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Abstract In this chapter, we review research on computational approaches to sci-
entific discovery, starting with early work on the induction of numeric laws be-
fore turning to the construction of models that explain observations in terms of
domain knowledge. We focus especially on inductive process modeling, which in-
volves finding a set of linked differential equations, organized into processes, that
reproduce, predict, and explain multivariate time series. We review the notion of
quantitative process models, present two approaches to their construction that search
through a space of model structures and associated parameters, and report their suc-
cessful application to the explanation of ecological data. After this, we explore the
relevance of process models to the social sciences, including the reasons they seem
appropriate and some challenges to discovering them. In closing, we discuss other
causal frameworks, including structural equation models and agent-based accounts,
that researchers have developed to construct models of social phenomena.

1 Introduction

The scientific enterprise is a diverse collection of activities that is distinguished from
other areas of human endeavor by a number of important characteristics. These in-
clude the systematic collection and analysis of observations, the formal statement
of theories, laws, and models, invoking those theories and models to explain and
predict observations, and using those observations in turn to evaluate theories and
models. Within this broad endeavor, a central element – scientific discovery – is
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widely viewed as one of the highest forms of human achievement. Clearly, compu-
tational insights into discovery processes would have important implications, both
theoretical and practical.

This holds especially in the system sciences, like ecology, that examine many
interacting variables, develop complex models with feedback loops, and typically
lack experimental control. Such fields are arguably less advanced that disciplines
like biology, chemistry, and physics because they are more complicated and present
so many difficulties. The latter have developed more precise and complete accounts
not because they are ‘hard’ sciences, but rather because they are ‘easy’ disciplines
that involve relatively simple phenomena and lend themselves to experimental study.
In contrast, the system sciences – including those focused on social phenomena –
stand to benefit more from a deeper understanding of scientific discovery and tools
that might aid them.

In this chapter, we examine the problem of model construction in such disci-
plines, with special emphasis on the social sciences. We review efforts to understand
the discovery process in computational terms, recounting its progress and successes
over the past 35 years. Most research in the area has focused on induction of em-
pirical laws, but some work has addressed construction of explanatory models that
are more relevant to the social sciences. We examine one paradigm – inductive pro-
cess modeling – in some detail, as it deals with discovery of explanatory models
from multivariate time series in the absence of experimental control. Research in
this framework has concentrated on ecological phenomena, but we argue that it also
lends itself nicely to social science problems, presenting examples to support this
claim. In closing, we discuss challenges to the use of inductive process modeling in
this arena, along with other approaches to constructing explanatory accounts in the
social sciences.

2 Computational Scientific Discovery

There is no question that discovery plays a central in the scientific enterprise. Sci-
ence could not proceed without using laws and models to generate testable predic-
tions. Neither could it make progress without collecting observations that let it eval-
uate those laws and models. But discovery brings these two activities together by
generating new laws and models, or revising existing ones, in response to anomalies
and surprising results. Prizes in science are typically awarded for researchers’ role
in discovering new laws or mechanisms, not for making predictions or collecting
data, even when the latter lead to the former.

However, the philosophy of science, which attempts to understand and formalize
scientific structures and processes, has generally avoided addressing issues related
to discovery. The standard argument has been that this important activity is immune
to logical analysis. For example, Popper (1961) wrote:
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The initial stage, the act of conceiving or inventing a theory, seems to me neither to call
for logical analysis nor to be susceptible of it . . . My view may be expressed by saying that
every discovery contains an ‘irrational element’, or ‘a creative intuition’ . . .

Many others adopted Popper’s position in the decades that followed. Hempel (1966)
and other scholars also maintained that discovery was inherently irrational and thus
beyond understanding, at least in terms that philosophers accepted. This mystical
attitude toward discovery hindered progress on the topic for many years.

Yet advances made by two fields – cognitive psychology and artificial intelli-
gence – in the 1950s suggested a path forward. In particular, Simon (1966) proposed
that scientific discovery is a variety of problem solving that involves search through
a space of problem states – in this case laws, models, or theories. These structures
are generated by applying mental operators to previous ones, with search through
the space of candidates guided by heuristics to make it tractable. Heuristic search
had been implicated in many cases of human cognition, from proving theorems to
playing chess. This framework offered not only an approach to understanding sci-
entific discovery, but also ways to automate this mysterious process.

