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1. Introduction

This report gives an overview of the 1993 AAAT Fall
Symposium on Machine Learning in Computer Vision:
What, Why and How? The level of interest in the sym-
posium topic was indicated by the degree of participa-
tion. Over 70 researchers registered for the meeting, and
60 of these were still present at the end of the second full
day of sessions. There was strong attendance from both
the machine learning and the computer vision commu-
nities, although, perhaps predictably, some from each
community felt that the other area had greater repre-
sentation.

The symposium was divided into ten 90-minute ses-
sions, with seven devoted to moderator/author cover-
age of contributed papers,! two consisting of invited
talks, and one involving a panel discussion. The mod-
erator/author format for the contributed paper sessions
proved interesting and valuable. Fach moderator sum-
marized and commented on five papers and then let the
authors respond. The moderators had done their home-
work, and their questions for authors were almost al-
ways right on the mark. Several authors even used the
transparencies made by the moderator to guide their
comments. Invited speakers included Tom Mitchell and
Rich Sutton from machine learning and Chris Brown and
Ramesh Jain from computer vision. Abe Waksman from
the Air Force Office of Scientific Research organized the
panel discussion.

For those interested in the details of individual pa-
pers, the working notes of the meeting are available through
AAATI as technical report FS-93-04. Send electronic mail to
FSS@AAALORG for details.
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When attempting to categorize work on machine
learning for computer vision, one must decide whether
to approach the problem from the perspective of learn-
ing or vision. In this report, we follow both paths, first
describing the tasks for which machine learning holds
potential for aiding vision research, and then describ-
ing challenges that vision presents for work in machine
learning. In each case, we note relevant presentations
from the symposium. In closing, we consider the state
of research on machine learning for computer vision and
recommend some steps that would lead toward a more
mature discipline.

2. Roles for Machine Learning in
Computer Vision

One common definition holds that learning involves the
improvement of performance through the acquisition of
knowledge from experience. In this view, it makes no
sense to talk about learning in the absence of a well-
defined performance task, and a recurring theme dur-
ing workshop discussions was the development of end-
to-end, ‘task-oriented’ vision systems. Some of the vi-
sual tasks to which machine learning might contribute
are object recognition, surface reconstruction, pose de-
termination, and change detection (monitoring).

In many cases, the basic performance task of a vision
system can be viewed as mapping from sensory data (the
input to the problem) to one or more of a set of possible
decisions or actions (the output to the problem). For
example, take the traditional problem of recognizing a
3-D object from a single arbitrary view. In this case, the
input is an image and the desired output is recognition
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and localization of all instances of a known set of object
models that appear in the image. The vision community
would generally accept that the performance of an object
recognition system had improved if there was reduction
in either the error rate for recognition decisions or in the
computation required to arrive at those decisions.

Although research in computer vision aims to develop
complete systems, one can often decompose the overall
performance task into three subtasks.? First, the system
must transform its sensory input to a set of features, that
18, early symbolic or qualitative abstractions of the in-
put. Depending on the system, this process of feature
extraction may infer edges, corners, texture energy, sur-
face normals, surface patches, optic flow vectors, or many
other structures. In the second subtask, the vision sys-
tem must go from inferred features to a set of partially
instantiated entities that it may discern in the sensory
input. This indexing or retrieval process may deal with
models of specific objects, entire classes of objects, pat-
terns of motion, contexts of scenes, or yet other phe-
nomena. Finally, the vision system must go from these
candidate models to decisions about the best models for
the given sensory input, using some model evaluation or
recognition process. Different systems may place differ-
ent relative emphasis on these subtasks, but all systems
must in effect deal with them in some manner. Below we
briefly consider how learning might improve performance
for some of these subtasks.

Improving model evaluation. The model-based recogni-
tion process requires some models of the entities that one
must match against inferred features. Traditional vision
systems have dealt with small sets of models (typically in
the tens), because developers have been forced to enter
their models by hand. However, the vision field aspires
to systems that can recognize thousands of different ob-
jects, and it desires to build them in a reasonable time
and at reasonable costs. Perhaps the most obvious use of
machine learning for vision involves the automated ac-
quisition and refinement of models from training images.
Learning entirely new models can improve recognition
accuracy by increasing the number of objects or classes
covered by the system. Refining existing models can im-
prove accuracy by reducing confusions about similar en-
tities. Most research along these lines has focused on the
acquisition of models of specific objects that incorporate
characteristic views; the learning methods used have dif-
fered widely, but many have dealt with the selection or
weighting of relevant image features. Symposium talks
in this vein were presented by Pope and Lowe, Gros,
Murase and Nayar, Cook et al., and others.

