
Draft: Please do not quote.

Spatial Representation and Reasoning
in an Architecture for Embodied Agents

Pat Langley
Center for Design Research, Stanford University

Stanford, California 94305 USA

Edward P. Katz
Stanford Intelligent Systems Laboratory, Stanford University

Stanford, California 94305 USA

Abstract

In this paper, we describe review PUG, a cognitive architecture for embodied agents that posits graded
concepts that are grounded in perception and that integrates symbolic reasoning with continuous control.
We review the framework’s core assumptions about representation and processing, as well as how they
enable spatial cognition. After this, we discuss how the architecture supports places, which it encodes as
virtual objects defined by distances to reference entities, and reasons about them as if they were visible.
We demonstrate PUG’s abilities using a simulated robot that must approach targets and avoid obstacles.
In closing, we discuss related research on agent architectures, robotic control, and spatial cognition,
along with plans to extend the framework’s capabilities for spatial representation and reasoning.

1 Introduction

Research on cognitive architectures aims to develop unified theories of the mind that explain and support
a broad range of mental abilities (Newell, 1990; Langley, Laird, & Rogers, 2009). Such theories include
postulates about what structures and processes are constant across different domains. Just as a building
architecture indicates which elements are fixed and which ones are mutable, so a cognitive architecture
specifies which facets of an intelligent agent remain the same and which ones change across settings and
over time. For this reason, work in the area typically makes strong assumptions about the representation of
content and the mechanisms that operate over it, but not about the content itself.

Most cognitive architectures import many of their core ideas from psychological theories. These usually
include assumptions that: short-term memories are distinct from long-term stores; both memories contain
modular elements cast as symbol structures; long-term structures are accessed through pattern relational
matching; processing revolves around discrete cycles that involve retrieval, selection, and action; and cog-
nition involves the dynamic composition of mental structures. A cognitive architecture usually comes with
a programming language whose syntax and interpreter reflects these and other assumptions about mental
representation and processing. Thus, it provides an infrastructure for developing intelligent systems.

Research in this area has been active for nearly five decades. Early work focused on production systems
(Neches, Langley, & Klahr, 1987), but the field has evolved to include a wide range of frameworks. Well-
known architectures include ACT-R (Anderson, 1993), Soar (Laird, 2012), and ICARUS (Choi & Langley,
2018), but the field includes many alternative designs. As Langley (2017) notes, the paradigm has produced
many successes but also has important limitations. One drawback is that many researchers’ concern with
generality has led them to avoid making theoretical commitments about some topics. In particular, cognitive

1

architectures seldom incorporate strong assumptions about spatial representation and reasoning, even when
used to develop agents that operate in physical settings (e.g., Jones, 1999).

In this paper, we report our efforts to address this oversight. We start by reviewing PUG, an architecture
for embodied agents that retains many ideas from earlier frameworks but that grounds symbolic relations in
quantitative descriptions and that enables continuous control. The theory supports basic aspects of spatial
cognition, but only that based on the agent’s immediate perceptions, so we also report extensions that allow
representation and use of place knowledge. We illustrate PUG’s assumptions and abilities with examples
from a simulated two-dimensional robotic domain. In addition, we discuss its relation to previous work on
spatial reasoning and outline plans for further research.

2 The PUG Architecture for Embodied Agents
PUG (Langley et al., 2016) is a cognitive architecture for embodied agents that extends ideas from earlier
frameworks. It retains the classic assumptions that short-term and long-term memories are distinct, that they
contain modular symbol structures, that long-term elements are accessed through pattern matching, and
that mental processing occurs in discrete cycles. However, it also introduces additional constraints about
representation and processing, including:

• Symbolic structures relations are grounded in quantitative descriptions of physical situations;
• All short-term elements are instances of structures defined in long-term memory; and
• Cognition involves cascaded processing, with results from lower levels being used by higher levels.

PUG borrows all three assumptions from ICARUS (Choi & Langley, 2018), but it moves beyond this precur-
sor in important ways.1 In this section, we review the framework’s cognitive structures and then examine
the computational mechanisms that operate on them, using examples that illustrate its basic capacities for
spatial representation and reasoning.

2.1 PUG’s Representation of Knowledge

Any intelligent system depends on stored knowledge to drive its reasoning, decision making, and external
behavior. The PUG architecture incorporates four distinct types of long-term structures that encode different
forms of such knowledge:

• Concepts, which define categories that specify classes of entities and relations among them;
• Skills, which specify how the agent should act to achieve a given target concept;
• Processes, which predict how some aspects of the environment will change over time; and
• Motives, which indicate the utility of particular relations conditioned on the agent’s situation.

