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Selecting Relevant Features and Examples Page 11. IntroductionAs Machine Learning aims to address larger, more complex tasks, the problem of focusing on the mostrelevant information in a potentially overwhelming quantity of data has become increasingly important. Forinstance, data mining of corporate or scienti�c records often involves dealing with both many features andmany examples, and the internet and World Wide Web have put a huge volume of low-quality informationat the easy access of a learning system. Similar issues arise in the personalization of �ltering systems forinformation retrieval, electronic mail, netnews, and the like.In this paper, we address two speci�c aspects of this \focusing" task that have received signi�cant attentionin the AI literature: the problem of focusing on the most relevant features for use in representing the data,and the problem of selecting the most relevant examples to drive the learning process. We review recent workon these topics, presenting general frameworks that we use to compare and contrast di�erent approaches.We begin with the problem of focusing on relevant features. In Section 2 we present and relate severalimportant notions of `relevance' for this task and describe some general goals of feature selection algorithms.We report on methods that have been developed for this problem, characterizing them as `embedded', `�lter',or `wrapper' approaches, and we compare explicit feature selection techniques to those based on weightingschemes. We then turn (in Section 3) to the problem of focusing on relevant examples, describing methodsfor �ltering both labeled and unlabeled data. We conclude (in Section 4) with open problems and challengesfor future work, on both the empirical and theoretical fronts.Before proceeding, we should clarify the scope of our survey, which focuses on methods and results fromcomputational learning theory and experimental machine learning. There has been substantial work onfeature selection in other �elds such as pattern recognition and statistics, and on data selection in �elds suchas statistics, information theory, and the philosophy of science. Although we do not have the space to coverthe work in these areas, readers should be aware that there are many similarities to the approaches that wewill discuss.2. The Problem of Irrelevant FeaturesAt a conceptual level, one can divide the task of concept learning into two subtasks: deciding which featuresto use in describing the concept and deciding how to combine those features. In this view, the selection ofrelevant features, and the elimination of irrelevant ones, is one of the central problems in machine learning,and many induction algorithms incorporate some approach to addressing it.At a practical level, we would like induction algorithms that scale well to domains with many irrelevantfeatures. More speci�cally, as one goal we would like the number of training examples needed to reach adesired level of accuracy, often called the sample complexity, to grow slowly with the number of featurespresent, if indeed not all these are needed to achieve good performance. For instance, it is not uncommon ina text classi�cation task to represent examples using 104 to 107 attributes, with the expectation that only asmall fraction of these are crucial (Lewis, 1992a; Lewis, 1992b). In recent years, a growing amount of workin machine learning { both experimental and theoretical in nature { has focused on developing algorithmswith such desirable properties.Induction algorithms di�er considerably in their emphasis on focusing on relevant features. At one extremelies the simple nearest neighbor method, which classi�es test instances by retrieving the nearest storedtraining example, using all available attributes in its distance computations. Although Cover and Hart (1967)showed that this approach has excellent asymptotic accuracy, a little thought reveals that the presence ofirrelevant attributes should considerably slow the rate of learning. In fact, Langley and Iba's (1993) average-case analysis of simple nearest neighbor indicates that number of training examples needed to reach a



Page 2 Selecting Relevant Features and Examplesgiven accuracy (similar to the PAC notion of sample complexity) grows exponentially with the number ofirrelevant attributes, even for conjunctive target concepts. Experimental studies of nearest neighbor (Aha,1990; Langley & Sage, 1997) are consistent with this discouraging conclusion.At the other extreme lie induction methods that explicitly attempt to select relevant features and rejectirrelevant ones. Techniques for learning logical descriptions constitute the simplest example of this approach,and there are more sophisticated methods for identifying relevant attributes that can augment and improveany induction method, including nearest neighbor. Theoretical and experimental results for these methodsare much more encouraging. For instance, theoretical results show that if, by focusing on only a smallsubset of features, an algorithm can signi�cantly reduce the number of hypotheses under consideration, thenthere is a corresponding reduction in the sample size su�cient to guarantee good generalization (Blumeret al., 1987). Somewhat in the middle of the above two extremes are feature-weighting methods that do notexplicitly select subsets of features, but still aim to achieve good scaling behavior.We structure the remainder of this section as follows. We begin by describing several important formalnotions of `relevance' in the context of supervised learning. In addition to introducing terminology, thesede�nitions help to illustrate some of the general goals of feature selection algorithms. We then turn todiscussing some of the methods that have been developed for this problem, characterizing them as either`embedded', `�lter', or `wrapper' approaches, based on the relation between the selection scheme and the basicinduction algorithm. This decomposition in part reects historical trends, but it also helps for comparingapproaches that may seem to be very di�erent, but can be seen to belong to the same category and thereforein certain ways have similar motivations. We also compare explicit feature selection techniques to thosebased on weighting schemes, which tackle the same problem from a somewhat di�erent perspective.2.1 De�nitions of `Relevance'There are a number of di�erent de�nitions in the machine learning literature for what it means for featuresto be `relevant'. The reason for this variety is that it generally depends on the question: \relevant to what?"More to the point, di�erent de�nitions may be more appropriate depending on one's goals. Here, we describeseveral important de�nitions of relevance, and discuss their signi�cance. In doing so, we hope to illustratesome of the issues involved and some of the variety of motivations and approaches taken in the literature.For concreteness, let us consider a setting in which there are n features or attributes used to describeexamples and each feature i has some domain Fi. For instance, a feature may be Boolean (is red?),discrete with multiple values (what color?), or continuous (what wavelength?). An example is a point inthe instance space F1 � F2 � : : :� Fn. The learning algorithm is given a set S of training data, where eachdata point is an example paired with an associated label or classi�cation (which might also be Boolean,multiple valued, or continuous).Although the learning algorithm sees only the �xed sample S, it is often helpful to postulate two additionalquantities, as is done in the PAC learning model (e.g., see Kearns & Vazirani, 1994): a probability distributionD over the instance space, and a target function c from examples to labels. We then model the sample Sas having been produced by repeatedly selecting examples from D and then labeling them according to thefunction c. The target function c may be deterministic or probabilistic: in the latter case, for some exampleA, c(A) would be a probability distribution over labels rather than just a single label. Note that we can usethe distribution D to model \integrity constraints" in the data. For instance, suppose we are representing adecimal digit by nine boolean features such that feature i is 1 if the digit is greater than or equal to i. Wecan model this by having D assign examples such as 101010101 the probability zero (even though the targetfunction c is still de�ned on such examples).