Improving feature extraction. The vision community has
already developed well-defined algorithms for computing
many low-level features (e.g., edges, texture energy, optic

2Some systems, such as the eye-tracking program that
Pomerleau and Baluja presented at the meeting, may be dif-
ficult to decompose along these lines.

flow) from images. Thus, at first glance there appears to
be little benefit in using learning techniques to improve
performance on this task. However, the computation of
all possible features can be an expensive process, and one
can use learning methods to determine which of many
low-level features to compute (feature selection process)
in given situations, and thus improve the efficiency of the
inference process. At the symposium, Viola and Bhan-
daru et al. each presented work of this general nature.
The knowledge acquired during learning can make the
computation of one feature conditional on the results of
other feature extractions or on more global factors, such
as whether the image was taken on a cloudy or clear
day. Murphy presented an approach that incorporated
this latter idea.

Improving indexing. Given a set of inferred features and
a set of stored models, one could in principle find all in-
stantiations of each model, evaluate each of them in turn,
and select the best ones. However, computational con-
siderations make this impractical even for small numbers
of models. Typically, vision systems use some scheme to
index models in terms of low-level features, letting them
generate a set of instantiated candidate models with rel-
atively little cost. One can create such indices manu-
ally, which can be a time-consuming process, or one can
use machine learning methods to generate them auto-
matically. Better indices can lead to either reduction in
retrieval costs, as in the work described by Draper, or
more accurate retrieval of candidate models, as in Beis
and Lowe’s work on indexing for occluded objects. Other
presentations on this topic were given by Mann and Jep-
son and by Remagnino, Bober, and Kittler.

Not all symposium talks focused on learning knowl-
edge for use in vision. A few researchers took a different
approach, using the output of a vision system as train-
ing data for learning on an entirely distinct performance
task. Tkeuchi, Mitchell, and Salganicoff presented work
along these lines that used visual feedback as the source
of information in learning for robotic planning and con-
trol. For example, Ikeuchi’s technique acquires assembly
plans by observing a video sequence of a human operator
performing the assembly task. These efforts serve to il-
lustrate that, although learning clearly holds promise for
improving the performance of vision systems, we should
also remember that vision can provide useful input for
machine learning.

3. Challenges to Machine Learning from
Computer Vision

The goal of improving the performance of computer vi-
sion systems presents a number of challenges to the field
of machine learning. Here we outline the more promi-
nent issues and note examples of progress represented at
the symposium.
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Structured representations.  Algorithms for machine
learning are typically designed to operate with flat
attribute-value formalisms. Yet most research on com-
puter vision assumes that knowledge about an image has
inherent structure, and thus represents information at
multiple levels of aggregation. For instance, many vision
systems make inferences about edges, corners, surface
regions, object components, and the spatial relations
among those components. Recent work on inductive
logic programming within the machine learning commu-
nity only partly addresses this issue, and such methods
are not yet robust. In the symposium, papers by Sen-
gupta and Boyer, Pope and Lowe, and Conklin dealt
directly with learning over structured descriptions, and
additional attempts to adapt learning techniques to vi-
sual domains should produce more work in this area.

Handling uncertainty. Many learning algorithms rep-
resent acquired knowledge in logical terms that either
match or mismatch a given instance, and even more as-
sume that the features of instances are certain. However,
many aspects of visual domains are inherently uncer-
tain; edge detectors can give quite different results for
very similar images, and variations in perspective and
lighting can also introduce considerable ambiguity. Some
induction algorithms operate with probabilistic descrip-
tions, and others achieve similar effects by other means,
but we predict that serious attempts to use learning in
vision will produce more work along these lines. Sym-
posium papers by Segen, Pope and Lowe, and Sengupta
and Boyer provided examples of this approach.

Partial information. Most work on machine learning as-
sumes that all features are present during both training
and testing. In contrast, images seldom contain all the
information that would be useful in vision. For example,
the object of interest in a scene may be partly occluded,
and even when this does not occur, an image reveals only
one side of an object. Learning researchers have adapted
many of their algorithms to handle some missing infor-
mation, but they seldom examine the effect of removing
half of the available features, as vision tasks will force
them to do. Contributions to the symposium from Beis
and Lowe and from Gros began to deal with this issue,
but much more work remains to be done.

Focusing attention. The performance components asso-
ciated with most learning algorithms assume that infor-
mation about instances falls outside the system’s control,
and that no costs are involved in collecting such infor-
mation. One recent body of work in computer vision
assumes exactly the opposite, that focusing attention is
central to the processes of visual inference and recog-
nition. Some approaches focus computational resources
on useful parts of an image; others actually direct the
collection of images over time. A few efforts in machine
induction have attempted to learn strategies for focus-
ing attention, but we can expect many more examples to
emerge as work progresses at the intersection of machine

learning and computer vision. The papers by Draper and
by Remagnino et al. dealt with learning in this context.

Incremental learning. Typical machine learning tech-
niques process training instances in a nonincremental
manner, using statistical regularities to direct search
through the space of hypotheses. Although one can col-
lect images for processing of this sort, a more natural
approach attempts to learn incrementally from images
as they are encountered. For instance, the vision system
for an autonomous vehicle would encounter images over
time, and it might attempt to learn from each one as
it becomes available. There exists some work on incre-
mental induction, but we predict that serious attention
to vision tasks will increase efforts in this direction. Pope
and Lowe, Conklin, and Segen presented papers at the
symposium on this topic.

