
From Proceedings of the AAAI Fall Symposium on Relevance (1994). New Orleans, LA: AAAI Press.Selection of Relevant Features in Machine LearningPat Langley (Langley@flamingo.stanford.edu)Institute for the Study of Learning and Expertise2451 High Street, Palo Alto, CA 94301AbstractIn this paper, we review the problem of selecting rele-vant features for use in machine learning. We describethis problem in terms of heuristic search through aspace of feature sets, and we identify four dimensionsalong which approaches to the problem can vary. Weconsider recent work on feature selection in terms ofthis framework, then close with some challenges forfuture work in the area.1. The Problem of Irrelevant FeaturesThe selection of relevant features, and the elimina-tion of irrelevant ones, is a central problem in machinelearning. Before an induction algorithm can move be-yond the training data to make predictions about noveltest cases, it must decide which attributes to use inthese predictions and which to ignore. Intuitively, onewould like the learner to use only those attributes thatare `relevant' to the target concept.There have been a few attempts to de�ne `relevance'in the context of machine learning, as John, Kohavi,and P
eger (1994) have noted in their review of thistopic. Because we will review a variety of approaches,we do not take a position on this issue here. We willfocus instead on the task of selecting relevant features(however de�ned) for use in learning and prediction.Many induction methods attempt to deal directlywith the problem of attribute selection, especially onesthat operate on logical representations. For instance,techniques for inducing logical conjunctions do littlemore than add or remove features from the conceptdescription. Addition and deletion of single attributesalso constitute the basic operations of more sophisti-cated methods for inducing decision lists and decisiontrees. Some nonlogical induction methods, like thosefor neural networks and Bayesian classi�ers, insteaduse weights to assign degrees of relevance to attributes.And some learning schemes, such as the simple nearestneighbor method, ignore the issue of relevance entirely.We would like induction algorithms that scale wellto domains with many irrelevant features. More specif-ically, we would like the sample complexity (the num-ber of training cases needed to reach a given level of

accuracy) to grow slowly with the number of irrele-vant attributes. Theoretical results for algorithms thatsearch restricted hypothesis spaces are encouraging.For instance, the worst-case number of errors madeby Littlestone's (1987) Winnow method grows onlylogarithmically with the number of irrelevant features.Pazzani and Sarrett's (1992) average-case analysis forWholist, a simple conjunctive algorithm, and Lang-ley and Iba's (1993) treatment of the naive Bayesianclassi�er, suggest that their sample complexities growat most linearly with the number of irrelevant features.However, the theoretical results are less optimisticfor induction methods that search a larger space ofconcept descriptions. For example, Langley and Iba's(1993) average-case analysis of simple nearest neighborindicates that its sample complexity grows exponen-tially with the number of irrelevant attributes, evenfor conjunctive target concepts. Experimental stud-ies of nearest neighbor are consistent with this conclu-sion, and other experiments suggest that similar resultshold even for induction algorithms that explicitly se-lect features. For example, the sample complexity fordecision-tree methods appears to grow linearly withthe number of irrelevants for conjunctive concepts, butexponentially for parity concepts, since the evaluationmetric cannot distinguish relevant from irrelevant fea-tures in the latter situation (Langley & Sage, in press).Results of this sort have encouraged machine learn-ing researchers to explore more sophisticated methodsfor selecting relevant features. In the sections that fol-low, we present a general framework for this task, andthen consider some recent examples of work on thisimportant problem.2. Feature Selection as Heuristic SearchOne can view the task of feature selection as a searchproblem, with each state in the search space specifyinga subset of the possible features. As Figure 1 depicts,one can impose a partial ordering on this space, witheach child having exactly one more feature than itsparents. The structure of this space suggests that anyfeature selection method must take a stance on fourbasic issues that determine the nature of the heuristicsearch process.
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Figure 1. Each state in the space of feature subsets speci�es the attributes to use during induction. Note that the states inthe space (in this case involving four features) are partially ordered, with each of a state's children (to the right) includingone more attribute (dark circles) than its parents.First, one must determine the starting point in thespace, which in turn determines the direction of search.For instance, one might start with no features andsuccessively add attributes, or one might start withall attributes and successively remove them. The for-mer approach is sometimes called forward selection,whereas the latter is known as backward elimination.One might also select an initial state somewhere in themiddle and move outward from this point.A second decision involves the organization of thesearch. Clearly, an exhaustive search of the space isimpractical, as there exist 2a possible subsets of a at-tributes. A more realistic approach relies on a greedymethod to traverse the space. At each point in thesearch, one considers local changes to the current set ofattributes, selects one, and then iterates, never recon-sidering the choice. A related approach, known as step-wise selection or elimination, considers both addingand removing features at each decision point, whichlets one retract an earlier decision without keeping ex-plicit track of the search path. Within these options,one can consider all states generated by the operatorsand then select the best, or one can simply choose the�rst state that improves accuracy over the current set.One can also replace the greedy scheme with more so-phisticated methods, such as best-�rst search, whichare more expensive but still tractable in some domains.A third issue concerns the strategy used to evaluatealternative subsets of attributes. One broad class ofstrategies considers attributes independently of the in-duction algorithm that will use them, relying on gen-eral characteristics of the training set to select somefeatures and exclude others. John, Kohavi, and P
eger