Selecting Relevant Features and Examples Page 3Given this setup, perhaps the simplest notion of relevance is a notion of being \relevant to the targetconcept".De�nition 1 (Relevant to the target) A feature xi is relevant to a target concept c if there exists a pairof examples A and B in the instance space such that A and B di�er only in their assignment to xi andc(A) 6= c(B).Another way of stating this de�nition is that feature xi is relevant if there exists some example in the instancespace for which twiddling the value of xi a�ects the classi�cation given by the target concept.Notice that this notion has the drawback that the learning algorithm, given access to only the sampleS, cannot necessarily determine whether or not some feature xi is relevant. Even worse, if the encoding offeatures is redundant (say every feature is repeated twice), it may not even be possible to see two examplesthat di�er in only one feature, since at least one of those examples would have probability zero under D. Onthe other hand, this is often the de�nition of choice for theoretical analyses of learning algorithms, wherethe notion of relevance is used to prove some convergence properties of an algorithm, rather than in thealgorithm itself. The de�nition also is useful in situations where the target function c is a real object thatthe learning algorithm can actively query at inputs of its own choosing (e.g., if the learning algorithm istrying to reverse engineer some piece of hardware) rather than just a convenient �ction.To remedy some of the drawbacks of the above de�nition, John, Kohavi, and Peger (1994) de�ne two no-tions of what might be termed \relevance with respect to a distribution," which also has a nice interpretationas a notion of \relevance with respect to a sample".De�nition 2 (Strongly Relevant to the sample/distribution) A feature xi is strongly relevant to sam-ple S if there exist examples A and B in S that di�er only in their assignment to xi and have di�erent labels(or have di�erent distributions of labels if they appear in S multiple times). Similarly, xi is strongly relevantto target c and distribution D if there exist examples A and B having non-zero probability over D that di�eronly in their assignment to xi and satisfy c(A) 6= c(B).In other words, this is just like De�nition 1 except A and B are now required to be in S (or have non-zeroprobability).De�nition 3 (Weakly Relevant to the sample/distribution) A feature xi is weakly relevant to sam-ple S (or to target c and distribution D) if it is possible to remove a subset of the features so that xi becomesstrongly relevant.These notions of relevance are useful from the viewpoint of a learning algorithm attempting to decide whichfeatures to keep and which to ignore. Features that are strongly relevant are generally important to keep nomatter what, at least in the sense that removing a strongly relevant feature adds ambiguity to the sample.Features that are weakly relevant may or may not be important to keep depending on which other featuresare ignored. In practice, one may wish to adjust these de�nitions to account for statistical variations. Forinstance, a special case of De�nition 3 is that feature xi is weakly relevant if it is correlated with the targetfunction (i.e., xi is strongly relevant when all other features are removed), so given a �nite sample, one wouldwant to account for variance and statistical signi�cance.In a somewhat di�erent vein than the above de�nitions, in many cases rather than caring about exactlywhich features are relevant, we simply want to use relevance as a measure of complexity. That is, we want touse relevance to say how \complicated" a function is, and rather than requiring our algorithm to explicitlyselect a subset of features, we just want it to perform well when this quantity is low. For this purpose,another notion of relevance as a complexity measure with respect to a sample of data S and a set of conceptsC is useful:



Page 4 Selecting Relevant Features and ExamplesDe�nition 4 (Relevance as a complexity measure) Given a sample of data S and a set of conceptsC, let r(S;C) be the number of features relevant using De�nition 1 to a concept in C that, out of all thosewhose error over S is least, has the fewest relevant features.In other words, we are asking for the smallest number of features needed to achieve optimal performance overS via a concept in C. The reason for specifying the concept class C is that there may be a feature, such as aperson's social-security number, that is highly relevant from the point of view of the information contained,but that is useless with respect to the sorts of concepts under consideration. For additional robustness, thisde�nition is sometimes modi�ed to allow concepts in C with \nearly" minimal error over S, if this producesa smaller relevant set.The above notions of relevance are independent of the speci�c learning algorithm being used. There isno guarantee that just because a feature is relevant, it will necessarily be useful to an algorithm (or viceversa). Caruana and Freitag (1994b) make this explicit with a notion of what we might term \incrementalusefulness" (and which they simply call \usefulness"):De�nition 5 (Incremental usefulness) Given a sample of data S, a learning algorithm L, and a featureset A, feature xi is incrementally useful to L with respect to A if the accuracy of the hypothesis that Lproduces using the feature set fxig [ A is better than the accuracy achieved using just the feature set A.This notion is especially natural for feature-selection algorithms that search the space of feature subsets byincrementally adding or removing features to their current set | for instance, many that follow the generalframework described in Section 2.2 below.To make these de�nitions more clear, consider concepts that can be expressed as disjunctions of features(e.g., x1 _ x3 _ x7), and suppose that the learning algorithm sees these �ve examples:100000000000000000000000000000 +111111111100000000000000000000 +000000000011111111110000000000 +000000000000000000001111111111 +000000000000000000000000000000 -The relevant features using De�nition 1 would depend on the true target concept (though any consistenttarget disjunction c must include the �rst feature). Using De�nitions 2 and 3, we would say that x1 isstrongly relevant and the rest are weakly relevant (note that x2 is weakly relevant because it can be madestrongly relevant by removing x1 and x3; : : : ; x10). Using De�nition 4 we would say simply that there arethree relevant features (r(S;C) = 3), since this is the number of features relevant to the smallest consistentdisjunction. The notion of incremental usefulness in De�nition 5 depends on the learning algorithm but,presumably, given the feature set f1; 2g, the third feature would not be useful but any of features x11 to x30would be. We will revisit the question of how De�nition 5 is related to the others at the end of Section 2.2when we discuss a simple speci�c algorithm.There are a variety of natural extensions one can make to the above de�nitions. For instance, one canconsider relevant linear combinations of features, rather than just relevant individual features. In thiscase, in analogy to De�nition 4 above, one could ask: \What is the lowest-dimensional space such thatprojecting all the examples in S onto that space preserves the existence of a good function in the classC?" This notion of relevance is often most natural for statistical approaches to learning. Indeed, methodssuch as principal component analysis (Jolli�e, 1986) are commonly used as heuristics for �nding these low-dimensional subspaces.
