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CONSIDER the following scenario with characteristics common to science. 
An ecologist is studying an aquatic ecosystem to learn how it functions. 
Data gathering has yielded weekly measurements for several vanables, su~h 
as the concentrations of nitrogen, phosphorus, and phytoplankton. Datly 
measurements exist for water temperature, solar irradiance, wind speed, 
and wind direction. Finally, weekly reports of zooplankton abundance 
exist for the summer months. Hopefully, this information will lead to a 
mathematical model that accurately predicts the ecosystem's response to 

environmental management. 
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Few would deny that such model~construction tasks involve creativity. 
The scientist must assemble a new artifact that explains the observations in a 
consistent and coherent way. The space of possible models is quite large, 
making it impractical to simply consider each candidate in turn. The 
problem may not be as challenging as discovering the general theory of 
relativity, since it does not involve paradigm shifts, but even model creation 
within an established theoretical framework can stretch the cognitive 
abilities of experienced scientists. 

Luckily, the situation is not hopeless. In addition to the observed data, 
the ecologist also has knowledge regarding mechanisms that might plausibly 
operate within an aquatic ecosystem. For example, the zooplankton likely 
eats the phytoplankton, but the rate of consumption, the regulating factors, 
and the overall effects of this grazing process are undetermined. The 
scientist can also use deeper theoretical knowledge to guide the construction 
of the final model. This knowledge can consist of reasonable bounds on 
rates, plausible causal links, and possible formulations of grazing, amongst 
other things. In many cases, the ecologist will even have an existing math~ 

ematical model (e.g., Moore et al., 2002; Benz et al., 2001) that is adaptable 
to the current ecosystem. 

Nevertheless, this remains a challenging task that could benefit from compu
tational assistance. Current approaches to ecosystem modeling range in scope 
from writing custom FORTRAN programs (Arrigo et al., 2003) to using 
graphical model-building tools such as STELLA (Richmond et al., 1987; Sage 
et al., 2003). These solutions vary in difficulty of use, but the end product for 
each is a simulation model that one can represent as a system of differential 
equations. There are two primary disadvantages to using such software. The first 
is that one must make simultaneous decisions about which biological processes 
to model and how to represent them. This aspect mixes theoret.ical knowledge 
about how ecosystems operate with problem-specific assumptions relevant only 
in a working context. As a result, the models' complexity increases while their 
comprehensibility decreases. The second disadvantage is that one must build 
each model by hand. This requirement creates undue conservat.ism by contri
buting to a general relu<.:tance to explore and evaluate alternative models, which 
in turn decreases the chances of finding innovative solutions. 

We believe that concepts and methods from artificial intelligence and 
cognitive science suggest a better approach to designing computational aids 
for scientific model creation. In the pages that follow, we describe 
PROMETHEUS, an interactive environment for constructing and revising pro
cess accounts of dynamic systems (Bridewell et al., 2006). To clarify the 
rationale behind the program's design, we must recount the challenges that 
the problem presents to intelligent assistants. 



218 TOOLS FOR INNOVATION 

First, we should note that despite recent rhetoric in the data-mining 
literature scientific data relevant to discovery are often rare and difficult 
to obtain. The costs of collecting and preparing the data are non-trivial, and 
high rates or long periods of sampling may be impossible. As a result, the 
number of samples probably ranges in the low hundreds. Given the number 
of variables, parameters, and relationships in the target models, common 
methods for data mining are inappropriate, and we require new techniques. 

Another challenge requires us to support model-revision in terms of both 
causal structure and parameters. Systems scientists like our ecologist come 
to a modeling task with prior knowledge ofvarious sorts. At one level, this 
knowledge consists of the possible interactions among entities in a system 
and ways to formulate those relationships. For example, the ecologist knows 
that a process of phytoplankton growth exists and that it must be included 
in the final model. However, whether this growth can best be modeled as 
exponential, logistic, or something more complex may be unknown. At a 
different level, the ecologist may seed the discovery process with a prior 
model and search for revisions that explain the current data. 