Learning with many classes. The majority of supervised
induction techniques have been designed to handle only
a few classes, and even unsupervised methods are sel-
dom tested on domains with many different categories.
Most existing vision systems also deal with small num-
bers of classes, but the field’s long-term goal requires
the ability to discriminate among thousands of different
object classes. Before machine learning can contribute
to achieving this goal, it must develop algorithms that
scale well along this dimension. Unfortunately, none of
the symposium papers presented significant progress on
this front.

Dealing with large spaces. Vision systems often depend
on parameters that one must tune to obtain reasonable
performance, and the size of the resulting parameter
space can be very large. Although methods for param-
eter tuning have a long history within machine learn-
ing, computer vision requires more robust techniques
that scale well to high-dimensional spaces. One sym-
posium paper, by Bhanu, Lee, and Das, focused on such
a parameter-tuning task.

In summary, machine learning must address a variety of
issues before it can make a significant contribution to
computer vision. FEach of these problems has received
some attention within the learning community, but a fo-
cus on visual domains would force researchers to develop
more robust algorithms and evaluate them in more real-
istic settings.

4. Future Research on Vision and
Learning

The Raleigh meeting revealed an emerging research com-
munity that has considerable energy and that has pro-
duced many promising ideas. However, it also showed an
area with little common terminology, poor knowledge of
related work, and not enough concern for careful evalua-
tion. To be fair, such characteristics are typical of most
young disciplines, and one should not expect significant
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collaborations from scientists in traditionally separate
areas to blossom overnight. Nevertheless, research at
the intersection of machine learning and computer vi-
sion must significantly improve the quality of its work
before 1t can be recognized as a mature field.

One approach to raising standards is to establish re-
quirements for an acceptable research paper on learning
in vision. We believe that the typical paper should in-
clude five main features:

e Specify the performance and learning tasks that are
the focus of the research, clearly distinguishing be-
tween the two aspects and stating each in terms of
inputs and outputs.

e Describe the representation for both the data given to
the learning system and the acquired knowledge that
it generates.

e FErplain the performance and learning algorithms in
enough detail to allow reimplementation. If space al-
lows, include pseudocode and an extended example of
the system in operation.

e Fvaluate the learning algorithm in terms of improve-
ment on the performance task, giving experimental
evidence that the system gets better with experience.

e Place the approach in context, discussing its relation
to other work (including non-learning approaches to
vision) and noting its limitations.

We believe that papers containing such features will
constitute clear contributions to research on vision and
learning, and that those working in this area should
strive to meet these criteria.

As indicated above, we believe that experimental stud-
ies must play a central role in the evaluation of visual
learning. Such studies should include one or more well-
defined measures of performance that serve as dependent
variables. Note that 1t is easy to define performance
measures at the system level. The challenge for the re-
searchers is to define measures at the algorithm level.
The most obvious measures are recognition accuracy and
processing time, but others are possible. Equally impor-
tant, studies must measure performance on a set of test
cases that are distinct from the instances used during
training. Otherwise, the experiment evaluates nothing
more than a system’s ability to memorize the training
set. Moreover, to ensure against fortuitous splitting of
images into training and test sets, results should be av-
eraged over different random partitions.

An experiment must also vary one or more indepen-
dent variables to determine its effect on the dependent
measures. In studies of learning and vision, there are
three main types of independent factors that affect per-
formance. The first involves the number of training cases
available to the learner; plotting performance as a func-
tion of this variable gives a learning curve, which shows
whether the system improves with experience and, if so,

the rate of such improvement. A second type of inde-
pendent variable concerns the learning system itself; ex-
periments that vary this factor, sometimes called com-
parative studies, relate the learning behavior of differ-
ent algorithms or measure the contribution of specific
components or parameters within a given method. Fi-
nally, one can vary aspects of the domain, such as the
amount of occlusion, the number of objects in images,
and the number of classes being learned. Such domain
studies are important in evaluating an algorithm’s ability
to scale along dimensions that make vision tasks difficult.

Clearly, one cannot study vision or learning without
focusing on particular domains. One factor that has en-
couraged experimentation within the machine learning
community has been the collection of public data sets
that are available by ftp from a central site. The avail-
ability of visual data should have the same impact on
the study of visual learning. Images are the most obvi-
ous type of data, but other forms of shared information
are also possible. For example, the ARPA-sponsored Im-
age Understanding Environment will provide a common
protocol for exchanging and distributing vision data at
many different levels of abstraction.® This should reduce
the overhead required for comparative studies of differ-
ent vision learning techniques.

In summary, it 1s clear that computer vision and
machine learning have much to contribute to each
other. The Fall Symposium on Machine Learning and
Computer Vision brought together a community of re-
searchers who are excited about the great potential of
the area, but it also revealed that the area has a long
road to travel before realizing that potential. Neverthe-
less, the symposium laid a good foundation for future
work on this promising topic, and we hope that future
meetings will produce more significant results on vision
and learning.
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