
Two Kinds of Knowledge in Scientific Discovery

Will Bridewell, Pat Langley

Computational Learning Laboratory, Center for the Study of Language and Information, Stanford University

Received 29 July 2008; received in revised form 19 July 2009; accepted 21 July 2009

Abstract

Research on computational models of scientific discovery investigates both the induction of

descriptive laws and the construction of explanatory models. Although the work in law discovery

centers on knowledge-lean approaches to searching a problem space, research on deeper modeling

tasks emphasizes the pivotal role of domain knowledge. As an example, our own research on induc-

tive process modeling uses information about candidate processes to explain why variables change

over time. However, our experience with IPM, an artificial intelligence system that implements

this approach, suggests that process knowledge is insufficient to avoid consideration of implausible

models. To this end, the discovery system needs additional knowledge that constrains the model

structures. We report on an extended system, SC-IPM, that uses such information to reduce its search

through the space of candidates and to produce models that human scientists find more plausible. We

also argue that although people carry out less extensive search than SC-IPM, they rely on the same

forms of knowledge—processes and constraints—when constructing explanatory models.

Keywords: Artificial intelligence; Constraints; Creativity; Knowledge representation; Processes;

Scientific discovery; Scientific modeling

1. Introduction

As a field, computational scientific discovery seeks to understand the products and pro-

cesses of science by studying artifacts that engage and assist in knowledge construction.

Along these lines, researchers have investigated activities like taxonomy formation, law

discovery, and theory development. Their findings have demystified these activities and sug-

gest a strong link between the disciplined practices of scientists and the everyday reasoning

skills shared by everyone. Moreover, this work has revealed previously implicit types of

knowledge crucial to scientific reasoning.
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The field’s earliest and most fundamental result was that programs could actually

make discoveries. Up to the late 20th century, the belief that scientific discovery

requires a ‘‘divine spark’’ peculiar to humanity dominated academic thought on the

matter. However, a continual stream of programs that recapitulated historical discoveries

and made new ones of their own has served to reshape scientific activity as an under-

standable, computational process based on problem space search. Some of the earliest

support for this view came from the BACON series of programs, which rediscovered

Kepler’s third law, the ideal gas law, and other numerical relationships from data

(Langley, Simon, Bradshaw, & _Zytkow, 1987). Later efforts expanded to include the

inference of biochemical reactions (e.g., Kulkarni & Simon, 1990), genetic networks

(e.g., Zupan et al., 2007), and other forms of scientific knowledge. Some systems tar-

geted other tasks, including the design, execution, and analysis of experiments ( _Zytkow,

Zhu, & Hussam, 1990), the discovery of equations from time-series data (Todorovski &

Džeroski, 1997), and the revision of causal models (Mahidadia & Compton, 2001).

Additionally, some researchers investigated scientific reasoning by exploring its links

with everyday activities (Klahr, 2002; Pazzani & Flowers, 1990), bringing a new per-

spective to the field.

An unexpected benefit of research on computational scientific discovery has been the rec-

ognition of new types of scientific knowledge that are often not discussed in the literature

on the history, philosophy, and psychology of science. This knowledge arose from the prac-

tical nature of system building, as researchers found it necessary for a program to function.

One of the earliest such findings was the chemical fracturing heuristics in DENDRAL

(Feigenbaum, Buchanan, & Lederberg, 1971), which interpreted results from a mass

spectrometer. On a separate front, work on qualitative physics (Forbus, 1997), in particular

qualitative process theory (Forbus, 1984), introduced the role of processes in scientific and

common-sense knowledge. More recently, _Zytkow (1999) linked scientific theory,

processes, and data to suggest a computational method for model construction.

Building on these insights, we defined the task of inductive process modeling and devel-

oped computational systems to address it (Bridewell, Langley, Todorovski, & Džeroski,

2008; Bridewell, Sánchez, Langley, & Billman, 2006). This task, which we recount in the

next section, involves the construction of quantitative models from time-series data and

domain knowledge. Systems for inductive process modeling use the knowledge to guide

search through a space of candidate models that they, in turn, evaluate with respect to the

data. Initially, we believed that knowledge of the generic processes common to a scientific

discipline would sufficiently limit this search, but our experience shows that the systems

commonly consider implausible candidates. Compounding this problem, some of these non-

sensical models ranked higher in quantitative terms than the scientifically plausible ones.