Early research in this area focused on discovery of empirical laws. For instance,
BACON (Langley, 1981; Langley, Simon, Bradshaw, & Zytkow, 1987) carried out
search through a problem space of algebraic terms, using operators like multiplica-
tion and division to generate new terms from old ones. The system was guided by
heuristics that noted regularities in data, one of which was defining a new product
term, x · y, when it found that x increased as y decreased. In many cases, this led
BACON toward higher-level terms with constant values, as in its rediscovery of Ke-
pler’s third law of planetary motion. The system also applied this idea recursively,
treating parameters at lower levels as variables at higher ones, to formulate complex
relations, as in its rediscovery of the idea gas law. BACON reconstructed a variety
of numeric relations from the history of physics and chemistry, lending evidence to
Simon’s claim that heuristic search underlies scientific discovery.

Responses to the BACON work were mixed, with some critics viewing it as clar-
ifying important aspects of the discovery process. But others claimed that the ‘real’
key to discovery instead lay in other activities the system did not address, such as
deciding which variables to measure and relate, determining which problem space
to search, or selecting which scientific problem to pursue. Others held that BACON
‘only did what it was programmed to do’, and thus did not really ‘discover’ anything.
The system’s developers only claimed that it offered insights into the operation of
scientific discovery and removed much of its mystery, but they acknowledged that
it offered only a partial account and that much work remained to be done.

Later research took inspiration from the initial BACON results and developed
more powerful approaches to discovering numeric laws. Papers by Falkenhainer and
Michalski (1986), Moulet (1992), Zytkow, Zhu, and Hussam (1990), Kokar (1986),
Schaffer (1990), Nordhausen and Langley (1990), Gordon et al. (1994), Murata,
Mizutani, and Shimura (1994), Washio and Motoda (1997), and Saito and Nakano
(1997) all reported systems that induced algebraic laws describing relations among
quantitative variables, many of them reproducing results from the history of sci-
ence. Other work – by Džeroski and Todorovski (1995), Bradley, Easley, and Stolle
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(2001), Koza et al. (2001), Todorovski and Džeroski (2008), and Schmidt and Lip-
son (2009) – extended this idea to differential equations for dynamic systems, often
focusing on novel scientific data. These relied on different methods but also searched
for explicit mathematical laws that matched data. Interest in computational discov-
ery spread to other aspects of science, including induction of qualitative laws and
construction of explanatory models (Shrager & Langley, 1990; Džeroski & Todor-
ovski, 2007).

Although early work in this area emphasized reconstructions of discoveries from
the history of science, later efforts went on to help to generate new knowledge in
many scientific fields. These success stories have included discovery of:

• reaction pathways in catalytic chemistry (Valdes-Perez, 1994; Bruk et al., 1998);
• qualitative chemical factors in mutagenesis (King & Srinivasan, 1996);
• quantitative laws of metallic behavior (Mitchell et al., 1997);
• quantitative conjectures in graph theory (Fajtlowicz, 1988);
• qualitative conjectures in number theory (Colton, Bundy, & Walsh, 2000);
• temporal laws of ecological behavior (Todorovski, Džeroski, & Kompare, 1998);
• models of gene-influenced metabolism in yeast (King et al., 2004).

In each case, the authors published their findings in the refereed literature of the rel-
evant scientific field, showing that experts in the discipline viewed them as relevant
and interesting. Langley (2000) has analyzed a number of these successes, identify-
ing elements in each case that were handled by computer and others that were done
manually. Together, these results demonstrate convincingly that we can automate
important aspects of the scientific process.

Before continuing, we should distinguish between research on computational sci-
entific discovery and another research paradigm – data mining – that emerged in the
1990s, which also aims to find regularities in observations and uses heuristic search
through a space of hypotheses to this end. Work in this area typically focuses on
commercial applications and emphasizes the availability of large data sets. Most
data-mining research has adopted notations invented by computer scientists, such as
decision trees and Bayesian networks, in marked contrast to computational scien-
tific discovery, which focuses on formalisms used by domain scientists. Data-mining
methods have been applied to scientific data (e.g., Fayyad, Haussler, & Stolorz,
1996), but the results seldom bear a resemblance to scientific knowledge.