We will focus on concepts and skills in this paper, as they have the most relevance to spatial cognition. We
will touch on processes only in passing and sidestep motives entirely, as they impact only the architecture’s
higher levels. Langley and Katz (2022) describe the latter and their use in some detail.

PUG incorporates three theoretical postulates about concepts, two of which elaborate on those noted
above. First, they ground symbols in terms of percepts, which describe quantitative attributes of objects
in the environment. Second, inferred beliefs are always instances of these defined concepts that refer to

1Here we focus on the most recent version of the architecture, PUG/X (Langley & Katz, 2022), which extends previous incar-
nations (Langley et al., 2016, 2017). The earlier papers provide details about task-level plan generation, execution, and monitoring,
which will not address here, as they have few direct implications for spatial cognition.

2

Table 1: (a) Two PUG concepts for a two-dimensional robot domain, each including a head, a set of observed
elements, and a veracity function of the entities’ attributes, and (b) four percepts for the same domain that
describe perceived objects and five beliefs inferred from them.

(a) ((robot-at ˆid (?r ?o) ˆdistance ?d)

:elements ((robot ˆid ?r ˆradius ?rr)

(object ˆid ?o ˆdistance ?d ˆradius ?or))

:veracity ((linear ?d (+ ?rr ?or) 10.0)))

((robot-facing ˆid (?r ?o) ˆangle ?a)

:elements ((robot ˆid ?r) (object ˆid ?o ˆangle ?a))

:veracity ((linear ?a 0.0 45.0)))

(b) (robot ˆid R1 ˆradius 0.15 ˆmove-rate 0.0 ˆturn-rate 0.0) [1.0]

(object ˆid O1 ˆdistance 2.0 ˆangle 0.0 ˆradius 0.4) [1.0]

(object ˆid O2 ˆdistance 4.123 ˆangle 14.032 ˆradius 0.4) [1.0]

(object ˆid O3 ˆdistance 6.0 ˆangle 0.0 ˆradius 0.4) [1.0]

(robot-at ˆid (R1 O1) ˆdistance 2.0) [0.847]

(robot-at ˆid (R1 O2) ˆdistance 4.123) [0.622]

(robot-facing ˆid (R1 O1) ˆangle 0.0) [1.0]

(robot-facing ˆid (R1 O2) ˆangle 14.032) [0.688]

(robot-facing ˆid (R1 O3) ˆangle 0.0) [1.0]

perceived or imagined objects. Finally, concepts are graded in that they match against situations to greater
or lesser degrees, with each belief having an associated veracity that denotes this score. Like other cognitive
architectures, PUG’s syntax reflects its theoretical commitments. Each concept is encoded by a separate
rule, similar to a Prolog clause, that includes a head and a set of antecedents. The head specifies the concept
name, a set of arguments, and a set of attributes. Each antecedent includes an entity type, an identifier, and
a set of attributes, along with optional Boolean tests on those attributes’ values. Finally, each each concept
has a veracity function that specifies how to compute its degree of match.

Table 1 (a) shows two conceptual rules that define relations – robot-at and robot-facing – between the
robot and another object. The :elements field describes a set of typed objects, each with an identifier and
numeric attribute values, whereas the :veracity field specifies a function for computing the degree of match.
Here the function (linear obs max min) returns 1.0 if the observed value obs ≤ max, returns 0.0 if
obs ≥ min, and returns obs/(max −min) when max < obs < min. The expression is symmetrical for
positive and negative values, as can occur with angles. Table 1 (b) also shows nine beliefs from the same
domain, the first four describing objects the agent perceives in the environment and the others corresponding
to inferred beliefs that are instances of defined concepts. Each belief includes a predicate, an identifier that
may specify a relation, a set of attribute-value pairs, and a veracity.

In a similar way, PUG incorporates four thoretical assumptions about skills, another key type of knowl-
edge structure. First, they ground symbols that refer to activities in terms of percepts, concepts, and their
associated numeric attributes. Second, intentions are always instances of defined skills that refer to perceived
or imagined objects. Third, each skill specifes a graded target concept that it aims to achieve. Finally, it in-
cludes equations for control attributes that are functions of the mismatch between the target concept and the
situation. As a result, each intention has an associated activation that indicates the degree to which the agent
is pursuing it on a given cycle.

3

Table 2: (a) Two skills for the two-dimensional robot domain, each of which includes a relational head, a
set of observed entities, Boolean tests, control equations, and a target concept. The first skill influences the
control attribute move-rate, while the second affects turn-rate. (b) Four intentions for approaching the target
object O3 and for avoding the obstacles O1 and O2, the first two being instances of the skills in (a).