(1994) call these �lter methods, because they �lter outirrelevant attributes before the induction process oc-curs. They contrast this approach with wrapper meth-ods, which generate a set of candidate features, run theinduction algorithm on the training data, and use theaccuracy of the resulting description to evaluate thefeature set. Within this approach, one must still picksome estimate for accuracy, but this choice seems lesscentral than settling on a �lter or wrapper scheme.Finally, one must decide on some criterion for haltingsearch through the space of feature subsets. Within thewrapper framework, one might stop adding or remov-ing attributes when none of the alternatives improvesthe estimate of classi�cation accuracy, one might con-tinue to revise the feature set as long as accuracy doesnot degrade, or one might continue generating can-didate sets until reaching the other end of the searchspace and then select the best. Within the �lter frame-work, one criterion for halting notes when each combi-nation of values for the selected attributes maps ontoa single class value. Another alternative simply ordersthe features according to some relevancy score, thenuses a system parameter to determine the break point.Note that the above methods for feature selectioncan be combined with any induction algorithm to in-crease its learning rate in domains with irrelevant at-tributes. The e�ect on behavior may di�er for di�erentinduction techniques and for di�erent target concepts,in some cases producing little bene�t and in others giv-ing major improvement. But the basic idea of search-ing the space of feature sets is conceptually and practi-cally distinct from the speci�c induction method thatbene�ts from the feature-selection process.



Feature Selection in Machine Learning 33. Recent Work on Feature SelectionThe problem of feature selection has long been an ac-tive research topic within statistics and pattern recog-nition (e.g., Devijver & Kittler, 1982), but most workin this area has dealt with linear regression. In the pastfew years, feature selection has received considerableattention from machine learning researchers interestedin improving the performance of their algorithms.The earliest approaches to feature selection withinmachine learning emphasized �ltering methods. Forexample, Almuallim and Dietterich's (1991) Focus al-gorithm starts with an empty feature set and carriesout breadth-�rst search until it �nds a minimal combi-nation of features that predicts pure classes. The sys-tem then passes the reduced feature set to ID3, whichconstructs a decision tree to summarize the trainingdata. Schlimmer (1993) described a related approachthat carries out a systematic search (to avoid revisitingstates) through the space of feature sets, again startingwith the empty set and adding features until it �nds acombination consistent with the training data.Kira and Rendell (1992) used a quite di�erent schemefor �ltering attributes. Their Relief algorithm as-signs a weight to each feature that re
ects its abilityto distinguish among the classes, then selects those fea-tures with weights that exceed a user-speci�ed thresh-old. The system then uses ID3 to induce a decisiontree from the training data using only the selected fea-tures. Relief does not quite �t into our framework,as it imposes a linear ordering on the features ratherthan searching the partially ordered space of featuresets. Kononenko (1994) reports two extensions to themethod that handle non-Boolean attributes, and Doak(1992) has explored similar approaches to the problem.AlthoughFocus andRelief follow feature selectionwith decision-tree construction, one can also combinethe former with other inductionmethods. For instance,Cardie (1993) used a �ltering approach to identify asubset of features for use in nearest neighbor retrieval,whereas Kubat, Flotzinger, and Pfurtscheller (1993)�ltered features for use with a naive Bayesian classi�er.Both used C4.5 to construct a decision tree from thedata, but only to determine the features to be passedto their primary induction methods.Most recent research on feature selection di�ers fromthese early methods by relying on wrapper strategiesrather than �ltering schemes. The general argumentfor wrapper approaches is that the induction methodthat will use the feature subset should provide a betterestimate of accuracy than a separate measure that mayhave an entirely di�erent inductive bias. John, Kohavi,and P
eger (1994) were the �rst to present the wrap-per idea as a general framework for feature selection.Their own work has emphasized its combination withdecision-tree methods, but they also encourage its usewith other induction algorithms.