3 Discovery of Explanatory Process Models

The early stages of science typically focus on finding descriptive laws that summa-
rize empirical regularities. This is understandable, as paucity of knowledge about
the area encourages inductive inquiry. For similar reasons, it was natural for most
initial research on computatinal discovery to focus on these early stages. In contrast,
more mature sciences emphasize the creation of models that explain phenomena
(Hempel, 1965) in terms of hypothesized components, structures that relate them,
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Fig. 1 Observed concentrations for phytoplankton (left) and nitrogen (right) from the Ross Sea,
along with simulated values (smooth curves) produced by a quantitative process model, from
Bridewell, Langley, Todorovski, and Džeroski (2008).

and interactions among these elements. Such explanatory models move beyond de-
scription to provide deeper accounts that are linked to theoretical constructs. Can
we also develop computational systems that address this more sophisticated side of
scientific discovery?

3.1 Quantitative Process Models

Consider an example from aquatic ecosystems. Figure 1 displays observations for
the concentration of phytoplankton and nitrogen, taken at daily intervals, from the
Ross Sea in Antarctica. Formal models of ecosystem dynamics are often cast as sets
of differential equations, such as those shown in Table 1 (a). This model includes
four equations, two for observed variables, phyto.conc (phytoplankton concentra-
tion) and nitro.conc (nitrogen concentration), and two for unobserved but hypoth-
esized variables, zoo.conc (zooplantkton) and detritus.conc. When simulated, such
equations can match observed trajectories with considerable accuracy, as illustrated
in the figure.

However, the equations by themselves merely describe the ecosystem’s behav-
ior. The text in articles suggests that scientists have a richer story, which might go
something like:

As phytoplankton uptakes nitrogen, its concentration increases and the nitrogen decreases.
This continues until the nitrogen is exhausted, which leads to a phytoplankton die off. This
produces detritus, which gradually remineralizes to replenish nitrogen. Zooplankton grazes
on phytoplankton, which slows the latter’s increase and also produces detritus.

Each sentence here refers to some process that contributes to the model’s equations.
The first one focuses on the process of nutrient absorption; this is associated with
the phyto.conc term in the first equation, which increases the phytoplankton con-
centration, and with the phyto.conc term in the fourth equation, which decreases
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Table 1 (a) A set of linked differential equations for an aquatic ecosystem that relates concentra-
tions of phytoplankton, nitrogen, zooplankton,and detritus to reproduce trajectories like those in
Figure 1 and (b) a process model that compiles into the same set of equations.

(a) d[phyto.conc,t] = 0.104 · phyto.conc − 0.495 · zoo.conc
d[nitro.conc,t] = 0.005 · detritus.conc − 0.040 · phyto.conc
d[zoo.conc,t] = 0.053 · zoo.conc
d[detritus.conc,t] = 0.307 · phyto.conc + 0.060 · zoo.conc − 0.005 · detritus.conc

(b) process phyto loss(phyto, detritus)
equations: d[phyto.conc,t] = −0.307 · phyto.conc

d[detritus.conc,t] = 0.307 · phyto.conc
process zoo loss(zoo, detritus)

equations: d[zoo.conc,t] = −0.251 · zoo.conc
d[detritus.conc,t] = 0.251 · zoo.conc

process zoo phyto grazing(zoo, phyto, detritus)
equations: d[zoo.conc,t] = 0.615 · 0.495 · zoo.conc

d[detritus.conc,t] = 0.385 · 0.495 · zoo.conc
d[phyto.conc,t] = −0.495 · zoo.conc

process nitro uptake(phyto, nitro)
equations: d[phyto.conc,t] = 0.411 · phyto.conc

d[nitro.conc,t] = −0.098 · 0.411 · phyto.conc
process nitro remineralization(nitro, detritus)

equations: d[nitro.conc,t] = 0.005 · detritus.conc
d[detritus.conc,t] = −0.005 · detritus.conc

the nitrogen concentration. Similarly, the final sentence describes a grazing process;
this contributes to zoo.conc in the first equation, to the zoo.conc term in the second
equation, and to zoo.conc in the third equation.

We can reformulate such an account by restating it as a quantitative process
model, like that shown in Table 1 (b). This includes five distinct processes for phy-
toplankton loss, zooplankton loss, zooplankton grazing on phytoplankton, phyto-
plankton uptake of nitrogen, and remineralization of nitrogen from detritus. Each
process describes how one or more variables change as a function of current vari-
ables’ values. For instance, the equation d[detritus.conc, t] = 0.05 · phyto.conc states
that the derivative of detritus concentration is five percent of the phytoplankton
concentration. After combining terms, this model is equivalent to the differential
equations shown earlier if we assume that, when two or more processes influence
the same derivative, their effects are additive. For example, summing the effects
of processes for d[phyto.conc, t] from Table 1 (b) produces the expression −0.307
· phyto.conc + −0.495 · zoo.conc + 0.411 · phyto.conc, and combining the two
phyto.conc terms gives the right-hand side of the first equation in Table 1 (a). Yet
the elaborated version in Table 1 (b) also states explicit assumptions about the un-
derlying processes, each of which indicates terms in the differential equations that
must stand or fall together.