This finding led us to extend the task description to include modeling constraints, which are

a type of scientific knowledge that often remains implicit.

In this paper, we emphasize the importance of constraints that characterize the structure

of scientifically plausible models. After describing inductive process modeling, we intro-

duce a new system that uses modeling constraints to guide its search. We then discuss com-

putational experiments that evaluate the utility of the added knowledge. We conclude with
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an examination of related work on constraints in scientific discovery and suggestions for

future research in this area.

2. Constructing mechanistic models

In many fields, scientists use mechanistic models, which illustrate the relationships

among entities and processes, to express causal explanations (Machamer, Darden, & Craver,

2000). In these models the entities are physical objects with spatial extension and have prop-

erties of interest such as weight, color, and concentration. Although a particular entity may

refer to a single object, such as a bird or a table, it can also represent a group of objects like

a flock or a population. The degree of aggregation depends primarily on the driving scien-

tific question and the methods for addressing it. The processes in a model connect entities to

each other and are the manifestations of change in the world. Unlike entities, which have

measurable properties, processes are unobservable, so scientists infer their existence by

observing changes in entities. Theoretical knowledge from the relevant scientific domain

guides this inference and influences model construction in general.

2.1. From theory to models

When building mechanistic models, scientists appeal to a mixture of theory and data.

Imagining a spectrum of modeling practices, we can place theory-driven or ‘‘analytical’’

approaches at one endpoint and data-driven or ‘‘inductive’’ approaches at the other.

Although one can build models analytically, in practice empirical observations play a role

during parameter estimation and during evaluation. Likewise, scientists can build purely

descriptive models from data, but theoretical concerns still influence variable selection and

data collection. Moreover, descriptive models lack explanatory import unless they make

contact with theoretical concepts. For example, the Lotka–Volterra equations in Table 1 (a)

present a purely mathematical description of the relationship between two variables until we

designate their meaning, as in Table 1(b). Although illustrated in quantitative terms, these

ideas also apply to qualitative models, which must connect to both data and domain theory

to have relevance.

Modern work in the philosophy of science suggests strategies that move from knowledge

and data to mechanistic models. For instance, Bechtel and Abrahamsen (2005) argue for the

Table 1

The Lotka–Volterra equations for population dynamics (a) unlabeled and (b) labeled with a

theoretical interpretation of the component terms

(a) (b)

_p ¼ ap� bpn _p ¼ ap
|{z}

growth

� bpn
|{z}

predation

a ¼ growth rate, c ¼ death rate

_n ¼ �bpn� cn _n ¼ �bpn
|ffl{zffl}

predation

� cn
|{z}

death

b ¼ attack rate, � ¼ efficiency
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use of functional and structural decomposition. According to this account, scientists develop

mechanisms first by identifying the functional components that could account for observed

phenomena and then by determining the structural components that carry out those

functions. Darden (2002) lists three other strategies along with historical evidence of their

use. First, schema instantiation starts from a rough, general form of an explanation (e.g.,

reactant1 + reactant2 ¼ product) that tells scientists what types of entities or processes they

should seek out.1 Second, modular subassembly inverts Bechtel’s decomposition strategies

by constructing the mechanism from known submodels. Third, forward or backward chaining

reasons about entities and activities that spring from or produce known effects of the model.

When proposing these strategies, Bechtel and Darden noticeably avoid the claim that

scientists systematically generate mechanisms from domain theory. Punctuating this

omission, Suárez and Cartwright (2008) argue against the claim that a ‘‘theory will in

general already contain…the good representative models that it spawns.’’ In particular,

Cartwright (1999) rejects what she calls the vending machine view of a theory:

you feed it input in certain prescribed forms for the desired output; it gurgitates for a

while; then it drops out the sought-for representation, plonk, on the tray, fully formed, as

Athena from the brain of Zeus. (p. 247)

Instead they claim that scientific theory plays a heuristic role in model construction and not

a generative one (Cartwright, Shomar, & Suárez, 1995; Suárez & Cartwright, 2008). Cart-

wright (1999) admits that the vending machine view has advantages, but that she lacks an

‘‘independent reason to believe that this kind of mechanization is possible.’’

