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Abstract
In this paper, I review two related lines of computational research: discovery of sci-
entific knowledge and causal models of scientific phenomena. I also report research 
on quantitative process models that falls at the intersection of these two themes. This 
framework represents models as a set of interacting processes, each with associated 
differential equations that express influences among variables. Simulating such a 
quantitative process model produces trajectories for variables over time that one can 
compare to observations. Background knowledge about candidate processes ena-
bles search through the space of model structures and associated parameters to find 
explanations of time-series data. I discuss the representation of such process mod-
els, their use for prediction and explanation, and their discovery through heuristic 
search, along with their interpretation as causal accounts of dynamic behavior.
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1  Computational scientific discovery

Science is one of civilization’s crowning achievements, which makes the cogni-
tive processes that underlie it eminently worthy of study. The scientific enterprise 
differs from other intellectual endeavors not only by relying on formal theories, 
laws, and models to explain and predict observations, but also by using such 
observations to construct, revise, and evaluate its formal accounts. Together, 
these activities produce a closed loop that drives research communities toward 
better understanding of their chosen phenomena. Many of these activities have 
been studied by philosophers of science for over a century, but most of their 
efforts focused on the ‘logic of justification’, which characterized how data can 
support or refute laws, models, or theories. In contrast, the community largely 
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avoided the ‘logic of discovery’, which would explain how observations could 
lead to their creation.

A common claim was that discovery required some ‘creative spark’, which 
might plausibly be studied by psychologists but which could never be analyzed in 
rational or logical terms. For example, Popper (1961) wrote:

The initial stage, the act of conceiving or inventing a theory, seems to me 
neither to call for logical analysis nor to be susceptible of it…My view may 
be expressed by saying that every discovery contains an irrational element, 
or creative intuition…

He was not alone in taking this position; Hempel (1966) and many other phi-
losophers of science also maintained that discovery was inherently irrational and 
beyond formal understanding. Nevertheless, scientific discovery remained a fasci-
nating topic, and a deeper understanding of its mechanisms would have important 
implications, both theoretical and practical.

Fortunately, advances made during the 1950s in two other fields—cognitive 
psychology and artificial intelligence—suggested a way forward. The key insight 
came from Herbert Simon, a co-founder of AI who also developed some of the 
earliest computer models of human thinking. Simon (1966) proposed that scien-
tific discovery, rather than depending on some unknown mystical ability, is actu-
ally a variety of problem solving that involves search through a space of problem 
states generated by applying mental operators and guided by heuristics to make 
search tractable. Heuristic search had already been implicated in many cases of 
human cognition, such as proving theorems and playing chess. At the time, this 
was a radical idea and few researchers in philosophy, psychology, or computing 
were willing to adopt it. Yet it was fully consistent with empirical studies of prob-
lem solving in humans, and there were already many AI systems that had dem-
onstrated the power of heuristic search. Yet only Simon had the interdisciplinary 
expertise and the audacious research style to propose applying this computational 
framework to discovery of scientific knowledge.

Moreover, heuristic search offered not only a path to understanding how sci-
entific discovery has operated historically, but also ways that we might automate 
this creative process. For my dissertation research with Simon, I adapted his ideas 
in this area to develop a computer program (Langley 1979, 1981) that:

• Carried out search in a problem space of theoretical terms;
• Using operators that combined old terms into new ones;
• Guided by heuristics that noted regularities in data; and
• Applied these recursively to formulate higher-level relations.

I named the system Bacon, after Sir Francis Bacon, the early champion of empir-
ical scientific method, because it adopted a data-driven approach to discovery. 
Computational experiments showed that the system could rediscover a variety 
of laws from the history of physics, including Kepler’s third law of planetary 
motion, the ideal gas law, Coulomb’s law, and Ohm’s law. Extended versions 



45

1 3

Process model induction and causal discovery

found additional numeric relations like Snell’s law of refraction, Archimedes’ 
law of displacement, conservation of momentum, and Black’s law of specific heat 
(Bradshaw et  al. 1980), as well as results from early chemistry (Langley et  al. 
1983).

Bacon’s success inspired the creation other many AI systems for discovering 
numeric laws. Researchers who reported results in this area included Falkenhainer 
and Michalski (1986), Kokar (1986), Żytkow et  al. (1990), Schaffer (1990), Nor-
dhausen and Langley (1990), Moulet (1992), Gordon et  al. (1994), Murata et  al. 
(1994), Džeroski and Todorovski (1995), Washio and Motoda (1997), Bradley et al. 
(2001), Koza et al. (2001), and, more recently, Schmidt and Lipson (2009). These 
relied on different methods but also induced explicit mathematical laws from obser-
vations. This task is sometimes referred to as equation discovery.