Process Modeling and the Social Sciences 7

!!!

Time-series data

Generic processes

Process 
models

Organism1 [predator, prey]
Organism2 [predator, prey]

Target variables

!!!

Inductive Process 
Modeling

exponential_growth(Organism1)
  rate R = Organism1
  derivatives  d[Organism1,t] = a * R
  parameters a = 0.75

holling(Organism2, Organism1)
  rate R = Organism2 * Organism1
  derivatives   d[Organism2,t] = b * R,
                     d[Organism1,t] = c * R
  parameters  b = 0.0024, c = –0.011

!!!

exponential_growth(X [prey]) [growth]
  rate R = X
  derivatives  d[X,t] = a * R
  parameters a > 0

holling(X [predator], Y [prey]) [predation]
  rate R = X * Y
  derivatives   d[X,t] = b * R, d[Y, t] = c * R
  parameters  b > 0, c < 0

Fig. 2 The task of inductive process modeling, which is given a set of variables, time series for
their values, and generic knowledge about possible processes. The result is a set of parameterized
models that fit the time series and explain its variations in terms of inferred processes.

3.2 Inductive Process Modeling

These observations suggest a class of discovery tasks that involve construction of
such process accounts. We can state this problem, which we will refer to as inductive
process modeling (Langley, Sanchez, Todorovski, & Džeroski, 2002), in terms of its
inputs and outputs:

• Given: A set of typed entities and observed trajectories for their variables over
time;

• Given: A subset of these variables whose values one wants to explain;
• Given: Background knowledge about process types that might appear in these

explanations;
• Find: A quantitative process model that reproduces observed trajectories, ex-

plains them in terms of known processes, and predicts future values.

For instance, given a multivariate time series, like that shown in Figure 1, and
background knowledge about candidate processes, inductive process modeling con-
structs one or more models like the one in Table 1 (b). Besides reproducing the
observed values, this structure explains the trajectories in terms of unobserved but
plausible processes. Figure 2 depicts the overall task graphically.

Background knowledge takes the form of generic processes that specify possi-
ble interactions among entities. These have roughly the same syntax as concrete
processes, except that they refer to types of entities (e.g., organisms or nutrients)
rather than specific ones (e.g., phyto) and they contain functional forms that relate
attributes of these generic entities rather than specific equations. Functions do not
include particular coefficients but instead refer to parameters with bounds on their
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possible values (e.g., between zero and one). The same parameter may occur in more
than one of a process’s equations, thus reducing dimensionality of the parameter
space. Generic processes serve as the building blocks for constructing quantitative
process models.

Traditional methods for inductive process modeling (e.g., Bridewell, Langley,
Todorovski, & Džeroski, 2008) carry out search through a two-level space. The first
works in the space of model structures, carrying out exhaustive depth-first search to
find all ways to instantiate the known generic processes with specific entities; these
become the elements for candidate models. The procedure starts with an empty
model and, on each step, adds a new instantiated process if the new structure would
not exceed user-specified size limitations.1 For each such model structure, it then
carries out search through a second parameter space. Starting with values sampled
randomly from within each parameter’s boundaries, this uses a conjugate gradient
descent method to find parameters. The objective function that directs search is the
squared error of a model’s simulated trajectory compared to observations. Because
this can halt at local optima, parameter estimation typically includes ten or more
restarts from different initial values. This two-level strategy produces a list of pa-
rameterized model structures ranked by their error on the training data.

Table 2 presents pseudocode for this two-level approach to process model induc-
tion, which has been implemented and applied successfully to a variety of modeling
tasks (Todorovski et al., 2005; Bridewell et al., 2008). These comprise fields as di-
verse as ecology, hydrology, and biochemistry (Asgharbeygi et al., 2006; Bridewell
et al., 2008; Langley et al., 2006). Papers on the topic have also reported a number
of extensions that increase the robustness and coverage of the modeling framework.
These include revision of existing quantitative process models (Asgharbeygi et al.,
2006), hierarchical generic processes to constrain search (Todorovski, Bridewell,
Shiran, & Langley, 2005), an ensemble-like method that mitigates overfitting effects
(Bridewell, Bani Asadi, Langley, & Todorovski, 2005), and an EM-like method that
estimates missing observations (Bridewell, Langley, Racunas, & Borrett, 2006). An-
other extension has expanded the framework to models that involve partial differen-
tial equations (Park, Bridewell, & Langley, 2010), which take into account changes
over both time and space. These results suggest that the basic framework is sound,
and many encouraging empirical studies have buttressed this impression.