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Figure 1. Each state in the space of feature subsets speci�es the attributes to use during induction. Note that thestates in the space (in this case involving four features) are partially ordered, with each of a state's children(to the right) including one more attribute (dark circles) than its parents.2.2 Feature Selection as Heuristic SearchWe now turn to discussing feature selection algorithms and, more generally, algorithms for dealing withdata sets that contain large numbers of irrelevant attributes. A convenient paradigm for viewing many ofthese approaches (especially those that perform explicit feature selection) is that of heuristic search, witheach state in the search space specifying a subset of the possible features. According to this view, we cancharacterize any feature selection method in terms of its stance on four basic issues that determine the natureof the heuristic search process.First, one must determine the starting point (or points) in the space, which in turn inuences the directionof search and the operators used to generate successor states. As Figure 1 depicts, there is a natural partialordering on this space, with each child having exactly one more feature than its parents. This suggests thatone might start with nothing and successively add attributes, or one might start with all attributes andsuccessively remove them. The former approach is sometimes called forward selection, whereas the latter isknown as backward elimination. One can also use variations on this partial ordering: Devijver and Kittler(1982) report an operator that adds k features and takes one away, and genetic operators like crossoverproduce somewhat di�erent types of connectivity.A second decision involves the organization of the search. Clearly, an exhaustive search of the space isimpractical, as there exist 2a possible subsets of a attributes. A more realistic approach relies on a greedymethod to traverse the space. At each point in the search, one considers local changes to the current setof attributes, selects one, and then iterates. For instance, the hill-climbing approach known as stepwiseselection or elimination considers both adding and removing features at each decision point, which lets oneretract an earlier decision without keeping explicit track of the search path. Within these options, one canconsider all states generated by the operators and then select the best, or one can simply choose the �rst statethat improves accuracy over the current set. One can also replace the greedy scheme with more sophisticatedmethods, such as best-�rst search, which are more expensive but still tractable in some domains.A third issue concerns the strategy used to evaluate alternative subsets of attributes. One commonlyused metric involves an attribute's ability to discriminate among classes that occur in the training data.



Page 6 Selecting Relevant Features and ExamplesMany induction algorithms incorporate a criterion based on information theory, but others directly measureaccuracy on the training set or on a separate evaluation set. A broader issue concerns how the featureselection strategy interacts with the basic induction algorithm, as we discuss shortly in more detail.Finally, one must decide on some criterion for halting the search. For example, one might stop adding orremoving attributes when none of the alternatives improves the estimate of classi�cation accuracy; one mightcontinue to revise the feature set as long as accuracy does not degrade; or, one might continue generatingcandidate sets until reaching the other end of the search space and then select the best. One simple haltingcriterion is to stop when each combination of values for the selected attributes maps onto a single class value,but this assumes noise-free training data. A more robust alternative simply orders the features according tosome relevancy score, then uses a system parameter to determine the break point.Note that the above design decisions must be made for any induction algorithm that carries out featureselection. Thus, they provide useful dimensions for describing the techniques developed to address thisproblem, and we will refer to them repeatedly.To make this more concrete, let us revisit the scenario given at the end of Section 2.1 (we are consideringconcepts expressible as a disjunction of Boolean features) with a simple strategy known as the greedy set-coveralgorithm:Begin with a disjunction of zero features (which by convention outputs \negative" on every example).Then, out of those features not present in any negative example (and thus are \safe" to add into thehypothesis) choose the one whose inclusion into the current hypothesis most increases the number ofcorrectly classi�ed positive examples (breaking ties arbitrarily). Repeat until there are no more \safe"features that would increase the number of correctly classi�ed positives, and then halt.With respect to our framework, this algorithm begins at the leftmost point in Figure 1, incrementallymoves rightward only, evaluates subsets based on performance on the training set with an in�nite penaltyfor misclassifying negative examples, and halts when it can take no further step that strictly improves itsevaluated performance.Given the �ve data points listed at the end of Section 2.1, this algorithm would �rst put in x1, thenperhaps x11, then perhaps x21, and then would halt. It is not hard to see that if there exists a disjunctionconsistent with the training set, then this method will �nd one. In fact, the number of features selectedby this method is at most O(log jSj) times larger than the number of relevant features using De�nition 4(Johnson, 1974; Haussler, 1986).1We can also use this algorithm to illustrate relationships between some of the de�nitions in the previoussection. For instance, the incrementally useful features for this algorithm (De�nition 5) will also be weaklyrelevant (De�nition 3), but the converse is not necessarily true. In fact, if the data is not consistent with anydisjunction, then even strongly relevant features (De�nition 2) may be ignored by the algorithm due to thealgorithm's conservative nature (it ignores any feature that may cause it to misclassify a negative example).On the other hand, if the data is consistent with some disjunction, then all strongly relevant features areincrementally useful (and all will eventually be placed in the algorithm's hypothesis), though the algorithmmay prefer a weakly relevant feature to a strongly relevant one due to its evaluation criterion.We now review some speci�c feature selection methods, which we have grouped into three classes: thosethat embed the selection within the basic induction algorithm, those that use feature selection to �lter featurespassed to induction, and those that treat feature selection as a wrapper around the induction process.1. This is not too hard to see, and follows from the fact that there must always exist some feature to add that captures atleast a 1=r(S;C) fraction of the still-misclassi�ed positive examples. In the other direction, �nding the smallest disjunctionconsistent with a given set of data is NP-hard (Garey & Johnson, 1979); a polynomial-time algorithm to �nd disjunctionsonly c log n times larger than the smallest for c < 1=4 would place NP into quasi-polynomial time (Lund & Yannakakis,1993).



Selecting Relevant Features and Examples Page 72.3 Embedded Approaches to Feature SelectionMethods for inducing logical descriptions provide the clearest example of feature selection methods embeddedwithin a basic induction algorithm. In fact, many algorithms for inducing logical conjunctions (e.g., Mitchell,1982; Vere, 1975; Winston, 1975; and the greedy set-cover algorithm given above) do little more than addor remove features from the concept description in response to prediction errors on new instances. For thesemethods, the partial ordering in Figure 1 also describes the space of hypotheses, and the algorithms typicallyuse this ordering to organize their search for concept descriptions.Theoretical results for learning pure conjunctive (or pure disjunctive) concepts are encouraging. As men-tioned above, the greedy set-cover approach �nds a hypothesis at most a logarithmic factor larger than thesmallest possible. In fact, Warmuth (personal communication) notes that one can achieve slightly betterbounds in the PAC setting by halting earlier so that some training examples are misclassi�ed. Because theresulting hypothesis is guaranteed to be fairly small, the sample complexity grows only logarithmically withthe number of irrelevant features. These results apply directly to other settings in which the target conceptcan be characterized as a conjunction (or disjunction) of a list of functions produced by the induction al-gorithm. Situations of this form include learning intersections of halfspaces in constant-dimensional spaces(Blumer et al., 1989), and algorithms for learning DNF formulas in nO(logn) time under the uniform distri-bution (Verbeurgt, 1990). The above results for the greedy set-cover method are distribution free and worstcase, but Pazzani and Sarrett (1992) report an average-case analysis of even