But the endeavor to understand discovery did stop there. Inspired by earlier work 
on the DENDRAL system (Feigenbaum et al. 1971), which inferred structural mod-
els of organic molecules from their mass spectra, the community developed addi-
tional systems that created models of other scientific phenomena (e.g., Langley et al. 
1987; Valdés-Pérez 1996). The broader movement has come to be known as com-
putational scientific discovery, and it has produced both accounts of many histori-
cal breakthroughs and novel results that have contributed to the scientific literature. 
Efforts in this paradigm differ from mainstream work in data mining and machine 
learning by producing content stated in established scientific formalisms (Langley 
et  al. 2002a, b), ranging from componential models in particle physics (Kocabas 
1991) to reaction pathways in chemistry (Valdés-Pérez 1994) to regulatory models 
in genetics (King et al. 2004). Collections edited by Shrager and Langley (1990) and 
by Džeroski and Todorovski (2007) present snapshots of the field at different points 
in its trajectory.

2  Causal models in science

An important recurring theme in science is the notion of a causal model. Intutively, 
we can say that a variable x causally influences a variable y if a change in x’s value 
produces a change in y’s value provided other variables are held constant. This defi-
nition of causality does not state that x is the only causal influence on y, specify 
the functional form of the relation, or state whether the effect is deterministic or 
stochastic, but it agrees with most scientists’ understanding of the term. A given 
variable may causally influence one or more one other terms and it may be causally 
impacted by one or more other variables. An example of the latter is the equation 
d = 2xy + 3z , where x, y, and z each exert a causal influence on d. Such a relation 
may or may not describe reality, but we can still state a hypothesis that it holds.

Many of the numeric laws produced by equation discovery systems have causal 
interpretations, but this has not been an emphasis of research in the area. Moreo-
ver, it has focused on finding individual equations rather than collections of linked 
expressions that constitute full scientific models. The latter are a collection of causal 
hypothesizes that connect a set of variables, some that play the role of dependent 
terms in certain relations and independent factors in others. Exogenous terms exert 
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a causal influence on other variables but are not so affected themselves, whereas 
endogenous terms are causally influenced by one or more others, although they may 
also affect different variables. We can say that a causal model explains variations in 
observed values for endogenous variables in terms of other variables’ values.

Herbert Simon and his colleagues also did insightful work on the nature of causal 
models. For instance, Iwasaki and Simon (1986) indentified the importance of causal 
ordering in accounts of device behavior. They clarified that it is not enough for a 
model to specify equations that relate variables; they must also state which terms 
serve as causes and which serve as effects. Iwasaki and Simon (1994) extended this 
analysis to sets of differential equations that characterize a system’s dynamic behav-
ior, as well as models that abstract away from details by aggregating over subsets of 
variables. These results dealt with the representation of causal models and ways of 
reasoning over them qualitatively, but Simon (1954) also made earlier groundbreak-
ing contributions to their induction. He determined the statistical conditions—based 
on relations between partial corrections—under which one can infer the presence or 
absence of causal links between variables, and in some cases their direction, based 
on purely observational data, with no experimental control.

Decades later, Glymour et  al. (1987) extended Simon’s framework to handle 
more complex relations among partial correlations and incorporated the results into 
a computer system that discovered causal models from nonexperimental data. Early 
techniques focused on identifying structural equation models—sets of linear causal 
equations—but more recent results have generalized to broader types of accounts. 
A parallel line of research has dealt with induction of Bayesian networks (Darwiche 
2009), some but not all with causal interpretations. Both frameworks have seen wide 
use in the sciences, with gene regulation being an especially popular application 
(e.g., Bay et  al. 2003). These efforts also count as important contributions to the 
literature on computational scientific discovery.

3  Rate‑based process models

One drawback of most computational research on causal models is that the formal-
isms take a very abstract form and make little contact with established scientific 
concepts. This holds for both structural equation models and Bayesian networks, 
two frameworks that have been widely adopted. An important excepton is Forbus’ 
(1984) work on qualitative process models, in which each process specifies a set of 
causal variables that influence one or more effect variables, which are often deriva-
tives. Each such influence is qualitative, specifying only whether an increase in the 
causal term leads the effect term to increase or decrease. This makes them similar 
to mental models that people use to reason informally about physical situations, but 
they are not detailed enough for many scientific settings.