3.3 Discovering Rate-Based Process Models

Despite these successes, the initial methods for inductive process modeling have
suffered from four drawbacks. They generate and evaluate full model structures
exhaustively, which means the number of candidate structures grows exponentially
with both the number of variables and the number of generic processes. Moreover,

1 Some variants (e.g., Bridewell & Langley, 2010) ensure that candidate structures are consistent
with constraints on relations among processes, say that an organism cannot take part in two distinct
growth elements. These offer another form of theoretical knowledge about the domain.



Process Modeling and the Social Sciences 9

Table 2 Pseudocode for IPM (Inductive Process Modeler), a system for inducing quantitative pro-
cess models (Bridewell et al., 2008), which combines exhaustive search through the space of model
structures with gradient descent search during parameter estimation.

Generate all process instances consistent with type constraints.
Combine these processes into candidate model structures up to a maximum size.
For each structure S,

Select random parameters values for S within ranges of generic processes.
Simulate parameterized S to produce a multivariate trajectory.
Calculate simulation error E by comparing to observations.
Use conjugate gradient descent to determine new parameter values.
Repeat until there is no reduction in error E.
Fix the parameters for S to this values and store E with S.

Return a list of parameterized model structures ranked by error scores.

parameter estimation requires repeated simulation of models to calculate an error
score for gradient descent through the parameter space. Even so, this technique often
halts at local optima, which can require many random restarts to find acceptable
parameter values. Finally, despite these steps, the approach can still find models that
fit the observations poorly. In summary, it does not scale well to complex modeling
tasks, incurs high computational costs even for moderate tasks, and it is not reliable.

In recent research, Langley and Arvay (2015) have reported a new approach that
addresses these problems. In their modeling formalism, each process P must include
a rate that denotes P’s speed or activation on a given time step. This rate is deter-
mined by an algebraic equation that is a parameter-free function of known variables.
The process also specifies one or more derivatives that are proportional to P’s rate,
with negative coeffients for inputs and positive ones for outputs. Table 3 presents an
example in this formalism that is equivalent to the one seen earlier in Table 1 (a).
The notation has an important property that assists discovery substantially: a pro-
cess model compiles into a set of differential equations that are linear combinations
of rate terms. It also comes closer to Forbus’ (1984) notion of qualitative processes,
which inspired early work in the area.

Langley and Arvay also described RPM (Rate-based Process Modeler), a system
that takes advantage of this more constrained formalism. Like its predecessors, the
program estimates the derivative for each variable on each time step by calculating
successive differences of observed values. It also generates a set of process instances
by binding generic processes with variables in all possible ways consistent with
their type constraints, but at this point it diverges. Because RPM assumes that each
variable is observed, it can calculate the rate of each candidate process instance
on each time step. As described in Table 4, it uses these derived values to carries
out greedy search through the space of process models. For each target derivative,
the system invokes multiple linear regression to find an equation that predicts it
as a linear combination of process rates. Later differential equations must include
processes that are consistent with those in earlier ones and vice versa. For instance,
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Table 3 A process model that is equivalent to the one in Table 1 (b) but that separates algebraic
rate expressions from equation fragments. Such a model always compiles into a set of differential
equations that are linear combinations of rate expressions.

process phyto loss(phyto, detritus)
rate: r = phyto.conc
equations: d[phyto.conc,t] = −0.307 · r

d[detritus.conc,t] = 0.307 · r
process zoo loss(zoo, detritus)

rate: r = zoo.conc
equations: d[zoo.conc,t] = −0.251 · r

d[detritus.conc,t] = 0.251 · r
process zoo phyto grazing(zoo, phyto, detritus)

rate: r = 0.495 · zoo.conc
equations: d[zoo.conc,t] = 0.615 · r

d[detritus.conc,t] = 0.385 · r
d[phyto.conc,t] = −1.0 · r

process nitro uptake(phyto, nitro)
rate: r = 0.411 · phyto.conc
equations: d[phyto.conc,t] = 1.0 · r

d[nitro.conc,t] = −0.098 · r
process nitro remineralization(nitro, detritus)

rate: r = detritus.conc
equations: d[nitro.conc,t] = 0.005 · r

d[detritus.conc,t ] = −0.005 · r

if an equation RPM selected for d[x] includes a process P that influences not only
d[x] but also d[y], any equation it considers for d[y] must also include P’s rate in its
right-hand side. This approach factors the model construction task into a number of
tractable components, combining the efficiency and robustness of linear regression
with the use of domain knowledge to ensure explanations are internally consistent.