The third challenge is the need for communicable models. As we men
tioned, ecologists often express their models in terms of differential and 
algebraic equations, but machine learning traditionally uses its own nota
tions (e.g., decision trees, logical rules, Bayesian networks), which result in 
models that are not easily communicated to domain scientists. We need 
techniques for knowledge discovery that produce output that closely 
approximates the scientists' own modeling language. 

In addition, scientists want models that move beyond description to 
provide explanations of their data. Regression-style techniques generate 
pithy summaries of the observations, but they fail to make contact with 
the underlying generating mechanisms. This desire poses the challenge of 
developing methods that construct explanatory models rather than purely 
descriptive ones. 

These issues raise algorithmic challenges, but introspection suggests 
another problem. Many computational discovery systems strive to automate 
the activity of model construction, but few scientists want to be replaced. 
However, they may well accept computational tools that carry out tedious 
aspects of searching through the model space, provided we find ways they 
can participate in the model-building endeavor. Ideally the software would 
perform lower-level tasks and free the scientist to concentrate on higher-level 
goals. Thus, it behooves us to design interactive systems that support a 
creative partnership between software and scientific domain experts. 

This chapter describes the application of ideas from artificial intelligence 
and cognitive science approaches to stimulate discovery in the systems 
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sciences like ecology. As such, it introduces the above challenges and our 
response as embodied in PROMETHEUS, an environment that supports the 
creation of quantitative models of dynamic systems. The next section 
describes challenges in user interaction and our responses. We then discuss 
the challenges in developing a model discovery system, highlighting the 
integration of various threads of research to compose an intelligent assistant 
for scientific modeling. After this, we briefly discuss previous results from 
the use of PROMETHEUS and identify new challenges that have arisen during 
experimentation. Finally, we summarize our work and highlight unmet 
challenges that seem ripe for further research. 

ADDRESSING CHALLENGES IN 

COMMUNICATION 

One should address challenges of user interaction from the foundation 
upwards when building an intelligent system. To meet the challenges of 
model comprehensibility and explanation, PROMETHEUS represents its knowl
edge in a language that builds on systems of equations. Models expressed as 
differential and algebraic equations commonly appear in the ecosystems 
literature and pervade systems science as a whole. However, even in this 
familiar form, the explanatory content of the models is not easily acces
sible. Fortunately, we can turn to ecology for a solution. The models in 
this domain often portray mechanisms (e.g., Gaff et al., 2004; Sarmiento 
et al., 1998), which suggests that the language of entities and the pro
cesses in which they participate (Machamer et al., 2000) is appropriate. 
Forbus (I984) previously developed a formalism for qualitative process 
models, which takes this basic perspective, but our purposes, which 
include close contact with numeric data, suggest a need for quantitative 
process models. 

Representing the models as mechanisms also addresses the challenge of a 
participatory system. Although systems of equations are the output of this 
task, scientists initially work at a conceptual level. For instance, Jorgensen 
and Bendoricchio (2001) recommend developing a conceptual structure of 
the studied system as the first step in ecological modeling. They suggest 
building this structure by listing the state-variables and then identifying the 
physical, chemical, and biological processes that link the variables to 
each other and to the environment. Afterwards, one uses mathematical 
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formulations of the processes to produce an equivalent system of equations. 
We want to suppo rt this modeling style that gives scientists the creative 
freedom to design the larger-scale features of the modeled system before 
making low-level decisions about the nature of the processes. 

Finally, the quantitative process representation also addresses a technical 
challenge. Unlike previous modeling environments, PROMETHEUS supports 
automated search through the space of models. The space of differential 
equations is far too large for unguided search, and it most certainly contains 
models that fit the observed data but lack plansibility. The processes used 
by PROMETHEUS contain meaningfully grouped chunks of equations that 
one can combine with others to form the model. For instance, a process 
describing predation between species would have one equation element 
that decreases the prey population and another that increases the 
predator population. Therefore, removing such a process would completely 
excise predation from the model and update the system of equations appro
priately. By defining these processes, one can use knowledge from systems 
science to restrict PROMETHEUS'S search to a space of plausible models. 