(a) ((move-to ?r ?o)

:elements ((robot ˆid ?r ˆturn-rate ?t) (object ˆid ?o ˆangle ?a))

:tests ((> ?a -90) (< ?a 90))

:control ((robot ˆid ?r ˆmove-rate (* 0.3 $MISMATCH)))

:target ((robot-at ˆid (?r ?o))))

((turn-to ?r ?o)

:elements ((robot ˆid ?r) (object ˆid ?o ˆangle ?a))

:control ((robot ˆid ?r ˆturn-rate (* 5.0 (sign ?a) $MISMATCH)))

:target ((robot-facing ˆid (?r ?o))))

(b) (move-to R1 O3) [0.675]

(turn-to R1 O3) [0.812]

(avoid-on-left R1 O1) [0.793]

(avoid-on-right R1 O2) [0.0]

PUG’s syntax for skills shares some features with concepts but also introduces new ones. The head
specifies the skill’s name and arguments, while the antecedents include a set of elements described by an
entity type, an identifier, and attributes, along with optional Boolean tests. Table 2 shows two skills – move-
to and turn-to – that an agent can use to approach an object. Each takes two arguments (the robot and the
object) and an :elements field that refers to the latter’s attributes, such as distance and angle. The first skill
also includes two Boolean tests, which state that the angle to the object falls between −90 and 90 degrees.
Both skills also have a :target field that specifies a desired relation, robot-at and robot-facing, respectively,
and a :control field with a function for computing values of control attributes, move-rate and turn-rate. These
functions include the symbol $MISMATCH, which is one minus the veracity of the target belief.

2.2 Cascaded Processing in PUG

Like other cognitive architectures, PUG operates in discrete cycles that use knowledge to produce new short-
term structures, as well as behavior in the agent’s environment. However, the framework differs in that it
relies on five distinct levels:

• Belief processing, which uses conceptual knowledge to draw inferences from perceptions and predictions;

• State processing, which uses skills to calculate values of control attributes and processes to predict effects;

• Execution / Simulation, which generates motion trajectories in the environment or in the agent’s mind;

• Motion planning, which carries out utility-guided search through a space of motion trajectories; and

• Task planning, which searches for candidate sequences of motion plans that achieve the agent’s objectives.

PUG applies these levels in a cascaded manner, with each one using mental structures produced by those
below it. We will discuss motion and task planning only in passing here, as spatial reasoning takes place
primarily at the lower three layers.

4

(a) (b)

Figure 1: Two scenarios in which a robot must approach a nearby object: (a) when the robot is facing away
from the target, it turns and moves forward simultaneously; (b) when two obstacles fall on the robot’s path
to the target, it veers left to avoid the first and right to evade the second. Traces show the robot’s pose at
equal time intervals, illustrating that position and orientation change more slowly as it approaches the target.

At the first level of processing, conceptual inference derives beliefs that are consistent with the agent’s
perceptions or with its predictions. This involves matching antecedents of conceptual rules against elements
like (robot ˆid R1 ˆradius 0.15) and (object ˆid O1 ˆdistance 2.0 ˆangle 0.0 ˆradius 0.4) to infer beliefs like
(robot-at ˆid (R1 O1) ˆdistance 2.0). The mechanism is similar to that in production systems (Neches et al.,
1987) and logic programming languages like Prolog (Clocksin & Mellish, 1981). For each matched rule,
PUG instantiates the head, computes values for numeric attributes, and adds the resulting belief, using the
:veracity field to compute its belief’s degree of match. Once the architecture has handled all concepts in this
way, it applies the process recursively until it generates the full deductive closure of the rules and percepts.

The beliefs produced by conceptual inference form the basis for state processing, the second level, which
assumes PUG has a set of intentions (skill instances) that were provided by higher levels or by the system’s
user. For each such intention I , the architecture: checks whether I’s conditions match the current percepts
and beliefs; finds the veracity V of I’s target belief and computes its mismatch M = 1 − V ; and, if M is
above a threshold, inserts M into I’s equations to find values for control attributes. The mismatch provides
an error signal that supports a form of feedback control. If multiple intentions apply on a given cycle, then
PUG takes the vector sum of the resulting control values, much as in potential-field methods (Khatib, 1985).
The system also uses the vector sum of matched processes, described elsewhere (Langley & Katz, 2022) to
predict the effects of these control settings, as well as those of natural events the agent cannot influence.