Scientists and engineers in many disciplines state their models in terms of dif-
ferential equations that describe changes in variables as functions of current values. 
These provide a formal specification of how variables interact over time, and compu-
tational researchers have developed numerous algorithms for simulating sets of dif-
ferential equations both accurately and efficiently. They have used these techniques 
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to develop and simulate dynamic models of phenomena that range from weather pat-
terns and aircraft turbulence, which involve a few equations repeated many times, to 
ecology and biochemistry, which involve a diverse set of relations among many vari-
ables. Differential equations have strong mathematical underpinnings and efficient 
computational methods for simulating their behavior, but they do not describe the 
context that surrounds many scientific models, they do not provide underlying expla-
nations for observations, and they provide few constraints on model discovery. This 
suggests the need for an alternative framework that addresses these issues.

Fortunately, we can combine this approach with key ideas from Forbus’ frame-
work. Explanations in science and engineering are often stated in terms of processes, 
but only in informal terms, using natural language, and his notation treats processes 
as first-class structures. Bridewell et al. (2008) showed that one can restate differen-
tial equation models in terms of processes that govern system dynamics and vari-
ables that are changed by those processes. Variables describe the current state of the 
system, whereas processes relate these variables and specify how they evolve over 
time. This content imposes qualitative structure on the quantitative aspects of the 
model, which has advantages that will become apparent shortly. In this framework, 
a process model is a collection of linked processes and variables that explain the 
behavior of a dynamic system. For example, a model of aquatic population dynam-
ics might include variables for phytoplankton and nitrogen concentrations, along 
with processes for nutrient absorption and remineralization. Each process specifies 
a fragment of one or more algebraic or differential equations. Taken together, a set 
of processes constitute an operational model that remains modular and interpretable.

In recent work, Langley and Arvay (2015) introduced three further constraints on 
the structure of process models:

• Each process specifies the rate of change for one or more dependent variables;
• Each rate1 is determined by an algebraic combination of independent variables;
• The derivative of each dependent variable is proportional to the process’s rate.

Together, these assumptions impose much stronger limits on the space of candidate 
models that should improve the ability to interpret and discover them. Chemical 
reactions offer a good example of such processes. A given reaction always involves 
the same substances, but its rate of operation can vary over time. This rate is an alge-
braic function of the concentrations of chemicals involved. For instance, consider a 
chemical reaction that combines two substances, with concentrations C

1
 and C

2
 , to 

produce a third chemical as output, which has the rate C
1
× C

2
 . Each reaction has 

one or more associated derivatives of the form dC∕dt = k × R , where R is the rate 
and k is a constant parameter. Our example would involve three such derivatives, 
two for the input substances, with negative coefficients, and one for the output sub-
stance, with a positive coefficient. However, this does not mean that these variables 

1 This rate is always positive and its values are inherently unobservable, so we can adopt any measure-
ment units that we find convenient.
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always increase or decrease over time, as other processes may also influence their 
values.

Table 1(a) shows a simple model for an aquatic ecosystem with three variables: 
phytoplankton, nitrogen, and detritus. This includes three distinct processes, one 
for phytoplankton loss, one for uptake of nitrogen by phytoplankton, and another 
for remineralization of nitrogen from detritus. The variables phyto and nitro refer 
to the concentrations of phytoplankton and nitrogen, respectively. Each process has 
an associated rate expression, one specifying that the rate equals the product of two 
variables and the others stating that it equals a single variable. Each process also 
includes two associated derivatives that are proportional to the rate, with parameters 
detailing this functional dependence. Table 1(b) translates these processes into a set 
of differential equations, one per variable, with each term on the right-hand sides 
mapping onto an equation fragment in some process. The two notations produce the 
same dynamic behavior, but the first one has a higher-level organization.

4  Using rate‑based process models

We can use such a quantitative process model by compiling it into a set of differ-
ential equations. For each endogenous variable v, one collects all equation frag-
ments from processes in which v appears on the left-hand side. The differential 
equation for that variable has the sum of these fragments as its right-hand side. 
This produces a set of linked equations that one can provide to a standard dif-
ferential equation solver like CVODE (Cohen and Hindmarsh 1996) to simulate 
the behavior of each variable over time. For this purpose, we must provide not 

Table 1  (a) A rate-based process model for an aquatic ecosystem that relates concentrations of phyto-
plankton, nitrogen, and detritus. Each process specifies a rate expression and a set of derivatives propor-
tional to this rate, which changes over time. (b) A set of linked differential equations that produce the 
same dynamic behavior as the process model
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only the parameters for each equation, but also the initial values for each endog-
enous variable. For models that include exogenous terms reflecting influences of 
the external environment, one must also specify their values on each time step, as 
they cannot be simulated.