simpler methods for conjunctivelearning that imply logarithmic growth for certain product distributions.Similar operations for adding and removing features form the core of methods for inducing more complexlogical concepts, but these methods also involve routines for combining features into richer descriptions.For example, recursive partitioning methods for induction, such as Quinlan's ID3 (1983) and C4.5 (1993),and CART (Breiman et al. 1984), carry out a greedy search through the space of decision trees, at eachstage using an evaluation function to select the attribute that has the best ability to discriminate amongthe classes. They partition the training data based on this attribute and repeat the process on each subset,extending the tree downward until no further discrimination is possible.Dhagat and Hellerstein (1994) have also extended techniques for greedy set cover in a recursive fashionto apply to more complex functions such as k-term DNF formulas and k-alternation decision lists. Blum(1992) describes methods that can be used even when the set of all attributes is unbounded, so long as eachindividual example satis�es a reasonably small number of them; this is often a good model when dealingwith text documents, for instance, that may each contain only a small number of the possible words inthe dictionary. For all these cases, the feature-selection process is clearly embedded within another, morecomplex algorithm.Separate-and-conquer methods for learning decision lists (Michalski, 1980; Clark & Niblett, 1989; Pagallo& Haussler, 1990) embed feature selection in a similar manner. These techniques use an evaluation functionto select a feature that helps distinguish a class C from others, then add the resulting test to a singleconjunctive rule for C. They repeat this process until the rule excludes all members of other classes, thenremove the members of C that the rule covers and repeat the process on the remaining training cases.Clearly, both partitioning and separate-and-conquer methods explicitly select features for inclusion in abranch or rule, in preference to other features that appear less relevant or irrelevant. For this reason, onemight expect them to scale well to domains that involve many irrelevant features. Although few theoreticalresults exist for these methods, experimental studies by Langley and Sage (1997) suggest that decision-treemethods scale linearly with the number of irrelevant features for certain target concepts, such as logicalconjunctions. However, the same studies also show that, for other targets concepts, they exhibit the same



Page 8 Selecting Relevant Features and Examplesexponential growth as does nearest neighbor. Experiments by Almuallim and Dietterich (1991) and by Kiraand Rendell (1992) also show substantial decreases in accuracy, for a given sample size, when irrelevantfeatures are introduced into selected Boolean target concepts.The standard explanation of this e�ect involves the reliance of such algorithms on greedy selection ofattributes to discriminate among classes. This approach works well in domains where there is little interactionamong the relevant attributes, as in conjunctive concepts. However, the presence of attribute interactions,which can lead a relevant feature in isolation to look no more discriminating than an irrelevant one, cancause signi�cant problems for this scheme. Parity concepts constitute the most extreme example of thissituation, but it also arises with other target concepts.2Some researchers have attempted to remedy these problems by replacing greedy search with lookaheadtechniques (e.g., Norton, 1989), with some success. Of course, more extensive search carries with it asigni�cant increase in computational cost. Others have responded by selectively de�ning new features ascombinations of existing ones, so as to make greedy search more powerful by letting it take larger steps (e.g.,Matheus & Rendell, 1989; Pagallo & Haussler, 1990). However, neither approach has been directly evaluatedin terms of its ability to handle large numbers of irrelevant features, either experimentally or theoretically.2.4 Filter Approaches to Feature SelectionA second general approach to feature selection introduces a separate process for this purpose that occursbefore the basic induction step. For this reason, John, Kohavi, and Peger (1994) have termed them �ltermethods, because they �lter out irrelevant attributes before induction occurs. The preprocessing step usesgeneral characteristics of the training set to select some features and exclude others. Thus, �ltering methodsare independent of the induction algorithm that will use their output, and they can be combined with anysuch method.Perhaps the simplest �ltering scheme is to evaluate each feature individually based on its correlation withthe target function (e.g., using a mutual information measure) and then to select the k features with thehighest value. The best choice of k can then be determined by testing on a holdout set. This method iscommonly used in text categorization tasks (Lewis, 1992a; Lewis, 1992b), often in combination with eithera \naive Bayes" or a nearest neighbor classi�cation scheme, and has achieved good empirical success.Kira and Rendell's (1992)Relief algorithm follows this general paradigm but incorporates a more complexfeature-evaluation function. Their system then uses ID3 to induce a decision tree from the training datausing only the selected features. Kononenko (1994) reports two extensions to this method that handle moregeneral types of features.Almuallim and Dietterich (1991) describe a �ltering approach to feature selection that involves a greaterdegree of search through the feature space. Their Focus algorithm looks for minimal combinations ofattributes that perfectly discriminate among the classes. This method begins by looking at each featurein isolation, then turns to pairs of features, triples, and so forth, halting only when it �nds a combinationthat generates pure partitions of the training set (i.e., in which no instances have di�erent classes). Focusthen passes on the original training examples, described using only the selected features, to an algorithm fordecision-tree induction.Comparative studies with a regular decision-tree method showed that, for a given number of training caseson random Boolean target concepts, Focuswas almost una�ected by the introduction of irrelevant attributes,whereas decision-tree accuracy degraded signi�cantly. Schlimmer (1993) describes a related method that2. Note that this problem does not disappear with increasing sample size. Embedded selection methods that rely on greedysearch cannot distinguish between relevant and irrelevant features early in the search process even when the entire instancespace is available.
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Table 1. Characterization of recent work on �lter approaches to feature selection in terms of heuristic search throughthe space of feature sets.Authors (System) Starting Search Halting InductionPoint Control Criterion AlgorithmAlmuallim (Focus) None Breadth First Consistency Dec. TreeCardie None Greedy Consistency Near. Neigh.Koller/Sahami All Greedy Threshold Tree/BayesKira/Rendell (Relief) | Ordering Threshold Dec. TreeKubat et al. None Greedy Consistency Naive BayesSchlimmer None Systematic Consistency NoneSingh/Provan None Greedy No info. gain Bayes Netcarries out systematic search (to avoid revisiting states) through the space of feature sets, again startingwith the empty set and adding features until it �nds a combination consistent with the training data.Although Focus and Relief follow feature selection with decision-tree construction, one can of course useother induction methods. For instance, Cardie (1993) uses �ltering as a preprocessor for nearest neighbor re-trieval, and Kubat, Flotzinger, and Pfurtscheller (1993) �lter features for use with a naive Bayesian classi�er.Interestingly, both used a decision-tree method that relies on an embedded selection scheme as the �lter toproduce a reduced set of attributes. More recently, Singh and Provan (1996) have used information-theoreticmetrics to �lter features for inclusion in a Bayesian network, while Koller and Sahami (1996) have employeda cross-entropy measure, designed to �nd `Markov blankets' of features, for use in both naive Bayes anddecision-tree induction. In a somewhat di�erent vein, Greiner, Grove, and Kogan, in this issue, considersettings where a helpful tutor �lters out conditionally irrelevent attributes.Table 1 characterizes the recent work on �lter methods in terms of the dimensions described earlierin the section, along with the induction algorithm that takes advantage of the reduced feature set. Thetypical results show some improvement over embedded selection methods. Most experiments have focusedon natural domains that contain an unknown number of irrelevant features, but a few researchers (Almuallim& Dietterich, 1990; Kira & Rendell, 1992) have studied experimentally the e�ect of introducing such features.Another class of �lter methods actually constructs higher-order features from the original ones, ordersthem in terms of the variance they explain, and selects the best such features. The statistical techniqueof principal components analysis (Jolli�e, 1986), the best-known example of this approach, generates linearcombinations of features whose vectors are orthogonal in the original space. Empirically, principal com-ponents has successfully reduced dimensionality on a variety of learning tasks. Blum and Kannan (1993)describe theoretical guarantees for methods of this form, when the target function is an intersection ofhalfspaces and the examples are chosen from a su�ciently benign distribution. The related method of inde-pendent component analysis (Comon, 1994) incorporates similar ideas, but insists only that the new featuresbe independent rather than orthogonal.2.5 Wrapper Approaches to Feature SelectionA third generic approach for feature selection also occurs outside the basic induction method but uses thatmethod as a subroutine, rather than as a postprocessor. For this reason, John et al. (1994) refer to these aswrapper approaches (see, also, the paper by Kohavi and John in this issue). The typical wrapper algorithmsearches the same space of feature subsets (see Figure 1) as embedded and �lter methods, but it evaluates