We assert that computational model generation is possible. As preliminary evidence, we

point to work on compositional modeling by Falkenhainer and Forbus (1991). Their system

constructs qualitative process models from a domain theory, a description of a physical struc-

ture, and a question about the structure’s behavior. As further support, Keppens and Shen’s

(2001) overview of compositional modeling discusses subsequent work in this area, which

researchers applied in a variety of domains. Together, these efforts suggest that some version

of the vending machine view is feasible and that Cartwright may be too hasty in discarding it.

2.2. Representing theories and models

Our own research makes further strides in this direction, generating models from scien-

tific theory and data. Principally, we claim that building mechanistic models fits the mold of

heuristic search through a problem space (Newell & Simon, 1976). This characterization

implies representations both for the models and for the knowledge that directs their con-

struction. To this end, we have developed a representation for an important class of models,

called quantitative process models. In these models, an entity is a collection of the variables

and constants that define its state. A process refers to entities and contains algebraic and dif-

ferential equations that specify its effects. Optionally, each process may contain conditions

that signal its applicability (e.g., if a variable’s value exceeds a threshold). Table 2 contains

an example model that includes processes and entities from population dynamics.
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Quantitative process models are closely tied to the differential equation models that some

scientists routinely use. Notice that in Table 2 the equations for the rabbit and fox popula-

tions are split across multiple processes. If we combine these elements using addition, then

we produce a pair of equations with the same general form as those in Table 1. With this in

mind, scientists can simulate these models to view their behavior just as they would with

any system of differential equations. Once a model withstands evaluation, scientists can use

it for several purposes. For example, the model could serve as a predictive instrument for

anticipating future population dynamics. Alternatively, the model may act as evidence for

an argument that certain theoretical interactions hold in a natural system. In other cases, the

model can function as a proxy for a natural system, giving scientists a way to investigate

complex hypotheses when controlled experiments are impracticable.

Although scientists can use quantitative process models as if they were systems of differ-

ential equations, their modularity provides an important distinction. Consider replacing the

predation process from the model in Table 2 with an alternative form. Editing the differen-

tial equations involves removing the corresponding terms from two equations, adding one

or more new terms to both equations, and specifying parameters that properly match. Alter-

ing the process model entails removing the old process and adding a new one. The grouped

functional forms simplify parameter matching across terms and ensure that further revisions

appropriately alter each equation.

As defined, each process represents one interaction that occurs in a particular situation,

such as predation in the fox and rabbit dynamics in Champaign, IL. However, the functional

forms of these processes often generalize to other scenarios and domains. For instance, the

generic process for exponential growth is relevant throughout ecology and in other disci-

plines such as physics and economics. Although the entities and growth rates may differ

across specific processes, the mathematical form never varies. The formalism for generic

processes resembles that of their instantiated counterparts with the exceptions that they

Table 2

A quantitative process model from population dynamics

model predator_prey

entities rabbit{prey}, fox{predator}

process exponential_growth

equations d[rabbit.p,t,1]¼2.5*rabbit.p

process exponential_loss

equations d[fox.p,t,1]¼)1.2*fox.p

process predation_holling_1

equations

d[rabbit.p,t,1]¼)0.1*rabbit.p*fox.p
d[fox.p,t,1]¼0.3*0.1*rabbit.p*fox.p

Note. The entities rabbit with type prey and fox with type predator each have

a variable p that stores their respective population size. The notation d[X,t,1]

indicates the first derivative of X with respect to time t.
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contain entity roles instead of entities and parameter ranges instead of real numbers. These

ranges specify maximal and minimal values for the parameters, whereas the entity roles are

placeholders for the problem-specific entities. Much as processes instantiate generic

processes, entities instantiate generic entities that encode their associated properties. Table 3

shows an example library of generic entities and processes for population dynamics that

defines a space of mechanistic models.