There are two distinct but related uses for such simulations. The first involves pre-
dicting trajectories of future values for each endogenous variables. This is directly 
analogous to standard applications of both differential equations and statistical time-
series models. Here the metric for success is the degree to which the values pre-
dicted for each variable match the values that are observed later. For example, Fig. 1 
plots the simulated populations for a 20-variable predator–prey system generated by 
the differential equations that result from compiling a model with 21 distinct pro-
cesses. These included 19 predation relations between pairs of organisms with the 
same rate expressions but different coefficients. Two other processes involved repro-
duction for the organism lowest on the food chain and loss for the one at the top of 
the chain. Some of the trajectories involve cyclic behavior, but nothing as regular as 
observed in classic two-organism systems. This complexity results from the fact that 
most variables take part in two feedback loops whose activity is influenced by others 
up or down the chain.

The second use of process models is more distinctive, as they provide an expla-
nation of time-series data not only in terms of hidden terms like rates, but because 
they refer to unobserved processes that are familiar to domain specialists. Processes 
provide an overlay on standard differential-equation models that specify additional 
context about which terms must appear together. For example, we know that a pre-
dation process causes the population of the predator to increase and the population 
of the prey to decrease. Thus, the 21-process model mentioned earlier does more 
than generate the trajectories in Fig. 1; it also explains them in terms of such famil-
iar relations. As we will see, this knowledge also provides important constraints for 
the discovery of such models.
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Fig. 1  Trajectories for a 20-variable predator–prey system in which the organisms are organized in a lin-
ear food chain. Each entity participates in two distinct processes. Taken from Arvay and Langley (2016)
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5  Discovering rate‑based process models

Although we can create quantitative process models manually, they also lend them-
selves to automated construction by computer. We will refer to the task of construct-
ing such an account from data and knowledge as inductive process modeling. Obser-
vations take the form of time series for a subset of model variables, while knowledge 
takes the form of generic processes that specify possible relations among entities 
in terms of functional forms with bounded parameters. The output is a ranked list 
of interpretable models—collections of processes and associated differential equa-
tions—that explain the observations and make predictions about unseen data. Fig-
ure 2 depicts this computational discovery task in graphical terms.

Typical data sets for inductive process modeling are observational rather than 
experimental in character. One is provided with a multivariate trajectory over time, 
such as a scientist might collect for an aquatic ecosystem. Most variables (e.g., 
organism and nutrient concentrations) are endogenous, in that they are targets for 
prediction and explanation. The data set may also include exogenous variables (e.g., 
temperature and sunlight) that change over time and that can influence other meas-
ures, but that are not themselves targets for prediction. In most cases, only one tra-
jectory is available and experimental control of variables is not possible. Table  2 
presents three generic processes that underlie the model in Table 1(a). These take 
roughly the same form as concrete processes, but they refer to types of variables 
(e.g., organisms) rather than to specific ones (e.g., phytoplankton) and they contain 
functional forms that relate variables rather than particular equations. The latter do 
not specify coefficients but instead refer to parameters and constraints on their val-
ues. Generic processes serve as building blocks from which to construct quantitative 
process models.

Early methods for inductive process modeling (e.g., Bridewell et al. 2008) carried 
out search at two distinct levels. The first explored the space of model structures. 

Fig. 2  The task of inductive process modeling, which is given a set of continuous variables, observed 
time series for their values, and generic domain knowledge about candidate processes. The result is 
a ranked list of parameterized model structures that fit the observations and explain them in terms of 
inferred processes
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This involved finding all ways to instantiate the known generic processes with spe-
cific entities and variables, which provided elements for candidate models. Search 
started with the empty model and, on each step, added a new process instance pro-
vided the result did not exceed a user-specified maximum. For each such model 
structure, a second procedure carried out search through a parameter space. This 
started from values sampled at random from within the parameters’ ranges and used 
gradient descent to converge on values, complemented by random restarts to guard 
against finding local optima. The objective function that guided search was the accu-
racy of a model’s simulated trajectory against observations. The output was a list of 
parameterized model structures ranked by error on the training data.