Both the entities and the processes in quantitative process models have 
two forms: generic and instantiated. A generic entity, as shown in 
Table 11-1, declares the variables and parameters that store relevant proper
ties. Parameters at both the process and entity levels are immutable, model
specific values that fall within a specified range. In contrast, the variable 
values can change over time. Variables themselves fall into one of three 
classes. An exogenous variable can only influence processes in the model, and 
its values must be read from a data source. An observed variable must be 

T~I3~E~J'l-1 The generic enti.ty fbr a primary woducer contains a mea
sure ofit~ .sp~cies' cs)ncent~~ti6n,groY'Jtb rate, and loss rate. Processes 

,:ilf'FectiI19 'the cO,llcentratiol') w.ill have' additive influence,. whereas the 
.curr,ent ,9r:owth r,ate will be the m,i,nimumof values produce"d by multiple 
pt'lcesses:rhe, loss rate' rnus .f-all between zero and ten. 

generic entity primary_proqucer: 
. . " . 
variables: 
cone {sum} 
growth.,/ate {min} 

para'meters: " 

loss_rate [0. 10] 
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explained by the model and must have associated data for purposes of 
comparison, and an unobserved variable needs only an initial value and a 
range in which this value should fall. All variables and parameters associated 
with an entity are passed along with that entity to any process in which it 
participates. One can instantiate a generic entity by specifying whether each 
variable is observed, unobserved, or exogenous; identifying necessary data 
sources; and assigning a numerical value to each parameter. 

Generic processes contain entity and process roles, parameters, condi
tions, and equations. Entity roles consist of a local name for an entity along 
with the number and types of entities that can fill that role. For instance, the 
exponential loss process in Table 11-2 requires a single generic entity that 
has type "primary producer" or "grazer." A process role gives a process type 
and the list of entities to pass along to the selected subprocess. In addition, 
Boolean conditions controi whether a process is active based on the current 
value of variables in the model, and equation elements define the quantita
tive behavior of the process. As a final feature, each generic process has a 
type that helps guide the search for plausible subprocesses. The instantiated 
form of a process requires one to specify the participating entities, any 
subprocesses, and local parameter values. 

Generic processes and entities address the challenges of incorporating 
prior knowledge and model discovery with few data. The generic com
ponents along with the constraints among them limit the model space 
to a subset of plausible structures, and this tight restriction helps offset 
the difficulties of knowledge discovery from small data sets. The struc
tural constraints manifest in three ways. First, the use of generic 
entities along with entity roles constrains the viable participants in a 

TABLE .11.....:2 The generic process for exponential loss has type uloss" 
anq takes exaetly one entity with type primary producer" or grazer. The 
single eqliation in this process' states that the first derivative of the 

'concentratfon with respect to time' is 'equal to a loss influenced by 
the sp~des' loss rate. 

generic process exponentiaUoss {loss}:
 
entity_roles:
 
5 {primary_producer, grazer} <1 to 1>
 

equations:
 
d[S-canc, t,·1] = -1' S./oss_rate .S.conc
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process. Second, the bounds on parameter values help guide estimation 
tools, which we will discuss in the next section. Third, the hierarchy 
imposed by process types and subprocesses defines a modified AND/ 
OR tree of possible structures. The subprocesses, which may be 
optional, specify the AND branching and specify which process types 
must occur along with the current generic process. These process types 
establish exclusive OR branches, specifying a set of generic processes 
that may satisfy a particular process role. To illustrate, the process type 
"growth" may have several forms (e.g., exponential, logistic, limited). 
In this case, suppose that a top-level process called "ecosystem" 
requires a growth process. This need constitutes an AND branch of 
the tree, whereas the multiple processes of the correct type compose 
the OR branch. 

