates and
rotates the recognition grid to find the best fit with
each of the learned grids.

ELDEN uses a multiple resolution hill-climbing al-
gorithm to search the space of possible translations
and rotations. Figure 2 illustrates the translation op-
erators considered during a single step of this search
process. The hill-climbing algorithm starts with the
null translation and rotation, then takes steps in the
space of possible translations and rotations in order
to maximize the match between the recognition grids
and each learned grid.

Translations and rotations are defined over evidence
grids in a straightforward way. The origin of the coor-
dinate frame is located at the center of each grid, cor-
responding to the robot’s position when it constructed
the grid. Each cell in the recognition grid is translated
by displacing the point corresponding to the center of
each cell and determining into which cell the new point
would fall in the learned grid. Each cell in the recog-
nition grid is rotated by computing the vector from
the origin to the center of the cell, then rotating this
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Figure 2: Translating and rotating a recognition grid
to align it with a learned grid during place recognition.

vector around the origin, and determining into which
cell the new vector would fall in the learned grid.

The system computes a match score for each pair of
corresponding cells in the recognition grid and in the
learned grid. The match metric is given by:

1 if p; > po and p; > po
o = 1 if p; < po and p; < po
Y 1 ifp; = po and p;j = po

0 otherwise
where s;; is the match score for corresponding cells ¢
and j, p; is the probability that cell ¢ is occupied, p;
is the probability that cell 5 is occupied, and pg is the
prior probability that any cell is occupied. This score
is summed over all of the corresponding cells, and the
total is the match score for the learned grid given the
current transformation.

We developed this match metric to deal with the
problem of non-independent sensor readings. The mul-
tiple sonar readings taken to filter transient changes
and deal with specular reflections are not independent.
As aresult, the occupancy probabilities in the evidence
grid do not accurately reflect the precise probability
that each cell will be occupied. However, what is reli-
able is whether each cell is more likely or less likely to
be occupied than the prior probability (or whether it
has not been sensed at all, in which case it will be equal
to the prior probability). Thus, the match metric in-
creases the match score whenever two corresponding
cells are either both more likely to be occupied, less
likely to be occupied, or unsensed in both the recogni-
tion grid and the learned grid.

The hill-climbing algorithm applies this process it-
eratively to find the best transformation between the
recognition grid and each learned grid. The step size
for hill climbing is initially set to 7.5 inches and 5 de-
grees and is halved when a local maximum is reached,
in order to more precisely locate this maximum. The
system repeats this process twice. When it reaches

Figure 3: Topological/metric map of learned places.

a local maximum using the minimum step size (1.875
inches and 1.25 degrees), it stops the search and uses
the score for the current transformation as the overall
match score for the learned grid. The search also stops
if the translation exceeds half of the place region ra-
dius (1.25 feet) or the rotation exceeds the maximum
expected compass error (10 degrees).

The system repeats this process for each of the
learned grids, and selects the grid with the maximum
match score as the winner. The localization system
concludes that the robot is currently at the place cor-
responding to the winning grid. In addition, the grid-
matching procedure outputs the best transformation
between the recognition grid and the winning grid; in
combination with the stored Cartesian location of the
corresponding place, this information can be used to
determine the robot’s precise location.

4. Experimental Results

We conducted experiments using a real mobile robot
in an unmodified office environment, where obstacles
included chairs, tables, desks, bookshelves, worksta-
tions, bicycles, and a copy machine. Dynamic change
was present in both transient and lasting forms. Tran-
sient changes were caused by people moving through
the environment, during both place learning and place
recognition. Lasting changes occurred when people
rearranged chairs, added and removed bicycles, and
opened and closed doors.



Figure 4: The learned (a) and recognition (b) grids for place 41.

Figure 3 shows the topological/metric map con-
structed as the robot moved through the environment,
including the place locations and the topological links
connecting these places. The system learned a total of
47 places, each with an associated evidence grid. The
time required to build each evidence grid was approx-
imately thirty seconds, with most of the time spent
in sensorimotor control (performing the ten two de-
gree rotations necessary to collect eleven sets of sonar
readings and triggering the sixteen sonar sensors at
each position). The time required for each place recog-
nition was approximately five minutes (including the
time required to build the recognition grid) using a
DecStation 3100, with most of the time spent in the
grid-matching procedure. We plan to transfer this sys-
tem to faster hardware in the near future, which should
greatly reduce the time required for place recognition.

Figure 4 (a) shows the evidence grid learned for
place 41, which corresponds to a corner where two
walkways intersect. The robot’s position is indicated
by the large circle, with the line giving the robot’s
heading. In all of these figures, the robot is facing due
north, as determined by the onboard compass. White
space indicates cells with occupancy probabilities less
than the prior probability of occupancy, while circles
denote cells with occupancy probabilities greater than
the prior probability. Dots mark cells with occupancy
probability equal to the prior probability (meaning
that they are not visible from the robot’s position).