Page 10 Selecting Relevant Features and Examplesalternative sets by running some induction algorithm on the training data and using the estimated accuracyof the resulting classi�er as its metric.3 Actually, the wrapper scheme has a long history within the literatureon statistics and pattern recognition (e.g., Devijver & Kittler, 1982), where the problem of feature selectionhas long been an active research topic, but its use within machine learning is relatively recent.The general argument for wrapper approaches is that the induction method that will use the featuresubset should provide a better estimate of accuracy than a separate measure that may have an entirelydi�erent inductive bias. For example, both Doak (1992) and John et al. (1994) argue in favor of using awrapper method to improve the behavior of decision-tree induction. Doak reports experimental comparisonsof forward selection and backward elimination, as well as the impact of di�erent search-control techniques.John et al. present similar comparative studies, including the e�ect of using wrappers versus �lters. Caruanaand Freitag (1994a) report a third set of empirical studies, also focusing on decision trees, that explorevariations on wrapper methods.The major disadvantage of wrapper methods over �lter methods is the former's computational cost, whichresults from calling the induction algorithm for each feature set considered. This cost has led some researchersto invent ingenious techniques for speeding the evaluation process. In particular, Caruana and Freitagdescribe a scheme for caching decision trees that lets their algorithms search larger spaces in reasonabletime. Moore and Lee (1994) describe an alternative scheme that instead speeds feature selection by reducingthe percentage of training cases used during evaluation.Certainly not all work within the wrapper framework has focused on decision-tree induction. Indeed, onemight expect methods like nearest-neighbor, which by default take into account all attributes, would bene�tmore from feature-selection wrappers than algorithms that themselves incorporate embedded schemes. Thisexpectation has led to a substantial body of work on wrapper methods for nearest-neighbor and case-basedlearning.Let us consider one such approach and its behavior in some detail. Langley and Sage's (1994a) Obliv-ion algorithm combines the wrapper idea with the simple nearest neighbor method, which assigns to newinstances the class of the nearest case stored in memory during learning. The feature-selection process ef-fectively alters the distance metric used in these decisions, taking into account the features judged relevantand ignoring the others.Oblivion carries out a backward elimination search through the space of feature sets, starting with allfeatures and iteratively removing the one that leads to the greatest improvement in estimated accuracy. Thesystem continues this process until the estimated accuracy actually declines. We characterize Oblivion asusing a wrapper method because its evaluation metric involves running nearest neighbor itself on the trainingdata to measure the accuracy with alternative feature sets. In particular, the system uses leave-one-out crossvalidation to estimate the accuracy of each feature set on novel test cases.Although this approach may seem computationally expensive, Oblivion uses an insight from Moore andLee (1994) to make it tractable.4 The leave-one-out technique estimates accuracy on N training cases byholding out each case in turn, constructing a classi�er based on the remaining N � 1 cases, seeing whetherthe classi�er correctly predicts the case, and averaging the results over all N cases. Because nearest neighborsimply stores the training cases in memory, one can implement leave one out by successively removing eachcase and using the remaining ones to classify it. This scheme is no more expensive than estimating accuracyon the training set itself.3. One natural metric involves running the induction algorithm over the entire training data using a given set of features,then measuring the accuracy of the learned structure on the training data. However, John et al. argue convincingly that across-validation method provides a better measure of expected accuracy on novel test cases.4. Kohavi (1995) has incorporated the same idea into his technique for inducing decision tables, which has many similaritiesto Oblivion.
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Table 2. Characterization of recent work on wrapper approaches to feature selection in terms of heuristic searchthrough the space of feature sets.Authors (System) Starting Search Halting InductionPoint Control Criterion AlgorithmAha/Bankert (Beam) Random Comparison No Better Near. Neigh.Caruana/Freitag (CAP) Comparison Greedy All Used Dec. TreeDoak Comparison Comparison Not Enough Better Tree/BayesJohn/Kohavi/Pfleger Comparison Greedy No Better Dec. TreeLangley/Sage (Oblivion) All Greedy Worse Near. Neigh.Langley/Sage (Sel. Bayes) None Greedy Worse Naive BayesMoore/Lee (Race) Comparison Greedy No Better Near. Neigh.Singh/Provan (K2-AS) None Greedy Worse Bayes NetSkalak Random Mutation Enough Times Near. Neigh.Townsend-Weber/Kibler All Comparison No Better Near. Neigh.Langley and Sage designed a number of experiments to evaluate their system. Results with syntheticdomains suggest that, when some features are irrelevant, Oblivion learns high-accuracy classi�ers frommany fewer instances than simple nearest neighbor. However, they also found that this e�ect was absentfrom many of the UCI data sets, suggesting that Holte's (1993) �nding about the accuracy of one-leveldecision trees was due to highly correlated features (which cause no di�culty for nearest neighbor) ratherthan completely irrelevant ones. Oblivion did fare signi�cantly better on classifying chess end games andpredicting a word's semantic class, giving evidence that these domains do contain irrelevant features.Other researchers have also developed wrapper methods for use with nearest neighbor. For instance, Ahaand Bankert (1996) report an a technique much like Oblivion, but their system starts with a randomlyselected subset of features and includes an option for beam search rather than greedy decisions. They reportimpressive improvements on a cloud classi�cation task that involves over 200 numeric features. Skalak's(1994) work on feature selection for nearest neighbor also starts with a random feature set, but replacesgreedy search with random hill climbing that continues for a speci�ed number of cycles.Most research on wrapper methods has focused on classi�cation, but both Moore and Lee (1994) andTownsend-Weber and Kibler (1994) combine this idea with k-nearest neighbor for numeric prediction. Also,most work has emphasized the advantages of feature selection for induction methods that are highly sensitiveto irrelevant features. However, Langley and Sage (1994b) have shown that the naive Bayesian classi�er,which is sensitive to redundant features, can bene�t from the same basic approach (as did Doak's earlierwork). Singh and Provan (1995) have extended this idea to learning more complex Bayesian networks. Thissuggests that techniques for feature selection can improve the behavior of induction algorithms in a varietyof situations, not only in the presence of irrelevant attributes. As Caruana and Freitag (1994b) argue, mostmethods for feature selection focus on �nding attributes that are useful for performance (in the sense ofDe�nition 5), rather than necessarily �nding the relevant ones.Table 2 characterizes the recent e�orts on wrapper methods in terms of the dimensions discussed earlier,as well as the induction method used in each case to direct the search process. The table shows the diversityof techniques that researchers have developed, and the heavy reliance on the experimental comparison ofvariant methods. Unfortunately, few of these experiments directly study the algorithms' ability to deal withincreasing numbers of irrelevant features, and few theoretical results are available for them.