The generic wrapper technique must still use somemeasure to select among alternative features. Onenatural scheme involves running the induction algo-rithm over the entire training data using a given set offeatures, then measuring the accuracy of the learnedstructure on the training data. However, John et al. ar-gue convincingly that a cross-validation method, whichthey use in their implementation, provides a bettermeasure of expected accuracy on novel test cases.John et al. also review existing de�nitions of rele-vance in the context of machine learning and proposea new de�nition that overcomes some problems withearlier ones. In addition, they describe feature selec-tion in terms of heuristic search and review a varietyof methods that, although designed for �lter schemes,also work within the wrapper approach. Finally, theycarry out systematic experiments on a variety of searchmethods within the wrapper model, varying the start-ing point and the available operators.The major disadvantage of wrapper methods over �l-ter methods is the former's computational cost, whichresults from calling the induction algorithm for eachfeature set considered. This cost has led some re-searchers to invent ingenious techniques for speedingthe evaluation process. In particular, Caruana andFreitag (1994) devised a scheme for caching decisiontrees that substantially reduces the number of treesconsidered during feature selection, which in turn letstheir algorithm search larger spaces in reasonable time.Moore and Lee (1994) describe an alternative schemethat instead speeds feature selection by reducing thepercentage of training cases used during evaluation.Like John et al., Caruana and Freitag review a num-ber of greedy methods that search the space of featuresets and report on comparative experiments that varythe starting set and the operators. However, their con-cern with e�ciency also led them to examine the trade-o� between accuracy and computational cost. More-over, their motivation for exploring feature-selectionmethods was more strict than dealing with irrelevantattributes. Their aimwas to �nd sets of attributes thatare useful for induction and prediction.Certainly not all work within the wrapper frame-work has focused on decision-tree induction. Langleyand Sage's (1994a) Oblivion algorithm combines thewrapper idea with the simple nearest neighbor method.Their system starts with all features and iteratively re-moves the one that leads to the greatest improvementin accuracy, continuing until the estimated accuracyactually declines. Aha and Bankert (1994) take a simi-lar approach to augmenting nearest neighbor, but theirsystem starts with a randomly selected subset of fea-tures and includes an option for beam search ratherthan greedy decisions. Skalak's (1994) work on near-est neighbor also starts with a random feature set, butreplaces greedy search with random hill climbing thatcontinues for a speci�ed number of cycles.



Feature Selection in Machine Learning 4Table 1. Characterization of recent work on feature selection in terms of heuristic search through the space of feature sets.Authors (System) Starting Search Evaluation HaltingPoint Control Scheme CriterionAha and Bankert (Beam) Random Comparison Comparison No BetterAlmuallim/Dietterich (Focus) None Breadth First Filter ConsistencyCardie None Greedy Filter ConsistencyCaruana and Freitag (CAP) Comparison Greedy Wrapper All UsedDoak Random Ordering Filter ThresholdJohn, Kohavi, and Pfleger Comparison Greedy Comparison No BetterKira and Rendell (Relief) | Ordering Filter ThresholdKubat et al. None Greedy Filter ConsistencyLangley/Sage (Oblivion) All Greedy Wrapper WorseLangley/Sage (Selective Bayes) None Greedy Wrapper WorseMoore and Lee (Race) Comparison Greedy Wrapper No BetterSchlimmer None Systematic | ConsistencySkalak Random Mutation Wrapper Enough TimesTownsend-Weber and Kibler All Comparison Wrapper No BetterMost research on wrapper methods has focused onclassi�cation, but both Moore and Lee (1994) and Town-send-Weber and Kibler (1994) have combined this ideawith k nearest neighbor for numeric prediction. Also,most work has emphasized the advantages of featureselection for induction methods that are sensitive toirrelevant features, but Langley and Sage (1994b) haveshown that the naive Bayesian classi�er, which is sensi-tive to redundant attributes, can bene�t from the samebasic approach. This suggests that techniques for fea-ture selection can improve the behavior of inductionalgorithms in a variety of situations, not only in thepresence of irrelevant attributes.4. Challenges for Future ResearchDespite the recent activity, and the associated progress,in methods for selecting relevant features, there remainmany directions in which machine learning can improveits study of this important problem. One of the mosturgent involves the introduction of more challengingdata sets. Almost none of the domains studied to datehave involved more than 40 features. One exception isAha and Bankert's study of cloud classi�cation, whichused 204 attributes, but typical experiments have dealtwith many fewer features.Moreover, Langley and Sage's results with the near-est neighbor method suggest that many of the UCIdata sets have few if any irrelevant attributes. In hind-sight, this seems natural for diagnostic domains, inwhich experts tend to ask about relevant features andignore other ones. However, we believe that many real-world domains do not have this character, and that wemust �nd data sets with a substantial fraction of irrel-

evant attributes if we want to test our ideas on featureselection adequately.Experiments with arti�cial data also have importantroles to play in the study of feature-selection methods.Such data sets can let one systematically vary factors ofinterest, such as the number of relevant and irrelevantattributes, while holding other factors constant. In thisway, one can directly measure the sample complexityof algorithms as a function of these factors, showingtheir ability to scale to domains with many irrelevantfeatures. However, we distinguish between the use ofarti�cial data for such systematic experiments and re-liance on isolated arti�cial data sets (such as the Monksproblems), which seem much less useful.More challenging domains, with more features and ahigher proportion of irrelevant ones, will require moresophisticated methods for feature selection. Althoughfurther increases in e�ciency would increase the num-ber of states examined, such constant-factor improve-ments cannot eliminate problems caused by exponen-tial growth in the number of feature sets. However,viewing these problems in terms of heuristic search sug-gests some places to look for solutions. In general, wemust:� invent more intelligent techniques for selecting aninitial set of features fromwhich to start the search;� formulate search-control methods that take ad-vantage of structure in the space of feature sets;� devise improved frameworks (better even than thewrapper method) for evaluating the usefulness ofalternative feature sets;� design better halting criteria that will improve ef-�ciency without sacri�cing useful feature sets.
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