At the third level, PUG invokes belief and state processing repeatedly to generate a motion trajectory
over space and time. When the architecture carries out actions in the environment, this corresponds to reac-
tive control. Because it focuses on the current situation, this mode of operation does not invoke processes,
as it does not need predictions about future states. However, mental simulation of motion trajectories relies
on them to produce a sequence of predicted changes that, when applied repeatedly, serve as the basis or
successive belief and state processing. We should note that a trajectory follows deterministically from an
initial state and a set of intentions; for this reason, we will refer to this sequence of states as a motion plan.

Figure 1 shows two trajectories that PUG generates in this manner. In the left scenario, the robot is facing
slightly away from the target object on the right and assumes two intentions, (move-to R1 O1) and (turn-to
R1 O1), instances of the skills in Table 2. The architecture repeatedly invokes belief and state processing

5

to turn the robot and move it towards the target, which continues until it reaches the objective, slowing on
its approach. In the right scenario, the robot is facing the target object but the direct path is blocked by two
obstacles. Here we specified four intentions – (move-to R1 O3), (turn-to R1 O3), (avoid-on-left R1 O1), and
(avoid-on-right R1 O2) – that produce the trajectory depicted. Initially, only the first intention influences
behavior, but the third becomes active as the robot nears the first object, causing it to veer left. Once past the
obstacle, the robot turns back toward the target but then the next object leads it to turn right. After collision
is no longer imminent, the move-to and turn-to intentions become dominant, taking the robot to the target.

PUG’s fourth level of processing carries out heuristic search through a space of motion plans to select
a set of intentions. This examines the utilities of trajectories produced by mental simulation to identity
problems (e.g., collision with obstacles) and to select among alternatives. The fifth processing level generates
task plans, each of which comprises a sequence of motion plans with associated trajectories. The architecture
invokes utility here as well, in this case to guide search for task plans that achieve the agent’s objectives.
Earlier papers (Langley et al., 2016; Langley & Katz, 2022) provide details of these activities, so we will
not repeat them here. Both forms of planning takes advantage of spatial inferences and decisions made at
the lower levels, so we will focus on the latter in the remaining pages.

3 Encoding and Using Place Knowledge

We have seen that the PUG framework supports the construction of embodied agents that operate in physical
environments. This necessarily means that it encodes and uses some forms of spatial information, but, like
other cognitive architectures, it makes no theoretical commitments along these lines. Instead, PUG develop-
ers introduce assumptions about space that are convenient to achieve their ends, but they are not limited by
explicit constraints about the topic. In this section, we present an elaborated version of the theory that in-
corporates such postulates. These require no changes to the implementation, only to its use. We first discuss
how the architecture encodes perceived objects and then how it represents and uses place knowledge.

3.1 Perceptual Assumptions

The updated theory introduces a number of assumptions about how PUG agents characterize their percep-
tions of the immediate environment. These include:

• Percepts describe objects in the agent’s environment that are visible to its sensors;

• Each percept is encoded as a set of attributes and their associated values, some of them numeric;

• Spatial attributes specify an object’s distance and angle from the agent in egocentric polar coordinates;

• Intrinsic object attributes (e.g., size) remain constant, but spatial attributes may change over time.

These constraints are consistent with the examples from the previous section, but we have now elevated
them to core principles of the cognitive architecture.

The framework does not rule out other representations of spatial content, such as allocentric encodings,
but it requires that they be inferred rather than perceived directly. Neither does the framework take a position
on how object-centered descriptions are computed from lower-level perceptions like image pixels or range
data. PUG has a stronger commitment to grounded representations than most cognitive architectures, but it
does not attempt to explain how percepts are generated. Finally, the theory takes no stance on whether the
agent can perceive multi-component objects directly, but we focus here on simple ones that can be described
as simple geometric shapes with associated parameters.

6

The expanded framework does not commit to particular types of entities or their associated intrinsic
attributes. The examples in Table 1 (b) describe two-dimensional circular objects, but other shapes like
ellipses, rectangles, and polygons are allowed provided they can be described with intrinsic parameters. We
have also developed PUG agents that perceive and interact with edges, which are extended one-dimensional
objects that can describe road limits and similar boundaries. The common feature is that the architecture
describes spatial facets of entities in terms of their egocentric distance and angle to the agent, although it
defines these measures differently across entity types. For instance, the distance of a circular object O from
a circular agent A is the length of the line between their center points. In contrast, the distance of an edge E
from a circular agent A that is facing E is the length of the line from A’s center to its intersection with E.