This approach to process model induction has been applied successfully in a 
variety of settings. These have included fields as diverse as ecology, hydrology, and 
biochemistry (Asgharbeygi et al. 2006; Bridewell et al. 2008; Langley et al. 2006). 
Extensions to the basic framework have included adding the ability to organize pro-
cess knowledge hierarchically (Todorovski et al. 2005), handle missing data using 
iterative optimization (Bridewell et al. 2006), reduce overfitting by combining mod-
els into ensembles (Bridewell et al. 2005), find models that involve partial differen-
tial equations (Park et al. 2010), draw on constraints to limit search (Bridewell and 
Langley 2010), and even learn these constraints from the performance of sample 
models (Todorovski et  al. 2012). Each extension improved either the accuracy of 
induced models or the efficiency of discovering them.

Despite this progress, early methods for process model induction suffered from 
three important drawbacks. First, they evaluated only complete model structures 
by comparing a parameterized model’s predictions with observed time series. This 
approach did not support heuristic search through the space of model structures 
and thus did not scale, as the number of structures is an exponential function of the 
number of variables and the number of generic processes. Second, they relied on 

Table 2  Three generic processes for aquatic ecosystems with type information about the variables 
involved in each process and bounds on their parameter values
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repeated simulation of each model structure to estimate its parameters. They initial-
ized each parameter randomly, simulated parameterized model, calculated a gradient 
based on the resulting error, and iterated until convergence. Hundreds of iterations 
were not uncommon, so that simulations for parameter estimation often took 99.99% 
of the CPU time. Third, to avoid halting at local optima, they required repeated 
restarts from different initial random values. This further added to the computational 
burden and, again, it was borne separately for each distinct model structure.

More recent approaches to inductive process modeling instead carry out heuristic 
search through the space of model structures. To this end, they take advantage of the 
decomposition of processes into rate expressions and proportional equations. They 
also make two additional assumptions: that rate expressions are parameter free and 
that they include only observable variables. As before, they first enumerate candi-
date processes by instantiating the generic processes in all possible ways that sat-
isfy type constraints. Next they use the observed time series to calculate rates for 
each such process instance. The assumption that rates are parameter-free algebraic 
functions of observed variables lets them make this calculation for each candidate 
process instance on each time step. The result is a trajectory of the rate for each such 
process. After this, we estimate the derivatives for each dependent variable X on 
each time step t as the average of X(t) − X(t − 1) and X(t + 1) − X(t) , using what is 
commonly known as the ‘center difference’ method.

A heuristic search mechnism now iterates through the dependent variables. For 
each one, this attempts to find a differential equation that predicts its observed 
changes as a linear combination of process rates. For each variable D, it considers as 
candidate predictors only process instances that include D as one of their dependent 
terms. One can invoke multiple linear regression to find candidate equations for each 
dependent term, but this requires a set of rate expressions as independent factors. 
Langley and Arvay’s (2015) RPM system first considers individual rates, then pairs, 
and so on until it finds an equation with acceptable fit. Arvay and Langley (2016) 
describe a more tractable approach that uses repeated feature selection to induce 
more complex differential equations. Both systems ensure that, if a rate expression 
appears in the equation for one dependent variable (e.g., a predator), it also appears 
in those for other derivatives in that process (e.g., the prey). Equations must also 
satisfy parameter constraints (e.g., negative for inputs to a chemical reaction and 
positive for outputs).

Together, these constraints reduce substantially the number of model structures 
that are entertained during the discovery effort. They make the difference between 
tractable heuristic search and the intractable exhaustive methods used in previ-
ous systems. For instance, Langley and Arvay (2015) report that RPM ran 83,000 
more rapidly on a three-process modeling task than an earlier system that carried 
out exhaustive search through the structure space, yet it still reconstructed the target 
model far more reliably than its predecessor. Successors have induced accurate and 
plausible models for data on aquatic ecosystems, an eight-reaction chemical path-
way, and the 20-organism predator–prey system shown in Fig. 2. Experiments with 
synthetic time series have also revealed that they scale well with the number of vari-
ables and the number of processes in the model.
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6  Causal interpretation of process modeling

Now that I have reviewed the paradigm of inductive process modeling, I can 
examine its relationship to causal accounts in science. I will organize the discus-
sion into three subtopics that parallel previous sections of the paper. The first 
concerns the causal status of rate-based processes and the models comprising 
them. The second issue addresses the forms of causal reasoning that such pro-
cess models support. The final one deals with the ability to discover these models 
from background knowledge and observations of dynamic systems.