As expected, experiments revealed that RPM was not only vastly more efficient
than SC-IPM (Bridewell & Langley, 2010), an earlier system for process model in-
duction, running 83,000 times faster on even simple tasks, but that it found both
the structure and parameters of target models much more reliably. Heuristic search
through the structure space led to reasonable scaling with increases in the number
of variables and generic processes, and simple smoothing over trajectories let it deal
well with noise. However, some important drawbacks remained, including an as-
sumption that all variables were observed and reliance on exhaustive search through
the equation space.

More recently, Arvay and Langley (2016) have presented another system, SPM,
that combines sampling of rate terms with backward elimination to induce equa-
tions in the presence of many irrelevant processes. The new program also replaces
greedy search through the space of model structures with a two-stage strategy. First,
the system finds multiple differential equations for each variable, after which it uses
depth-first search to find sets of equations that incorporate consistent processes.
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Table 4 Pseudocode for the RPM system for inducing rate-based process models. Rather than
generating complete model structures, it carries out heuristic search by inducing one equation at a
time, using process knowledge to ensure consistency across equations.

Generate all process instances consistent with type constraints.
For each process P, calculate the rate for P on each time step.
For each target variable X ,

Estimate d[X , t] on each time step with center differencing.
For each subset of processes with up to k elements,

Find a regression equation for d[X , t] in terms of process rates.
If the equation’s r2 is high enough, retain for consideration.

Add the equation with the highest r2 to the process model.

Experiments with synthetic time series suggest that this approach scales better to
equation complexity and identifies consistent process models better in domains like
chemistry, where many different equatons predict each variable’s derivative accu-
rately, but where only a few combinations of these equations are consistent.

4 Extension to the Social Sciences

In the introduction, we mentioned our concern with computational discovery in the
social sciences, and we are finally ready to return to that topic. In this section, we
discuss briefly the relevance of process models to this area, consider some exam-
ples of social processes, outline how automated construction of social models might
occur, and discuss some challenges that we must overcome to support the general
form of this vision.

4.1 Relevance to Social Science

The social sciences share a number of features with ecology that suggest quantitative
process models, and computational methods for their discovery, will prove as useful
in the former disciplines as they have for the latter. These similarities concern both
the nature of data that arise in these fields and the form of models that researchers
often develop to explain them.

First, most data sets in the social sciences are observational rather than exper-
imental in character. Not only would social experiments that involve large groups
of people be prohibitively expensive, but many societies would view them as eth-
ically unacceptable. The majority of data sets for ecological systems are also ob-
servational, for the same reasons, so the two fields must work with similar forms of
nonexperimental evidence. They must also deal with dynamic behavior that requires
explanation of changes over time.
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Second, although social phenomena are composed of interactions among individ-
uals, there are typically measured at the aggregate level. This produces values for
a set of quantitative variables that describe summary features of the entire group,
rather than those of their constituents. Most data about ecological phenomena also
have this characteristic. As a result, many models in both fields postulate relations
among aggregate, quantitative variables, as do the process models we have discussed
in earlier sections.

Finally, many dynamic social phenomena appear to involve interactions among
many variables. Endogeous terms both influence other variables and are influenced
by them, often through feedback loops, although exogenous variables that only in-
fluence others also play a role. Thus, human behavior at the aggregate level is a
complex system in the same sense as ecological networks. In other words, both are
instances of system sciences that study interactions among entities.

Taken together, these similarities indicate that inductive process modeling offers
a promising approach to discovery in the social sciences. At first glance, an im-
portant difference is that rate-based processes in ecology are described naturally in
terms of inputs and outputs, often with an assumption that they involve variables that
are conserved over time. This seems a less likely premise in social settings, but it is
not a strict requirement on process models, so it does not prevent their application
in this new arena.