3.2 Representing Places

Such perceptual structures and the beliefs they produce are sufficient for simple control tasks like avoiding
obstacles while moving toward a target object, but not for more complex activities. We know that people
organize their spatial knowledge in terms of places, if only because we assign names to them like ‘kitchen’
and ‘dining room’. They can also imagine attributes of entities they cannot perceive, such as their relative
position. Thus, it is natural to ask how PUG might represent such content. Whenever attempting to replicate
an ability in a cognitive architecture, we should first ask whether the existing framework can handle it or
whether changes are needed. In the case of place knowledge, the current structures appear adequate.

In fact, we can define a place as a ‘virtual’ object that is specified by its distance to a set of reference
objects, themselves either visible or virtual. For example, the place P in Figure 2 can be defined by its
distance to the reference objects X and Y, both of which are perceivable. Two landmarks suffice because the
agent’s pose provides additional constraints. The corresponding conceptual rule is:

((object ˆid P ˆdistance ?d3 ˆangle ?a3 ˆradius 0.2)
:elements ((object ˆid X ˆdistance ?d1 ˆangle ?a1)

(object ˆid Y ˆdistance ?d2 ˆangle ?a2))
:binds (?d3 (*distance-R-to-V ?d1 ?d2 ?a1 ?a2 3.0 3.0)

?a3 (*angle-R-to-V ?d1 ?d2 ?a1 ?a2 3.0 3.0)))

This has the same general form as other concepts, but it does not specify a new predicate. Instead, the head
refers to the known predicate object but introduces a new constant identifier, P. The rule also mentions two
entities in the :elements field, one for each of the named reference objects, along with variables that denote
their distances from the virtual entity. Finally, it has a :binds field with functional expressions for calculating
P’s distance and angle from the agent. These invoke the functions *distance-to-virtual and *angle-to-virtual,
which take as arguments the place’s distances from the references, in this case 11.0 and 9.17.

Recall that PUG’s beliefs are either primitive percepts or instances of defined concepts. Beliefs about
places have the same relationship to the rules that specify the latter. For example, based on the robot R’s
distances to objects X and Y in Figure 2, the corresponding belief would be (object ˆid P ˆdistance 10.57
ˆangle 7.07). This takes the same form as a primitive percept, even though it is derived from measurements
about the agent’s relation to other entitites. The values for this belief’s spatial attributes – distance and
angles – will change as the robot moves in the environment, just as it would for visible objects like X and
Y.2 However, the rule might also specify values for intrinsic attributes, such as radius, either as constants or
in terms of the reference objects, that will not change over time.

2The definition for place P has no :veracity field, so its associated beliefs will have the default score of one, just as percepts.

7

∠ORY

∠ORX

∠ORP

RY

YP

XP

RX

XY

RP

O (orientation)

P

X

Y

R

60.0º

85.0º

7.17º

10.0

9.17

11.0

6.0

5.22

10.57

O (orientation)

P

X

Y

R

Figure 2: A scenario in which the extended PUG architecture computes the robot R’s distance and angle to
a place (the virtual object P) based on perceived distances and angles to two reference objects (X and Y).
The left diagram shows symbolic notations; the right gives numeric values (not to scale). Solid lines and
angles are perceived or given in P’s place definition; dashed lines are derived from them.

3.3 Inferring and Using Place Beliefs

The PUG architecture can use the same mechanism to derive beliefs about defined places as for other rela-
tions. On each inference cycle, it finds rules whose conditions match percepts or beliefs already in memory,
computes the values for numeric attributes, and adds new beliefs for each rule instantiation. In this case, the
match process itself is straightforward and depends only on the place’s reference objects being present in
memory, which means they are visible to the agent or have themselves been inferred. But calculation of a
place’s distance and angle relies on trigonometric equations that merit elaboration.

Let us return to the diagram in Figure 2, which shows the distance RX and RY from the robot to refer-
ence objects X and Y , as well as the angles 6 ORX and 6 ORY between them and the robot’s orientation.
Given these quantities and distances XP and Y P from the virtual object and the references, we have

RP = SAS(RY , |SSS(XY ,XP, Y P)− SSS(XY ,RX,RY)|, Y P) ,

where XY = SAS(RX, |6 ORX − 6 ORY |, RY), and where the equation for the angle is

6 ORP = |6 ORY − SSS(RY , Y P ,RP)| .

Here the function SSS(a, b, c) = acos([(a2 + c2) − b2]/[2 · a · c]) and the function SAS(b, A, c) =

sqrt([b2 + c2] − [2 · b · c · cos(A)]), which draw on the standard ‘Side Side Side’ and ‘Side Angle Side’
formulae from trigonometry.