Taken together, the generic processes and generic entities form the domain theory that

guides model construction, but data are necessary for evaluation. As differential equations

provide the foundation for quantitative process models, these data will be the trajectories of

Table 3

A generic library for population dynamics

library population_dynamics

generic entity predator

variables c

generic entity prey

variables c

generic process logistic_growth

relates P{prey}

parameters gr[0,3], ic[0,0.1]

equations d[P.c,t,1]¼gr*P.c*(1)ic*P.c)

generic process exponential_growth

relates P{prey}

parameters gr[0,3]

equations d[P.c,t,1]¼gr*P.c

generic process exponential_loss

relates R{predator}

parameters dr[0,2]

equations d[R.c,t,1]¼)1*dr*R.c

generic process predation_holling_1;

relates P{prey}, R{predator};

parameters ar[0.01,10], ef[0.001,0.8];

equations

d[P.c,t,1]¼)1*ar*P.c*R.c;

d[R.c,t,1] ¼ ef*ar*P.c*R.c;

generic process predation_holling_2;

relates P{prey}, R{predator};

parameters ar[0.01,10], ef[0.001,0.8], ht[1,5];

equations

d[P.c,t,1] ¼ )1*ar*P.c*R.c / (1 + ht*ar*P.c);

d[R.c,t,1]¼ef*ar*P.c*R.c / (1+ht*ar*P.c);

Note. The variable type constraints are denoted in braces following the vari-

able’s name, while parameter bounds are specified within brackets. The notation

d[S,t,1] indicates the first derivative of S with respect to t.
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continuous variables. With data in hand, one can compare them with simulation trajectories

using mean squared error, the frequency of oscillations, or any pertinent fitness measure. If

multiple candidate models exist, then one can compare their fitness scores to determine

which offers the best available explanation of the phenomena.

The abilities (a) to instantiate generic processes and entities, (b) to revise models by

altering their components, and (c) to compare models to each other suggest a practical

strategy for searching through a space of quantitative process models. The initial step

involves assembling a starting set of models, possibly taken from the related literature, and

evaluating their fitness for a particular scenario. Next, one selects those candidates with the

best scores and refines them by adding and removing processes. This step initiates future

rounds of evaluation and refinement that continue until one or more acceptable models are

found. We claim that scientists follow a similar strategy, although in practice, resources

may limit them to considering only one or a few candidates.

We follow this fairly general claim about the activity of modeling with a more specific

one: the knowledge that scientists bring to the task. When constructing mechanistic models,

scientists employ data and knowledge similar to the entities, processes, and generic versions

of the same that we have discussed. Clearly, scientists in some fields work with multivariate

time series, but they also refer to entities and processes in their publications. For example,

Arrigo, Worthen, and Robinson (2003) discuss the processes responsible for ocean physics

and biological processes that control plankton concentrations in the Ross Sea. Entities such

as phytoplankton and zooplankton populations interact via these processes. Generic pro-

cesses and entities appear in the literature less frequently than their instantiated versions,

but Jost and Ellner (2000) discuss a collection of functional responses for population

dynamics models and Atanasova, Todorovski, Džeroski, and Kompare (2006) constructed a

library of processes for aquatic ecosystems.

2.3. Inductive process modeling

Having stated representations for mechanistic models and the scientific theories that

support them, we can now characterize the task of building mechanistic models:

• Given: Generic entities that have properties relevant to the observed dynamics

• Given: Generic processes that specify causal relations among entities using generalized

functional forms

• Given: A set of entities present in the modeled system

• Given: Observations for the continuous properties of those entities as they change over

time

• Find: A quantitative process model that, when given initial values for the modeled

variables and values for any exogenous (i.e., forcing) variables, explains the observed

data and predicts unseen data accurately

We refer to this task inductive process modeling (Langley, Sánchez, Todorovski, & Džero-

ski, 2002). A system that addresses this problem produces one or more explanations cast in

42 W. Bridewell, P. Langley ⁄ Topics in Cognitive Science 2 (2010)



the language of a scientific domain. Importantly, that model connects the scientists’ concep-

tual knowledge about processes and entities with a familiar mathematical formalism.

We developed a computational discovery system, IPM, to carry out this task using heuris-

tic search through the space of process models. This search operates in two stages, the first

building a candidate structure and the second estimating its numerical parameters. Initially,

IPM binds the generic processes to the problem-specific entities. These bound processes are

more concrete than their generic counterparts but still lack numerical parameters. Processes

in this form serve as the atomic elements of a model’s structure. Candidate solutions

consists of the entities, a set of bound processes, and the numerical parameters for those

processes and entities.