4.2 Social Process Models

We can clarify the notion of social process models with some examples. First, con-
sider some types of entities that might appear in a model. These might include social
groups (e.g., different ethnicities, professions, or political parties) and physical re-
sources (e.g., food, water, or power). Each entity will have one or more attributes
that specify quantities on some dimension. For instance, a particular social group
might have a membership count, an average annual income, a status score, and
numbers who live in different neighborhoods. Consider two urban gangs, the Jets
and the Sharks, with Jets.count and Sharks.count denoting their respective numbers,
and with Jets.status and Sharks.status specifying their status scores.

Social processes produce changes in one or more such attributes. For example,
a migration process might lead to an increase in the number of a group’s members
that live in one neighborhood and decrease those in another. Similarly, a consump-
tion process might describe reduction in food or water when a group uses these
resources. Or consider a conversion process that transfers some members of one
group to another group:

conversion[Jets, Sharks]
rate: r = Jets.count · (Sharks.status − Jets.status)
equations: d[Jets.count,t] = −1.0 · rate

d[Sharks.count,t] = 1.0 · rate
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The coefficient for Jets is −1.0, indicating that the process causes Jets membership
to decrease, while Sharks is 1.0, stating that it leads groupB membership to grow.
The two constants have the same absolute value because every person who leaves
the first group must joint the second. The rate of transfer depends on three factors:
the status of Jets, the status of Sharks, and the number of people in Jets. The rate
increases with larger differences in status and with more people in the low-status
group. Of course, different rate expressions are possible that depend on other at-
tributes, but this example should clarify the notion of a social process.

A social process model would include a number of such elements, each of which
describes change in one or more attributes and the rate at which they jointly occur.
As we saw earlier, one can automatically compile these processes into a set of linked
differential equations and then simulate the compiled model to generate multivariate
time series. To the extent that the resulting trajectories match the observed social
behavior, they provide an explanation of that behavior in terms of unobserved but
still plausible processes.

4.3 Discovering Social Process Models

As in ecology, we can automate discovery of social process models using heuristic
search through a space of candidate accounts. This requires that we provide a set
of generic processes, instances of which might plausibly occur in the target setting.
Each of these templates will specify the types of entities involved (e.g., a group
or location) and associated attributes (e.g., count or status), whether the process
causes the latter to increase or decrease, and the algebraic form of the expression that
determines its rate. This set of generic processes may include different versions of
the same process type. For instance, there may be variants of the conversion process
with the same input and output relations but that differ in their rate expressions
or even in the variables that influence them. These provide the building blocks for
generation of candidate process models.

Given observations about dynamic social behavior and a set of target variables,
a computational system like SPM (Arvay & Langley, 2016) can search the space
of social process models defined by these generic elements. The program would
induce one or more differential equations, stated as linear combinations of process
rates, for each target variable. The system would then find combinations of equa-
tions that make consistent assumptions about which processes actually determine
social dynamics. As before, search would occur for individual equations (which
rate terms to include in the right-hand side) and model structure (which equations
and associated processes to incorporate). Heuristics at both levels would limit the
effective branching factor, making tractable the discovery of complex social process
models that explain observed behavior.
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4.4 Challenges in Social Process Modeling

The approach we have just described should apply, in principle, to any dynamic
social setting for which multivariate time series are available. However, in practice,
modeling tasks are likely to introduce challenges that require additional research on
computational methods for discovering process accounts. The most basic is current
techniques’ reliance on a library of generic processes that specify not only attributes
that interact but the functional forms that determine their changes over time. These
may not be as obvious for social systems as for biological, chemical, or physical
ones, in that they are typically less well understood. Automating the discovery of
candidate generic processes is one response. Langley and Arvay (in press) have
reported progress on this front, describing a system that introduces new generic
processes by combining conceptual relations with algebraic rate templates, but we
need more work on this problem.

Another challenge is that social science observations are more difficult to obtain
than data in many other disciplines. This means that time series may have relatively
sparse sampling rates; for instance, census data are only collected every four years.
This is not an issue for social systems that change at rates slower than samples are
taken, or even if signs of derivatives remain the same during unsampled periods.
Moreover, for similar reasons, some social variables may not be measured on any
time steps. Jia (personal communication, 2016) has identified certain conditions un-
der which one can induce rate-based process models when some terms are unmea-
sured, but they must each participate in the same processes as observed variables.
We need more research on this topic before our discovery methods can contribute
fully to the social sciences.