These functions let PUG use the conceptual definition for place P to calculate the agent’s distance and
angle to P from its egocentric relations to the reference objects X and Y . Given the situation depicted in
the figure, the distance RP from the robot R to P is 10.57, whereas its angle 6 ORP is 7.17 degrees. Thus,
the inference process generates the belief (object ˆid P ˆdistance 10.57 ˆangle 7.07), but again these spatial
attributes will vary as the robot moves and as its distances to the landmarks X and Y change. Note that
these calculations work as intended only when X is to the left of Y from the agent’s perspective; when their
relationship is reversed, then their roles in the equations must be reversed.

8

(a) (b)

Figure 3: Two scenarios that involve maneuvering a robot with respect to a virtual object. In the left situation,
the agent initially faces downward to the left and moves to a place that is defined as midway between two
visible objects. In the right situation, it skirts a virtual obstacle that lies on the path to the target object.

Once the architecture has produced a belief about the agent’s relation to a virtual object like P , it can
use this content in higher-level processing. For instance, it can use skills like those in Table 2 to approach P

even though it is not visible to the agent, using the derived distance and angle to compute values for control
variables. Similarly, if the agent has an intention to avoid P , then it can treat it as an obstacle and use its
derived attributes to evaluate candidate trajectories during motion planning. The system can even use the
description for P to compute the angle and distance to other places that refer to it as a reference object. As
we discuss later, this opens the door to topological networks of places and hierarchical descriptions of space.

Figure 3 shows trajectories that demonstrate the first two of these abilities. The left diagram shows a
scenario in which a place V 1 is defined as midway between two visible objects, O1 and O2, the robot is
initially below O2 and faces downward to the left, and has the intentions (robot-at R1 V1) and (robot-facing
R1 V1). Using its observed distances and angles to the two reference objects, it turns and moves toward V 1

until it achieves its objective by reaching the target. The right diagram depicts a scenario in which a virtual
obstacle V 1 is defined as halfway between objects O1 and O2, the robot begins by facing O2 between O1

and V 1, and it has intentions (move-to R1 O2), (turn-to R1 O2), and (avoid-on-left R1 V1). In this case,
the agent moves toward O2 until it comes close to V 1, which it treats as an obstacle even though it is
imperceptible. The robot veers around the virtual object, after which it continues onward to reach O2.

4 Related Research

The framework described in the preceding sections brings together ideas from multiple traditions. We have
already discussed research on cognitive architectures (Newell, 1990; Langley et al., 2009) and noted that
PUG incorporates many classic assumptions from that paradigm, such as separation of long-term memories
from short-term content and operation in discrete cycles. However, it introduces the further constraints that
all symbols must be grounded in quantitative descriptions of the environment and that processing involves
cascaded layers, extending ideas from its precursor, ICARUS (Choi & Langley, 2018).

Our response to the grounding requirement was to incorporate notions from another paradigm, con-
tinuous control (Bennett, 1996), which relies on error signals to modulate the values of control variables.
PUG supports this idea by providing skills with target concepts whose mismatches influence their control
equations to produce smooth, adaptive behavior. In this way, the architecture retains the notions of relational

9

concepts and skills but imbues them with the continuous character of control systems, extending Newell’s
vision for unified theories in a new direction. This leads naturally to PUG’s agents’ egocentric encoding
of spatial relations to other objects, their behavior in response to targets and obstacles, and their mental
simulation of trajectories in specific scenarios.

In contrast, some robotics research has addressed continuous settings very differently. A common ap-
proach discretizes the environment by dividing it into grid cells (Moravec & Elfes, 1985), which are widely
used for map construction and localization (Yamauchi, Schultz, & Adams, 1998). In a similar spirit, work on
route planning and navigation often introduces waypoints that are linked in graphs, as in probabilistic road
maps (Kavraki et al., 1996) and rapidly-exploring random trees (LaValle & Kuffner, 2001). Moreover, these
typically use allocentric rectangular coordinates, whereas PUG’s use of egocentric polar encoding comes
closer to robotics work by Kuipers and Byun (1991) and by Yeap (2011). In addition, the architecture’s
reliance on vector sums to compute control values is similar to Khatib’s (1986) use of potential fields.