The space of candidate models grows exponentially with the number of bound processes,

so IPM uses heuristic search to explore the space of candidate solutions.2 Our implementa-

tion of heuristic search incorporates a simplicity bias, which means that IPM considers mod-

els with fewer processes first. In general, this strategy follows the procedure described

earlier in that it takes a set of candidate solutions, keeps a few that perform the best, and

adds processes to those during the next round of exploration. Search halts when exploration

fails to produce any solutions better than those previously considered. In many cases, this

beam search approach quickly finds high-quality solutions, even though its simplicity bias

is naive for IPM’s nonlinear modeling task.3

We have applied IPM with considerable success in task domains as varied as aquatic eco-

systems, biochemical kinetics, and molecular biology (Asgharbeygi, Bay, Langley, &

Arrigo, 2006; Langley, Shiran, Shrager, Todorovski, & Pohorille, 2006), but here we discuss

an example that illustrates one of its weaknesses (Bridewell et al., 2008): The system some-

times constructs scientifically implausible models and prefers them over more plausible

ones that have lower fitness scores. The modeling problem involves predicting the water

level in Denmark’s Ringkøbing Fjord. The data consist of a trajectory for the observed water

level recorded hourly for roughly 1 year, which the model should predict, and trajectories

for the water level of the open sea, the influx of fresh water, wind velocity and direction,

and the number of gate segments that were opened to allow water exchange between the

estuary and the open sea.

We gave IPM a partial solution and required it to explain the gate and wind influences

using a selection of 16 generic processes. The library’s size leads to over 65,000 model

structures whose evaluation would amount to several days of computation. Although beam

search would explore a reduced set of candidates, it cannot rule out the implausible struc-

tures. Left to the task, IPM will spend hours or days of computation on these models from

which a practically meaningless solution could eventuate. This drawback suggests that the

system lacks knowledge that scientists would bring to the task.

To determine what type of knowledge to add, we thought about how generic processes

limit the space of candidate models. Consider an equation discovery system, such as Lagra

mge (Todorovski, 2003), that searches the space of ordinary differential equations. Whereas

IPM generates solutions by adding processes to a model, Lagramge adds terms to individual

equations. As a result, when applied to the problem of foxes and rabbits from Table 2, it

would turn out candidate solutions where the fox population increases through predation,
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but the rabbit population grows unchecked. By operating at the level of processes instead of

individual terms, IPM ensures not only that predation terms appear in either both equations

or neither of them but also that the numeric parameters in those terms correspond correctly.

Taking this view, the generic processes act as constraints that rule out theoretically implau-

sible sets of equations.4

Now imagine constraints that control which processes can appear in a model. For exam-

ple, we could state that exactly one predation process must appear in the model of foxes and

rabbits. In the Ringkøbing Fjord example, we asserted that certain wind-related processes

mutually excluded others. This additional knowledge reduced the number of candidate

structures from over 65,000 to 1,280. Of course, these constraints could have lowered the

solution’s fitness. To evaluate this, we compared scores from IPM with those reported for

Lagramge (Todorovski, 2003), which searched a larger space of differential equations. For a

model trained over the first half of the data set, the best model found by IPM had a root

mean squared error (RMSE) of 0.052 and a coefficient of determination (r2) of 0.421. In

comparison, Lagramge’s model, which was trained over the full data set, had an RMSE of

0.059 and an r2 of 0.434.5 The difference in scores was minimal, with a negligible decrease

in error, while the savings in search was marked. A series of similar results encouraged us

to develop new types of constraints to guide IPM’s heuristic search.

3. Constraints on inductive process modeling

The advantages of constraints that we observed when using IPM led us to consider both a

new approach to model generation and an additional form of domain knowledge. Specifi-

cally, we designed modular constraints that complement the generic process formalism and

let scientists control the structure of the models that are considered. We incorporated these

constraints into a new system called SC-IPM—an acronym for ‘‘Satisfying Constraints

to Induce Process Models’’—that produces only those models supported by this new

knowledge.

3.1. Constraints in satisfying constraints to induce process models

Analysis of the implausible models produced by IPM suggested four types of constraints

that we incorporated into SC-IPM: necessary, always-together, at-most-one, and exactly-
one. Each constraint expresses a relationship among generic processes that refines the space

of candidate models. Of these, the necessary constraint asserts that at least one instantiation

of a given generic process must appear in a model. For example, this type of constraint

could ensure that a predation model includes an exponential loss process or an instantiation

of a particular predation process (e.g., Holling type I). The always-together constraint cre-

ates a relationship among its generic processes by declaring that a model must instantiate

either all of them or none of them. This relationship is useful in ecosystem models that

include nutrient-limited primary production where the nutrient-limited growth process

appears if and only if there is a corresponding nutrient absorption process.
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SC-IPM’s other two constraints let users assert that two or more generic processes are

mutually exclusive. As suggested by its name, the at-most-one constraint ensures that no

more than one instantiation of a generic process appears within a model. This addition

makes the inclusion of alternative functional forms within a process library more practical.