Page 12 Selecting Relevant Features and Examples2.6 Feature Weighting MethodsSo far, we have discussed algorithms that explicitly attempt to select a \most relevant" subset of features.However, another approach, especially for embedded algorithms, is to apply a weighting function to features,in e�ect assigning them degrees of perceived relevance. We have separated this from the explicit featureselection approach because the motivations and uses for these two methods tend to be di�erent. Explicitfeature selection is generally most natural when the result is intended to be understood by humans, or fedinto another algorithm. Weighting schemes tend to be easier to implement in on-line incremental settings,and are generally more purely motivated by e�ciency considerations.Weighting schemes can be characterized in terms of heuristic search, as we viewed explicit feature-selectionmethods. However, because the weight space lacks the partial ordering of feature sets, most approaches tofeature weighting rely on quite di�erent forms of search. For instance, the most common techniques involvesome form of gradient descent, in which successive passes through the training instances lead to iterativechanges in all weights.Perhaps the best-known attribute-weighting method is the perceptron updating rule (Minsky & Papert,1969), which adds or subtracts weights on a linear threshold unit in response to errors on training instances.The least-mean squares algorithm (Widrow & Ho�, 1960) for linear units and backpropagation (Rumelhart,Hinton, & Williams, 1986), its generalization for multilayer neural networks, also make additive changes toa set of weights in order to reduce error on the training set.5 Baluja and Pomerleau, in this issue, discussusing a neural-network approach in domains where the degree of feature relevance can vary over time.Perceptron weighting techniques can have di�culty in settings dominated by truly irrelevant features(for instance, see the paper by Kivinen, Warmuth, and Auer in this issue). In response, Littlestone (1988)developedWinnow, an algorithm that updates weights in a multiplicative manner, rather than additively asin the perceptron rule. Littlestone showed that, on any on-line stream of data consistent with a disjunctionof r features, Winnow makes at most O(r logn) mistakes. (This e�ectively uses the notion of relevancegiven in De�nition 4.) Thus, its behavior degrades only logarithmically with the number of features that areirrelevant to the target concept. More generally,Winnow achieves this logarithmic degradation for conceptclasses such as conjunctions, k-DNF formulas, and linear threshold functions with good separation betweenpositive and negative examples.For concreteness, we present a version of the Winnow algorithm for the disjunction-learning scenariodiscussed in Sections 2.1 and 2.2, along with a proof of Littlestone's theorem:The Winnow algorithm (a simple version)1. Initialize the weights w1; : : : ; wn of the features to 1.2. Given an example (x1; : : : ; xn), output 1 if w1x1 + : : :+ wnxn � n; and output 0 otherwise.3. If the algorithm makes a mistake:(a) If the algorithm predicts negative on a positive example, then for each xi equal to 1, double thevalue of wi.(b) If the algorithm predicts positive on a negative example, then for each xi equal to 1, cut the valueof wi in half.4. Go to 2.5. While most work on embedded weighting schemes has a neural-network avor, Aha (1990) reports an error-driven method,embedded within a nearest-neighbor learner, that modi�es its distance metric by altering weights.



Selecting Relevant Features and Examples Page 13Theorem 1 Winnow makes at most 2+3r(1+ lgn) mistakes on any sequence of examples consistent witha disjunction of r features.Proof. Let us �rst bound the number of mistakes that will be made on positive examples. Any mistake madeon a positive example must double at least one of the weights in the target function (the relevant weights),and a mistake made on a negative example will not halve any of these weights, by de�nition of a disjunction.Furthermore, each of relevant weights can be doubled at most 1 + lgn times, since only weights less than ncan ever be doubled. Therefore, Winnow makes at most r(1 + lgn) mistakes on positive examples.Now we bound the number of mistakes made on negative examples. The total weight summed over allfeatures is initially n. Each mistake made on a positive example increases the total weight by at most n(since before doubling, we must have had w1x1 + : : : wnxn < n). On the other hand, each mistake madeon a negative example decreases the total weight by at least n=2 (since before halving, we must have hadw1x1 + : : :+wnxn � n). The total weight never drops below zero. Therefore, the number of mistakes madeon negative examples is at most twice the number made on positive examples, plus 2; that is, 2+2r(1+lgn).Adding this to the bound on the number of mistakes on positive examples yields the theorem.The same general approach ofWinnow has been used in algorithms developed by Littlestone andWarmuth(1994), Vovk (1990), Littlestone, Long, and Warmuth (1991), and Cesa-Bianchi et al. (1993). Kivinen andWarmuth (1995) describe relations between these approaches and additive updating methods such as theleast mean squares algorithm. In fact, these multiplicative updating schemes are very similar to the kind ofmultiplicative probability updates that occur in Bayesian methods, and several of the results provide boundson the performance of Bayesian updating, even when the probabilistic assumptions of that approach are notmet. Experimental tests of Winnow and related multiplicative methods on natural domains have revealedgood behavior (Armstrong et al., 1995; Blum, 1995), and studies with synthetic data show that they scalevery well to domains with even thousands of irrelevant features (Littlestone & Mesterharm, 1997).More generally, weighting methods are often cast as ways of merging advice from di�erent knowledgesources that may themselves be generated through learning. In this light, the weighting process plays aninteresting dual role with respect to the �lter methods discussed earlier. Filter approaches pass their output(a set of selected features) to a black-box learning algorithm, whereas weighting approaches can take asinput the classi�ers generated by black-box learning algorithms and determine the best way to combine theirpredictions.On the other hand, direct analogs to the �lter and wrapper approaches do exist for determining weights.Stan�ll (1987) and Ting (1994) describe �lter-like methods that use conditional probability distributions toweight attributes for nearest neighbor. Daelemans et al. (1994) present a di�erent weighting scheme thatnormalizes features based on an information-theoretic metric, and one could use the scores produced byRelief (Kira & Rendell, 1992) to the same end. Finally, Kohavi, Langley, and Yun (1997) have adaptedthe wrapper method to search through a discretized weight space that can be explored in much the sameway as feature sets. Each of these approaches shows improvement over use of all features, but only the latterreports comparisons with a simple selection of attributes.3. The Problem of Irrelevant ExamplesJust as some attributes are more useful than others, so may some examples better aid the learning processthan others. This suggests a second broad type of relevance that concerns the examples themselves, and herewe briey consider techniques for their selection. Some work has assumed the presence of a benevolent tutorwho gives informative instances, such as near misses, or provides ideal training sequences (Winston, 1975).However, a more robust approach involves letting the learner select or focus on training cases by itself.