Figure 4 (b) shows the recognition grid constructed
by the robot at place 41 during testing. The system
correctly matched this grid to the learned grid for place

41 despite a number of differences. First, the robot was
positioned at slightly different locations, so that its
views of the lower corridor extended different lengths.
Second, variability in the compass caused the robot’s
perception of “due north” to be slightly different in the
two cases, resulting in shifted orientations. The rota-
tional component of the transformation space searched
during grid matching compensates for this angular un-
certainty. Third, two specular reflections are present
in the recognition grid that were not present in the
learned grid. However, these specular reflections were
not always present, so by taking multiple readings at
different rotation angles, the system could perceive the
surfaces from which the sonar beams reflected.

Figure 5 shows the learned grid and recognition grid
for a more complex place area. On the left side of this
area is a wall containing open doorways leading to of-
fices. On the right side is a large open area containing
chairs, desks, and workstations. The clear area in the
lower-left corner of this area is actually a (permanent)
specular reflection caused by a whiteboard. This sur-
face is sufficiently smooth that it acts as a mirror for
the sonar, consistently reflecting all of the beams orig-
inating near the center of this area. In this case, these
reflections can actually be useful as a distinguishing
feature of this place, but only if the place regions are
sufficiently small that the angle of reflection is similar
during learning and recognition.

People walked past the robot during both place
learning and place recognition, but the use of multi-
ple sensor readings allowed the corresponding transient
changes to be filtered out of these grids. The chairs



Figure 5: The learned (a) and recognition (b) grids for place 26.

on the right side of the room were rearranged between
the times that these two grids were constructed and,
in addition, a bicycle (not present in the learned grid)
was present in the upper-central region of the area
during place recognition. Despite these changes, the
localization system was able to correctly match the
recognition grid with the learned grid.

In order to measure the effects of larger lasting
changes, we removed the whiteboard that was caus-
ing the specular reflection in the learned grid, appar-
ent in Figure 5 (a). As a result, the robot detected
the wall itself rather than a specular reflection, giv-
ing the recognition grid Figure 5 (¢). In spite of the
substantial difference between the learned grid and the
new recognition grid, the place recognition system still
successfully identified the robot’s location.

Overall, the robot was able to localize itself accu-
rately throughout the environment. In most places
the robot localized itself with 100% accuracy, always
determining the correct place. In the remaining 10%
of the places, the robot localized itself correctly three
out of four times. These results are preliminary, but
promising, and we plan more precise, quantitative per-
formance measurements in the near future.

5. Related Work

Much research has been conducted on place recog-
nition for mobile robots using a variety of tech-
niques and knowledge structures, including distinc-
tive places (Kuipers & Byun, 1993), gateways (Kor-
tenkamp, 1993), image signatures (Engelson, 1994),

and landmarks (Greiner & Isukapalli, 1996). However,
none of this research has addressed the issue of place
recognition in dynamic environments, where the ap-
pearance of places may change over time.

In our previous research, we have described a system
that builds evidence grids for different places and uses
case-based techniques for place recognition (Langley &
Pfleger, 1995). However, we tested this approach only
in static environments. We have also conducted re-
search on robot localization in dynamic environments
using evidence grids (Yamauchi, 1996), but that work
was aimed at correcting dead-reckoning errors using
a grid constructed for a single home location. The
approach we have described in this paper combines
the capability for place learning and place recognition
with robustness to dynamic changes, both transient
and lasting.

Schiele and Crowley (1994) have done work on po-
sition estimation based on matching line segments ex-
tracted from evidence grids using Hough transforms
and Kalman filtering. However, their research has only
dealt with static environments, and it is unclear how
robust these techniques would be in dynamic ones.

Schultz and Grefenstette (1995) have reported a
method for continuous localization using evidence
grids. In their work, local grids constructed by the
robot are continuously registered with a global grid to
determine the robot’s position. Our approach differs
in using evidence grid localization as a part of a topo-
logical exploration and navigation system, rather than
as a means for building a global evidence grid.



Figure 6: The recognition grid for place 26 after re-
moving the source of specular reflection.

6. Conclusions

In this paper, we have presented a method for place
learning and place recognition in dynamic environ-
ments. Place learning consists of associating evidence
grids with places corresponding to nodes within a
topological /metric map. Place recoguition consists of
building an evidence grid for the robot’s current loca-
tion and using a hill-climbing search to find the best
match between this grid and the previously learned
grids. By taking multiple sets of sonar readings, tran-
sient changes can be filtered out of each grid. By ro-
tating the robot through a small angle between each
set of readings, specular reflections can be represented
consistently within each grid.

We have implemented this method on a real mobile
robot and tested it in a real-world office environment.
In these tests, the robot was able to localize itself suc-
cessfully, despite the presence of people moving past
the robot during place learning and place recognition,
and despite changes in the arrangement of furniture
occurring in the interval between place learning and
place recognition. We plan additional experiments to
provide a more precise quantitative measure of the sys-
tem’s performance and its robustness to transient and
lasting changes.
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