For example, one can preclude ecosystem models where the same two species engage in

both symbiotic and parasitic interactions. The final constraint, which we call exactly-one,

combines at-most-one and necessary to define a mutually exclusive group of generic pro-

cesses where one of the alternatives must appear in the model. Table 4 gives an example

process library for ecosystem models, omitting the details of the generic processes to focus

on the constraints.

As described, SC-IPM’s four constraints limit the instantiation of generic processes

within a model without qualification, which has limited usefulness in models with more than

one instantiation of a generic process. For instance, an unqualified version of the

growth_alternatives constraint in Table 4 would limit each model to one of these three pro-

cesses even if there were multiple primary producers. To relax the constraints, users state

that processes must be uniquely instantiated over some set of entities. Reflecting this, the

growth_alternatives that appears in Table 4 allows one growth process for each producer.

Likewise, the grazing_alternatives constraint ensures that each producer–grazer pairing has

at most one grazing process.

To develop a system that respects these constraints, we extended the part of IPM that gen-

erates candidate model structures. Specifically, we turned to approaches for solving con-

straint satisfaction problems. Methods from this paradigm begin by translating statements in

Table 4

Constraints from an SC-IPM library for ecosystem models

constraint growth_alternatives

type exactly-one

processes exponential_growth(P), logistic_growth(P), limited_growth(P)

constraint grazing_alternatives

type at-most-one

processes ivlev, ratio_dependent(P,G), holling_type_1(P,G), holling_type_2(P,G)

constraint nutrient_limited_growth

type always-together

processes limited_growth(P), nutrient_limitation(P,N)

constraint optional_light_limitation

type at-most-one

processes exponential_growth(P), logistic_growth(P), light_limitation(P,L)

constraint mandatory_loss

type necessary

processes exponential_loss(P), degradation(P)

Note. The arguments to the processes map to instantiations of generic entities. P is primary

producer, N is nutrient, G is grazer, and L is light.
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higher order logics to a propositional representation. For SC-IPM, this takes place when

entities are bound to the generic processes, creating potential components for the process

models. From the perspective of propositional logic, each component is a Boolean variable,

and the constraints define the sentences that contain these variables. Given a logical sen-

tence, the constraint satisfier attempts to find values for all the variables that will make the

sentence true. If a variable is false, then the associated component must not appear in the

candidate model, if true, then it must appear, and otherwise the component is considered

free and its inclusion does not affect the plausibility of the model structure. For example,

given the bound processes p1,…,p5, a set of constraints could lead to the Boolean sentence

p1 ^ :p2 ^ ðp4 _ p5Þ. In this case, p1 must appear in all plausible models, p2 can never

appear, at least one of p4 and p5 must appear, and p3 is a free variable, which leads to six

valid structures.

After SC-IPM transforms the constraints into a propositional sentence, it can use avail-

able methods for constraint satisfaction that employ either traditional heuristic search

(Davis, Logemann, & Loveland, 1962) or local search (Selman, Kautz, & Cohen, 1996). To

be efficient in time, both technologies expect the logical sentence to be in conjunctive nor-

mal form (CNF).6 In general, transforming an arbitrary logical sentence into CNF can result

in an exponential increase in clauses particularly in the case of mutually exclusive relation-

ships. However, we developed specialized translation functions for the constraints in

SC-IPM that guard against an excessive number of clauses. After translating the constraints

into CNF, the system applies the WalkSAT algorithm (Selman et al., 1996) to generate

candidate model structures.

This strategy for model construction differs from the heuristic search used by IPM, but it

enables a modified version of beam search. To implement this approach, we added a new,

two-stage procedure for model generation. In the first stage, SC-IPM generates a candidate

structure that satisfies all the constraints, leaving the free variables set to false. This step

yields a plausible model that includes a minimal subset of the available components. The

second stage expands this structure by including subsets of the unconstrained components,

essentially adding processes one at a time to balance model complexity with predictive

accuracy. By merging techniques for constraint satisfaction and beam search, we reduce

search both by ruling out scientifically implausible models and by focusing the exploration

on candidates that are potentially accurate.