Page 14 Selecting Relevant Features and ExamplesResearchers have proposed at least three reasons for selecting examples used during learning. One is if thelearning algorithm is computationally intensive; in this case, if su�cient training data is available, it makessense to learn only from some examples for purposes of computational e�ciency. Another reason is if thecost of labeling is high (e.g., when labels must be obtained from experts) but many unlabeled examples areavailable or are easy to generate. Yet a third reason for example selection is to increase the rate of learningby focusing attention on informative examples, thus aiding search through the space of hypotheses. Here weshould distinguish between examples that are relevant from the viewpoint of information and ones that arerelevant from the viewpoint of one's algorithm. Most work emphasizes the latter, though information-basedmeasures are sometimes used for this purpose.As with feature-selection schemes, we can separate example-selection methods into those that embed theselection process within the learning algorithm, those that �lter examples before passing them to the in-duction process, and those that wrap example selection around successive calls to the learning technique.Although we will refer to this dimension below, we will instead organize the section around another distinc-tion: between methods that select relevant examples from labeled training instances and ones that selectfrom unlabeled instances.3.1 Selecting Labeled DataThe �rst generic approach assumes that a set of labeled training data is available for use by the learningsystem, but that not all of these examples are equally useful. As we noted above, one can embed the process ofexample selection within the basic learning algorithm, and many simple induction schemes take this approach.For instance, the perceptron algorithm, edited nearest neighbor methods, and some incremental conjunctivemethods only learn from an example when their current hypothesis misclassi�es it. Such embedded methods,sometimes called conservative algorithms, ignore all examples on which their hypothesis is correct.6If one assumes that training data and test data are both taken from a single �xed distribution, then onecan guarantee that with high probability, the data used for training will overall be relevant to the successcriteria used for testing (Blumer et al., 1989). As learning progresses, however, the learner's knowledgeabout certain parts of the input space increases, and examples in the \well-understood" portion of the spacebecome less useful. For instance, when a conservative algorithm has a 20% error rate, it will ignore 80% ofthe training cases, and when it achieves 10% error, it will ignore 90% of the data.In the PAC model, learning algorithms need to roughly double the number of examples seen in orderto halve their error rate (Schapire, 1990; Freund, 1992; Blumer et al., 1989). However, for conservativealgorithms, since the number of examples actually used for learning is proportional to the error rate, thenumber of new examples used by the algorithm each time it wishes to halve its error rate remains (roughly)constant. Thus, the number of examples actually used to achieve some error rate � is really just logarithmicin 1=� rather than linear.Although this result holds only for conservative algorithms that embed the example selection processwithin learning, one can use explicit example selection to achieve similar e�ects for other induction methods.In particular, Schapire (1990) describes a wrapper method called boosting that takes a generic learningalgorithm and adjusts the distribution given to it (by removing some training data) based on the algorithm'sbehavior. The basic idea is that, as learning progresses, the booster samples the input distribution to keep theaccuracy of the learner's current hypothesis near to that of random guessing. As a result, the learning processfocuses on the currently hard data. Schapire has shown that boosting lets one achieve the logarithmic useof examples described above under quite general conditions, and Freund (1990, 1992) has further improved6. Littlestone and Mesterharm (1997) have shown that a variant of naive Bayes that learns only from errors can deal betterwith irrelevant features than the standard version, which updates its statistics on each example. This shows there existinteractions between the problems of feature selection and example selection.



Selecting Relevant Features and Examples Page 15on this technique. On the experimental front, Drucker et al. (1992, 1994) have shown that boosting canimprove the accuracy of neural network methods on tasks involving optical character recognition. Thisapproach seems especially appropriate for techniques like backpropagation, for which training is much moreexpensive than prediction.7Another class of wrapper methods for example selection originated in the experimental study of decision-tree induction. Quinlan (1983) reports a windowing technique designed to reduce the time needed to con-struct decision tress from very large training sets. Windowing selects a random sample of the training datato induce an initial decision tree, then uses that tree to classify all the remaining examples. From the mis-classi�ed cases, the method selects another random set to augment the original sample, constructs a newdecision tree, and so forth, repeating the process until it has a tree that correctly classi�es all of the trainingdata. Quinlan reports that windowing led to substantial reduction in processing time on a large collection ofchess endgames, and Catlett (1992) describes another wrapper method called peepholing designed for evenlarger training sets. John and Langley (1996) report a much simpler use of wrappers to determine the propersize of a randomly selected training sample.Lewis and Catlett (1994) describe a �lter approach to selection of labeled data, but such techniques areless commmon in the machine learning literature than embedded or wrapper methods. One can imaginesimple techniques for cleaning training data, say by removing inconsistent examples that are identical exceptfor their class, but such methods are not widely used. One-pass sampling of the training data would alsoconstitute �ltering, but again research has leaned towards iterative versions of sampling like those in boostingand windowing.3.2 Selecting Unlabeled DataThe learner can also select data even before it has been labeled. This can be useful in scenarios whereunlabeled data is plentiful, but where the labeling process is expensive. One generic approach to this problem,which can be embedded within an induction algorithm that maintains a set of hypotheses consistent with thetraining data, is called query by committee (Seung et al., 1992). Given an unlabeled instance, the methodselects two hypotheses at random from the consistent set and, if they make di�erent predictions, requeststhe label for the instance. The basic idea is that informative or relevant examples are more likely to passthe test than those that most hypotheses classify the same way. Unfortunately, to obtain theoretical resultsfor query by committee requires much stronger constraints on the space of hypotheses than does boosting.Speci�cally, this method requires an ability to sample random consistent hypotheses, which can be quitedi�cult, although it is also a major topic of algorithmic research (e.g., Sinclair & Jerrum, 1989; Dyer, Frieze,& Kannan, 1989; and Lovasz & Simonovits, 1992).There has been a larger body of work on algorithms that generate examples of their own choosing, underthe heading of membership query algorithms within the theoretical community and experimentation withinthe empirical community. A common technique used by algorithms of this sort is to take a known exampleand slightly alter its feature values to determine the e�ect on its classi�cation. For instance, one might taketwo examples with di�erent labels and then \walk" them towards each other to determine at what point thedesired classi�cation changes (this, in turn, is often used to determine relevant features, tying in with ourearlier discussion). Another class of methods e�ectively designs critical experiments to distinguish amongcompeting hypotheses, letting them eliminate competitors and thus reduce the complexity of the learningtask. Mitchell (1982) suggested an information-theoretic approach to example selection, whereas Sammut7. Although boosting has clear empirical uses, it was originally developed for the theoretical goal of showing that \weaklearning implies strong learning" in the PAC model. In other words, if one has an algorithm that will perform somewhatbetter than guessing over every distribution, then there cannot be a hard \core" to the function being learned, and one canboost performance to produce high-quality predictions.