Our approach has some overlap with qualitative approaches to robot planning and control. Examples
here include Brenner et al.’s (2007) use of potential fields to position objects to satisfy qualitative spatial
relations and Wiley et al.’s (2016) use of a qualitative formalism with landmark values to represent states
and control rules. However, these efforts invoke multi-step planning to generate sequences of discrete actions
rather than PUG’s continuous motion plans. Rather, our theory comes much closer to Kuipers’ (2000) spatial
semantic hierarchy, which associates quantitative control laws with qualitative regions that drive a mobile
robot to distinctive states. PUG’s definition of places in terms of quantitative perceptual attributes also bears
similarities to Kuipers’ framework, although his account is more complete.

5 Directions for Future Work

Although our architectural account of spatial cognition shows promise, there are clear limitations that we
should address in future work. One drawback lies in the impoverished representation for objects, which is
currently constrained to simple parametric shapes like circles and lines. We could extend these to polygons
for two dimensions and to polyhedra for three, encoding entities as collections of vertices and edges or
surfaces. Generalized cylinders (Binford, 1971) and non-uniform rational basis splines (Piegl, 1991) are
alternatives that encode continuous object surfaces. We must also describe complex objects with multiple
components, which requires some way to describe the latter’s spatial relations. One promising candidate is
the Region Connection Calculus (Cohn et al., 1997), which provides a set of qualitatively different relations
among shapes, although we may need to augment it with quantitative descriptors.

Another limitation is that our place definitions require precisely two reference objects, but human places
clearly involve richer descriptions. One reason is that only some references are visible at a time, but there
may also be variation in their locations. Future versions of PUG should not only support place concepts with
a greater number of landmarks, but also alter processing to take advantage of them. The simplest change
would use each pair of visible entities to calculate the agent’s distance and angle to a virtual object, then take
their means, which would be useful with noisy sensors. However, there are

(n
2

)
for n references, so a more

realistic approach would average a sample of such pairs. Another complication occurs when landmarks have
moved, in which case the system might find a subset of estimates that agree and ignore the anomalies.

In addition, we should extend our treatment of spatial cognition to dynamic settings in which entities
besides the agent move. For example, a PUG vehicle that is driving on a road might define a place that is
five units from the right shoulder and 20 units behind the vehicle ahead of it, regardless of the latter’s speed.

10

The current architecture can already handle such scenarios, but it cannot define a place at which the robot’s
path will intersect the trajectory of another object, such as a flying ball. Given processes that describe an
object’s movement, it can predict both trajectories, but identifying their intersection point requires more
sophisticated reasoning. One can also imagine defining a ‘place’ that is a particular point in space time and
specifying skills that let the agent rendezvous with it, or even designating a trajectory with specific start and
end times that the agent’s movements should follow.

Finally, we should augment the framework to represent and reason about not only the agent’s imme-
diate surroundings but also about large-scale space. We have already shown that PUG’s conceptual rules
can define places in terms of other places, but our examples were at the same level of aggregation. This
suggests that we need something more to specify larger spaces, such as a floor or building rather than its
rooms. One response would be to view these as composite objects, which we need for other reasons, and
introduce a notation for specifying them in terms of their components. This would also require adapting
the architecture’s mechanisms for conceptual inference, since the percepts available to the agent would only
let it recognize small-scale places. Some variety of abductive reasoning that can apply rules with missing
antecedents appears necessary, along with the ability to introduce default assumptions, which would support
top-down predictions about nearby places that are not observable.

6 Concluding Remarks

In this paper, we described PUG, an architecture for embodied agents that combines relational concepts with
numeric descriptors and that joins symbolic reasoning with continuous control. We reviewed the architec-
ture’s core postulates and clarified their support for basic spatial cognition, illustrating their operation in a
two-dimensional robotic setting. We then presented an elaborated version of the theory that makes explicit
assumptions about spatial representation and reasoning, including the form of perceptual inputs from the en-
vironment. In addition, we discussed how to encode knowledge about places as PUG conceptual rules, how
the architecture infers beliefs about them from perceived entities, and how skill execution uses the results
to interact with these virtual objects. Examples included moving to a defined target place and avoiding an
unseen but known obstacle on a path elsewhere.

We also considered how PUG’s theoretical assumptions relate to those in earlier research. The frame-
work shares features with other cognitive architectures, but differs in its commitment to embodied agency
and spatial cognition. To this end, it incorporates ideas from feedback control, which supports smooth be-
havior in continuous environments. Moreover, PUG differs from robotic systems that encode space as a
discretized grid or network, but it comes closer to ones that adopt egocentric perspectives and continuous
representations. Finally, we proposed extensions to the framework that use richer formalisms for entities
and regions, allow redundant reference objects in place definitions, define places as space-time points or tra-
jectories, and handle large-scale spatial knowledge as hierarchical mental structures. Taken together, these
additions will offer a more complete architectural account of spatial representation and reasoning.