In Section 2.2, we claimed that scientists construct explanatory models by creating an

initial set of models and refining the members of that set by adding or removing processes.

SC-IPM extends this claim to suggest that scientists have broadly defined constraints that

ensure that their models maintain scientific plausibility. However, we expect that they use

incremental strategies to develop their models as opposed to the local search approaches

that the system implements. We also suggest that when presented with models, scientists

carry out a form of constraint checking to ensure that the relationships among the entities

and processes match their knowledge of the problem domain. To this extent, SC-IPM

refines the cognitive model of IPM to make a more specific claim about the scientific

activity.
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3.2. Computational experiments on constrained model induction

In Section 2.3, we described computational experiments that showed how constraints

on the structure of candidate models affected the amount of search in IPM and the pre-

dictive accuracy of its solutions. As a follow-on, we also ran experiments with an early

prototype of SC-IPM that incorporates the same type of constraints (Todorovski, Bride-

well, Shiran, & Langley, 2005). Like SC-IPM, this system starts with minimal plausible

structures and refines them using beam search. We report results on three problems: one

that uses synthetic data and two others that use actual scientific data. In every case, the

constraints reduced the total amount of search and prevented the acceptance of implausi-

ble models. In five of eight trials, the extra knowledge also increased the predictive accu-

racy of the best models.

The first set of experiments used synthetic data generated from an ecosystem-style

model that included four entities and nine processes. In every scenario, the structural

constraints reduced search by at least a factor of seven and improved predictive accuracy

on separate test data. In addition, all the constrained models had plausible structures,

whereas the best models produced by IPM were implausible. Furthermore, the SC-IPM

prototype accurately reconstructed the original model structure in a majority of the trials.

In the cases where the system did not reconstruct the source model, its solution differed

by only a single process.

The second set of computational experiments used data from a predator–prey system

involving microscopic species (Veilleux, 1979), whereas the third used data related to phy-

toplankton dynamics in the Ross Sea (Arrigo et al., 2003). For these domains, the overall

reduction in search varied between 7- and 19-fold, much as we had expected, but the error

measures told different stories. In the Ross Sea domain, the constraint-aware system sub-

stantially outperformed IPM in accuracy with r2 values ranging from 0.06 to 0.16 points

higher. In contrast, the constraints reduced r2 in the predator–prey domain by more than 0.2

points in each case. Curious about this result, we looked more closely at the models that

each system produced. Doing so revealed that none of the models produced by IPM were

plausible given expert-derived domain knowledge because they either included mutually

exclusive processes or excluded necessary ones. Our tentative conclusion was that the

library of generic processes either lacked the appropriate functional forms or that the param-

eter ranges were too restrictive. Subsequent studies with the same data sets support the latter

explanation.

SC-IPM extends previous work on inductive process modeling to include structural con-

straints that help prevent the consideration of implausible models. Results with a precursor

to SC-IPM support the hypothesis that these constraints add quantitative and qualitative

value to the modeling system. Although we left out several details as we recounted these

results, each case shows that the addition of constraints on generic processes substantially

reduces search, leads to scientifically plausible models, and can improve the predictive

accuracy of proposed solutions.
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4. Related work

Inductive process modeling is a recent contribution to the literature on computational sci-

entific discovery. Inspired by previous work, we investigated this task with a system that

carries out heuristic search through a problem space of candidate models. Guided by time-

series data, the system composes mechanistic models from a library of generic processes

that delineate its search space. Unfortunately, this approach entertained scientifically

implausible candidates that sometimes fit the data quite well. Regardless of their quantita-

tive accuracy, these models provide poor explanations of the phenomena of interest and

should be excluded from consideration.

The need to further restrict the search space led us to introduce constraints on model

structures. Specifically, the additional knowledge restricts the processes that may appear in

a candidate solution. This type of information forms a key part of scientific knowledge and

helps focus a discovery system’s attention on plausible models. To take advantage of these

constraints, we developed a language for representing them and incorporated it into a new

program called SC-IPM.