A more basic limitation of process model induction is that it assumes the entities
remain fixed over time. An organism’s population or a group’s count can decrease
to zero, which can mimic the disappearance of an entity, but a model has no means
for creating new entities during a simulation run. This would make it difficult to
explain events such as the fissioning of a group into two splinters or the merging of
two groups into a new composite. We might expand the process formalism to allow
discrete events of this sort that occur under certain conditions (e.g., a group splitting
when it grows too large), and extend simulation methods to predict their behavior
over time, but inducing models that include both continuous and discrete processes
would take us into new territory for computational scientific discovery.

5 Related Work on Social Model Construction

We are not the first to propose using computational methods to construct accounts of
social phenomena. In fact, this idea has a long history, and in this section we examine
its various threads. In each case, we describe the formalism for representing models
and the extent to which their construction has been automated.
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Structural equation models have been widely used in the social sciences (Gold-
berger, 1972). Such a model relates a set of quantitative variables, X1, . . .Xn, using
a set of linear equations. The first variable, X1, is a function of X2 through Xn, the
next one, X2, is a function of X3 through Xn, and so forth, with the final variable, Xn,
being exogenous. This means one can display the model as a directed acyclic graph
or as a coefficient matrix in which half of the nondiagonal entries are zero. Tradi-
tionally, a human would specify the graphical structure of such a linear causal model
and invoke computational methods to estimate coefficients for each equation. Social
scientists have applied this approach to observational data in many different settings,
but standard approaches are limited nondynamical models with no feedback loops.

More recently, automated methods have emerged for inducing the structure of
such causal models. The earliest example was TETRAD (Glymour et al., 1987;
Spirtes et al., 1993), which used relations among partial correlations (e.g., the prod-
uct of two partials equals the product of two others) to identify constraints on causal
links. The system carried out search through a space of model structures, eliminating
links that were inconsistent with these inferred constraints. TETRAD’s developers
applied it to a variety of observational data sets from the social sciences, but their
approach did not support the discovery of dynamical models that explained change
over time. More recent efforts, including related work in inducing the structure
of Bayesian networks, have typically adopted greedy search through the space of
model stuctures, based on degree of fit. However, Maier, Taylor, Oktay, and Jensen
(2010) report an extension of the constraint-based approach that handles discrete
relations among entities, rather than linear influences among continuous variables.

An alternative paradigm for explaining social behavior involves agent-based
models (Epstein & Axtell, 1996). These are stated as collections of individual enti-
ties that interact over time in simulated environments. Members of an agent category
follow the same decision-making rules, but they may differ in their parameters. As
with differential equation models, simulation occurs in discrete time steps, but each
agent responds separately to its situation. Activities are aggregated into summary
statistics for groups or the entire population, which in turn are compared to mea-
surements made at the aggregate level. Simulations that involve millions of agents
are not uncommon. Researchers in this tradition develop their agent-based models
by hand, but one can imagine automating their discovery by providing elements
of agent programs and using computational methods similar to inductive process
modeling to search the space of candidates.

6 Concluding Remarks

In the preceding pages, we reviewed computational advances in our understanding
of scientific discovery. We recounted early research in this area, which treated the in-
duction of numeric equations as heuristic search through a space of candidate laws.
We then examined more recent work on inductive process modeling, which finds
sets of processes and their associated differential equations that reproduce and ex-
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plain multivariate time series. Contemporary efforts on this problem partition each
process into a rate that is an algebraic function of known variables and a set of
derivatives that are proportional to this rate. This assumption allows the use of mul-
tiple linear regression to find constituent differential equations, with process knowl-
edge constraining their combination into models. This provides reliable, efficient,
and scalable methods for discovering explanatory process models of dynamical ob-
servations, as repeated experiments have demonstrated.

We also discussed applications of process model induction to the social sciences.
We argued that these disciplines have much in common with ecology, which has
served as the main testbed for work on process modeling. These included a focus
on nonexperimental data, quantitative measurements at the aggregate level, and dy-
namic interactions among variables. We provided examples of processes that might
appear in explanations of social phenomena and how computational discovery might
construct them using heuristic search. We also noted challenges that the social sci-
ences pose to process model induction, such as fewer insights into candidate pro-
cesses, difficulty in obtaining time-series data, and discrete events that remove en-
tities or introduce new ones. Despite these challenges, inductive process modeling
offers a promising approach to automating the discovery of explanatory models in
the social sciences.
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