Acknowledgements

The research reported here was supported by Grant No. FA9550-20-1-0130 from the US Air Force Office of
Scientific Research, which is not responsible for its contents. We thank participants in the Dagstuhl Seminar
on Representing and Solving Spatial Problems for useful discussions that improved the ideas in this paper.

11

References

Anderson, J. R. 1993. Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum.
Binford, T. O. (1971). Visual perception by computer. Proceedings of the IEEE Conference on Systems and

Control. Miami, FL: IEEE Press.
Bennett, S. (1996). A brief history of automatic control. IEEE Control Systems Magazine, 16, 17–25.
Brenner, M., Hawes, N., Kelleher, J., & Wyatt, J. (2007). Mediating between qualitative and quantitative

representations for task-orientated human-robot interaction. Proceedings of the Twentieth International
Joint Conference on Artificial Intelligence (pp. 2072–2077). Hyderabad, India.

Choi, D., & Langley, P. (2018). Evolution of the ICARUS cognitive architecture. Cognitive Systems Research,
48, 25–38.

Clocksin, W. F., & Mellish, C. S. (1981). Programming in Prolog. Berlin: Springer-Verlag.
Cohn, A. G., Bennett, B., Gooday, J., & Gotts, M. M. (1997). Qualitative spatial representation and reasoning

with the Region Connection Calculus. GeoInformatica, 1, 275–316.
Jones, R. M., Laird, J. E., Nielsen P. E., Coulter, K., Kenny, P., & Koss, F. (1999). Automated intelligent

pilots for combat flight simulation. AI Magazine, 20, 27–42.
Kavraki, L. E., Svestka, P., Latombe, J.-C., Overmars, M. H. (1996). Probabilistic roadmaps for path plan-

ning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12, 566–
580.

Khatib, O. (1985). Real-time obstacle avoidance for manipulators and mobile robots. Proceedings of the
1985 IEEE International Conference on Robotics and Automation (pp. 500–550). St. Louis, MO.

Kuipers, B. (2020). The Spatial Semantic Hierarchy. Artificial Intelligence, 1–2, 191–233.
Kuipers, B. J., & Byun, Y.-T. (1991). A robot exploration and mapping strategy based on a semantic hierar-

chy of spatial representations. Journal of Robotics and Autonomous Systems, 8, 47–63.
Laird, J. E. (2012). The Soar cognitive architecture. Cambridge, MA: MIT Press.
Langley, P. (2017). Progress and challenges in research on cognitive architectures. Proceedings of the Thirty-

First AAAI Conference on Artificial Intelligence (pp. 4870–4876). San Francisco, CA: AAAI Press.
Langley, P., Barley, M., Meadows, B., Choi, D., & Katz, E. P. (2016). Goals, utilities, and mental simulation

in continuous planning. Proceedings of the Fourth Annual Conference on Cognitive Systems. Evanston, IL.
Langley, P., Choi, D., Barley, M., Meadows, B., & Katz, E. P. (2017). Generating, executing, and monitoring

plans with goal-based utilities in continuous domains. Proceedings of the Fifth Annual Conference on
Cognitive Systems. Troy, NY.

Langley, P., & Katz, E. P. (2022). Motion planning and continuous control in a unified cognitive architecture.
Proceedings of the Tenth Annual Conference on Advances in Cognitive Systems. Arlington, VA.

Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures: Research issues and challenges.
Cognitive Systems Research, 10, 141–160.

LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of
Robotics Research, 20, 378–400.

Moravec, H., & Elfes, A. (1985). High resolution maps from wide angle sonar. Proceedings of the IEEE
International Conference on Robotics and Automation (pp. 116–121). St. Louis, MO.

Neches, R., Langley, P., & Klahr, D. (1987). Learning, development, and production systems. In D. Klahr, P.
Langley, & R. Neches (Eds.), Production system models of learning and development. Cambridge, MA:
MIT Press.

12

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Piegl, L. (1991). On NURBS: A survey. IEEE Computer Graphics and Applications, 11, 55–71.
Yamauchi, B., Schultz, A., & Adams, W. (1998). Mobile robot exploration and map-building with contin-

uous localization. Proceedings of the 1998 IEEE International Conference on Robotics and Automation
(pp. 3715–3720). Leuven, Belgium: IEEE Press.

Yeap, W. K. (2011). How Albot0 finds its way home: A novel approach to cognitive mapping using robots.
Topics in Cognitive Science, 3, 707–721.

13