Inductive process modeling builds on a long line of work in fields as varied as equation

discovery and qualitative physics. Our research grew directly out of Todorovski and

Džeroski’s (1997) work on equation discovery and the Lagramge system. Starting from the

premise that discovery systems spend considerable time exploring implausible equations,

they investigated ways to incorporate domain knowledge that excludes nonsensical candi-

dates. Their approach treated equations as if they were sentences, appealing to context-free

grammars as a means to limit the search space. Although Lagramge met this goal, its knowl-

edge representation was foreign to domain scientists, which led to an emphasis on process

models (Langley et al., 2002).

Our focus on processes as an important type of scientific knowledge stems both from

their use in the everyday language of scientists (Haefner, 2005; Jørgensen & Bendoric-

chio, 2001) and from work in the area of qualitative physics (Forbus, 1984) and composi-

tional modeling (Falkenhainer & Forbus, 1991). In particular, the latter also constructed

models from a library of processes and entities and included support for quantitative

simulation. However, it created these models only in response to a query about the behav-

ior of a specified physical system, and it searched for the simplest model that could

answer this query. By contrast, our methods for inductive process modeling create models

that aim to explain how observed variables change over time, which raises quite different

challenges.

Although the value of search constraints is well known, their role in modeling has rarely

been addressed. Nersessian’s (2008) latest book serves as a welcome exception. She identi-

fies several types of constraints that inform model construction, distinguishing them based

on their source. Reflecting our background in computational modeling, we instead draw a

distinction between constraints that refer to a model’s behavior and those that refer to its

structure. For example, SC-IPM can quickly tell whether a model contains all the necessary

processes, but determining whether it produces oscillations requires parameter estimation

and simulation, which accounts for over 99% of the computational time in SC-IPM. Bradley
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and Stolle’s (1996) PRET, an equation discovery system, bridges this distinction with con-

straints that relate an equation’s structure to its behavior.

Perhaps the closest in spirit to the reported research is MECHEM (Valdés-Pérez, 1995),

which inputs knowledge of chemistry in the form of solution constraints and produces

chemical reaction pathways. As in SC-IPM, that system’s constraint language was modular,

but the input was problem specific in that users would enter constraints relevant to a particu-

lar chemical reaction. By contrast, SC-IPM focuses on theory-level constraints rather than

problem-level ones. This distinction is important in that constraints expressed at the theory

level are general enough to transfer across modeling tasks.

The importance of theory-level constraints and the little attention they have received

leave the door open for future research. For instance, we intend to follow MECHEM’s

example and include problem-level constraints in SC-IPM that can refine the space of candi-

date models based on scenario-specific considerations. Additionally, we are investigating

approaches for learning modeling constraints. We have obtained promising initial results in

this direction (Bridewell, Borrett, & Todorovski, 2007; Bridewell & Todorovski, 2007), and

we are currently exploring inferred constraints that generalize across problems and across

task domains.

In this paper, we highlighted the role of generic processes and model constraints in scien-

tific discovery. The distinction between the components that comprise models and the con-

straints that inform their construction suggest new avenues for the development of

discovery systems, the acquisition of expert knowledge, and the analysis of human scientific

activities. Moreover, from the perspective of cognitive modeling, we discussed how these

types of knowledge relate to the information that scientists use when they model dynamic

systems and how the search methods in IPM and SC-IPM relate to scientific discovery by

humans.

Notes

1. Thagard (2003) developed a similar approach based on explanation schemas that

suggest both the pattern of the explanation and the questions it addresses.

2. The program also supports exhaustive search, which is often impractical due to the

number of candidate models.

3. Minor changes in a nonlinear model may result in dramatic changes in its predictions.

As a result, in general we can expect little correlation between a model’s fitness and

its fitness after adding a process.

4. To avoid misinterpretation, we note that the explanatory content of the model stems

from its relationship to scientific concepts and not from the equations themselves.

Equations without a theoretical interpretation provide a description of system dynam-

ics, but we are reluctant to call them explanations.

5. The root mean squared error is the average absolute error of each prediction. The coef-

ficient of determination for IPM is the square of the correlation coefficient; so, values
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range between 0 and 1, with larger values indicating that the model explains more of

the observed variance.

6. Conjunctive normal form is a sequence of disjunctive (i.e., logical ‘or’) clauses

combined with the logical ‘and’ operator.
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