Earlier, I defined a causal model as a collection of hypotheses, each of which 
makes a claim about how changes in the values of some variables influence those 
of another. Clearly, rate-based process models satisfy this definition. Each pro-
cess encodes a set of hypothesized influences that relate causal variables to effect 
variables. For example, the first process in Table 1, for nitrogen uptake, specifies 
four causal influences, two for effects of nitrate concentration and two for effects 
of detritus concentration on the derivatives of each variable. However, process 
models are more constrained than classic causal accounts, such as sets of struc-
tural equations or some Bayesian networks, because they make stronger repre-
sentational assumptions. They also deal with temporal phenomena, making them 
related to dynamic Bayesian networks, but they encode derivatives rather than 
values on successive time steps. A more important difference is that effects are 
mediated through a rate term that can be a function of multiple factors and can 
influence one or more derivatives. In other words, processes combine multiple 
causal links that must stand or fall together.

Process models also support two important types of causal reasoning. First, 
they allow counterfactual thought experiments because one can alter the initial 
values for some variables and use simulation to determine how the trajectories 
would differ. Second, they provide a causal explanation of observed behavior in 
terms of familiar domain processes. Traditional causal frameworks, like structural 
equation models, Bayesian networks, and linked differential equations, also offer 
explanations, but they provide more shallow accounts. For instance, one can char-
acterize a reaction pathway as a set of ordinary differential equations, but this 
account would not refer explicitly to the reactions, which are central concepts in 
chemistry. Other examples come from the field of ecology, which uses differential 
equation models but which also postulates processes like predation and nutrient 
absorption that, like reactions, have multiple effects on participating variables.

These techniques search a space of candidate process models and attempt to 
discover ones that fit the data and explain them in causal terms. I will not claim 
that these are the only models consistent with the trajectories; in fact, Arvay and 
Langley (2016) report cases in which multiple process models reproduce the data 
equally well. Neither will I claim that the discovered models are correct in the 
sense that they are guaranteed to generalize well, but this is a common limitation 
of induction. This is especially challenging given observational rather than exper-
imental data. Even Simon’s (1954) arguments for inference of causal relations in 
linear models, and their extension in Glymour et al.’s (1987) work, are statistical 
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in character and offer no ultimate guarantees. However, this does not negate the 
fact that the computational methods I have described can discover plausible and 
interesting causal explanations.

7  Concluding remarks

In this paper, I reviewed research on computational approaches to both scientific 
discovery and causal modeling. I also introduced the notion of quantitative process 
models that account for multivariate time series in terms of a set of component pro-
cesses. Each such element specifies an algebraic rate expression and one or more 
derivatives that are proportional to this rate. A derivative can be influenced by mul-
tiple processes and a variable can participate in different rate expressions. One can 
compile a process model into a set of linked differential equations, and then simulate 
it to predict future trajectories and explain available observations. Moreover, this 
notation directly supports the discovery of explanatory scientific models. Given a 
multivariate time series and domain knowledge stated as a set of generic processes, 
one can search a space of candidate models to find candidates that explain and fit the 
observations. Implemented systems have used this approach to rediscover dynamic 
models in ecology, chemistry, and other domains, with heuristic search methods 
scaling well to increases in the number of variables and model complexity.

I also argued that rate-based processes encode hypothesized causal influences, 
which means that any collection of them constitutes a causal model. Such accounts 
incorporate more constraints than traditional causal accounts, in that they require 
some influences to stand or fall together, but these reflect implicit assumptions in 
many scientific domains. Process models also support both counterfactual reasoning 
about different situatons and explanation in terms of familiar concepts, with the lat-
ter distinguishing the framework from more abstract causal variants. Techniques for 
inductive process modeling offer ways to construct such explanations, but, like other 
inductive methods, they cannot guarantee that models will be correct or generalize 
well. Nevertheless, the framework covers an important class of causal models that 
are highly relevant to many fields of science.

Despite the progress to date, that we future research should address some impor-
tant limitations that remain. This should extend existing methods to handle data sets 
with unobserved variables and deal with rate expressions that contain parameters, 
possibly by drawing on techniques for iterative optimization to estimate unknown 
values. The augmented approaches should also be able to postulate entirely new 
processes, which would make them less dependent on user-provided background 
knowledge. Finally, an extended version of the paradigm should take advantage of 
controlled experimentation, which would aid substantially the ability to infer causal 
influences in complex dynamic systems. Taken together, these will offer a more 
complete account for the discovery of scientific models that provide causal explana-
tions for observations in terms of underlying processes.
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