Page 16 Selecting Relevant Features and Examplesand Banerji (1986) and Gross (1991) used less formal methods but demonstrated their advantage empirically.More recently, work on `active learning' has continued this tradition; for instance, Cohn, Ghahramani, andJordan (1996) report successful results with a system that selects examples designed to reduce the learner'svariance. In parallel, theoretical researchers (Angluin, 1987; Angluin et al., 1993; Bshouty, 1993; Rivest &Schapire, 1993; Jackson, 1994) have shown that the ability to generate queries greatly enlarges the types ofconcept classes for which one can guarantee polynomial-time learning.Although much work on queries and experimentation has emphasized simple classi�cation learning, othere�orts have addressed more complex learning tasks. For example, Knobe and Knobe (1977) let theirgrammar-induction system query an oracle about the legality of candidate strings to distinguish amongcompeting hypotheses, and Kulkarni and Simon's (1990) Kekada and Rajamoney's (1990) Coast designcritical experiments to distinguish among competing hypotheses in scienti�c domains. Finally, both Shenand Simon (1992) and Gil (1993) have explored the uses of experimentation in learning action models forplanning tasks.Other learning systems incorporate strategies for exploring portions of the instance space that have notyet been encountered to obtain more representative information about the domain. For example, Scott andMarkovitch (1991) adapt this idea to unsupervised learning situations, and many methods for reinforcementlearning include a bias toward exploring unfamiliar parts of the state space (e.g., Lin, 1992). Both approachescan considerably increase learning rates over random presentations.Most work on selecting and querying unlabeled data has used embedded methods, but Angluin et al.(1993) and Blum et al. (1995) describe theoretical results for a wrapper query method that can be appliedto any algorithm. Speci�cally, they show that when membership queries are available, any algorithm with apolynomial mistake bound for learning a \reasonable" concept class can be converted in an automated wayinto one in which the number of mistakes plus queries has only a logarithmic dependence on the number ofirrelevant features present. The basic idea is to gradually grow a set of features known to be relevant, andwhenever the algorithm makes a mistake, to use queries to determine if the mistake results from a missingrelevant feature and, if so, to place a new relevant feature into the set.4. Challenges for Future Relevance ResearchDespite the recent activity, and the associated progress, in methods for selecting relevant features andexamples, there remain many directions in which machine learning can improve its study of these importantproblems. Here we outline some research challenges for the theoretical and empirical learning communities.4.1 Theoretical ChallengesWe claim that, in a sense, many of the central open theoretical problems in machine learning revolve aroundquestions of �nding relevant features. For instance, consider the well-known question of whether there arepolynomial-time algorithms that can guarantee learning of polynomial-size DNF formulas in the PAC oruniform distribution models. Or, consider the similar question of whether polynomial-size decision trees arelearnable in either model. These questions both include the following open problem as a special case:Does there exist a polynomial time algorithm for learning the class of Boolean functions over f0; 1gnthat have log2(n) relevant features, in the PAC or uniform distribution models?This is a special case because any function that has only log2 n relevant features can, by de�nition, be writtenas a truth table having only n entries, and therefore it must have a small decision tree and a small DNFrepresentation (note that the learning problem would be trivial if we knew a priori which log2 n variables



Selecting Relevant Features and Examples Page 17were relevant).8 On the other hand, this problem appears to be a quite di�cult special case. For instance,any algorithm to solve this problem would need to be \unusual" in the sense that the class has been provenimpossible to learn in the statistical query model of Kearns (Blum et al., 1994). Thus, issues of �ndingrelevant features seem to be at the core of what makes those classes hard.As a practical matter, it is unclear how to experimentally test a proposed algorithm for this problem, sinceno distribution on the target functions is given. In fact, functions with random truth tables in this classare generally easy. To allow for easier experimental testing of algorithms for this problem, the following isa speci�c distribution on the target functions that seems quite hard even for uniform random examples (forconvenience, the number of relevant features is 2 log2 n):Select at random two disjoint sets S; T � f1; : : : ; ng each of size log2 n. On input x, compute theparity of the bits indexed by S (that is, does S contain an odd number of ones?) and the majorityfunction of the bits indexed by T (that is, does T contain more ones than zeroes?), and output theexclusive-or of the two results.9A second theoretical challenge is to develop algorithms with the focusing ability of Winnow that applyto more complex target classes such as decision lists, parity functions, or general linear threshold functions.This would greatly extend the class of problems for which there exist positive results in on-line settings.In the framework of example selection, one important direction is to connect the work on membershipquery models, which have the advantage of generally being algorithmic but assume that arbitrary points inthe input space may be probed, with the work on �ltering unlabeled instances, which apply when only a �xeddata stream is available, but often require solving a computationally hard subproblem. Another challenge isto further theoretically analyze the ways in which example selection can aid the feature selection process.4.2 Empirical ChallengesConsiderable work also remains on the empirical front, with one of the most urgent needs being studieson more challenging data sets. For instance, few of the domains used to date have involved more than 40features. Two exceptions are Aha and Bankert's study of cloud classi�cation (204 attributes) and Kollerand Sahami's work on information retrieval (1675 attributes), but typical experiments have dealt with farfewer features. Moreover, Langley and Sage's (1994) results with the nearest neighbor method suggest thatmany of the widely-used UCI data sets have few completely irrelevant attributes. In hindsight, this seemsnatural for diagnostic domains, in which experts tend to ask about relevant features and ignore other ones.However, we believe that many real-world domains do not have this character, and that we must �nd datasets with a substantial fraction of irrelevant attributes if we want to test adequately our ideas on featureselection.Experiments with synthetic data also have important roles to play in the study of feature-selection methods.Such data sets can let one systematically vary factors of interest, such as the number of relevant and irrelevantattributes, while holding other factors constant. In this way, one can directly measure the sample complexityof algorithms as a function of these factors, showing their ability to scale to domains with many irrelevantfeatures. However, we distinguish between the use of synthetic data for such systematic experiments andreliance on isolated arti�cial data sets (such as the Monks problems), which seem much less useful.8. In fact, this class is easy to learn when the algorithm can make active (membership) queries about examples of its ownchoosing. Indeed, the algorithm of Bshouty (1993) learns the larger class of decision trees with membership queries in theexact leaning model, and a recent algorithm of Jackson (1994) learns the even larger class of general DNF formulas usingmembership queries, with respect to the uniform distribution.9. For instance, if S = f1; 2; 3g and T = f4; 5; 6g then the classi�cation of the example 011101001010 would be positive, sincethe �rst three bits have an even number of ones (making their parity 0), and the next three bits have more ones than zeros(so the majority function is 1), and the XOR of those two quantities is 1.
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