The creation of quantitative process models requires multiple steps. 
Initially, a scientist must develop a library of generic processes and entities. 
In our experience, one begins this task at an abstract level by identifying 
the entities and processes relevant to a chosen context (e.g., aquatic 
ecosystems). Next, one specifies the mathematical forms of the processes, 
selects the important properties of the entities, and determines the struc
tural constraints for the hierarchy. Much of this work is straightforward. 
For instance, the process forms appear in the literature, and the generic 
entities relate directly to theoretical terms and the measurements one 
would typically make in the domain. However, the constraints encoded 
in the process hierarchy reflect implicit knowledge and are more difficult 
to elicit. In addition, the syntax of the constraint-specification language 
can influence the organization of equations into processes and properties 
into entities. As a result, assembling a library involves an iterative refine
ment of one's knowledge and increases in difficulty with the complexity of 
the process hierarchy. Fortunately, once completed, a single library 
describes the theoretical knowledge for a sizable range of problems. 
Therefore, one can build multiple models from a single library, make 
minor adaptations to fit similar domains, and borrow components for 
use in other problems. 

To create a model from a domain-specific library, one selects the relevant 
entities to instantiate, the processes that link these entities, and the parti
cular process alternatives that drive the observed dynamics. This step may 
constitute a stopping point, but it is more likely that the scientist will 
compare the model to some observations and adjust the model as necessary. 
We are developing PROMETHEUS to support as much of this procedure as 
possible. 
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ADDRESSING CHALLENGES IN LEARNING 
......................................................................................................................
 

PROMETHEUS consists of two major components-the user interface and 
the model-induction engine-each with its own set of challenges. Here 
we mainly discuss our approach to model construction and revision, but 
we first describe PROMETHEUS'S wide range of interaction. At a basic level, 
one can create a model, view its causal flow as shown in Figure 11-1, and 
see the current system of equations. Additionally, the program supports 
model evaluation through the inclusion of a simulation engine and a 
means to compare the resulting trajectories with observed data. 
Moreover, one can manually revise models by altering parameters and 
adding or deleting both processes and entities. Thus, at its core, 
PROMETHEUS supports creativity through the ability to freely design and 
test quantitative process models. 

At this level, PROMETHEUS operates much like other modeling packages 
(apart from its emphasis on mechanisms), but the integration of system 
identification and artificial intelligence components set it apart. These 
elements provide support for automated parameter estimation, model 
construction, and model revision. Todorovski et a1. (2005) describe the 
underlying algorithm for these features. 1 This approach operates in two 
separable stages, the first of which defmes the symbolic space of model 
structures. Beginning with the root process, PROMETHEUS satisfies the 
minimal set of constraints imposed by the hierarchy by including all 
required processes and no optional ones. This step produces a set of 
model structures that relate entities and processes but lack values for the 
parameters. At this level of the search, we predominantly draw on 
traditional, symbolic techniques from artificial intelligence. Specifically, 
the program performs a beam search through the AND/OR space defined 
by the background knowledge and guided by a quantitative measure of 
fit (i.e., sum of squared error or variance normalized mean-squared 
error) . 

For each structure, PROMETHEUS searches a second space defined by the 
numeric parameters. We use techniques from system identification to 
perform a gradient-descent search based on the quantitative measure of 
fit. The core algorithm, which was designed by Bunch et al. (1993), fits 

j , . 

PROMETHEUS s current Interface uses an earlier induction algorithm [h,H lacks 
support for entities d.nd process hierarchies. We are adapting the environment to lise these 
struclures. 
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Figure 11-1 PROMETHEUS can display both a causal diagram of a model and 
the underlying equations. In the diagram, the ovals are variables and the 
rectangles are processes. 

the parameters of dynamic, nonlinear systems of equations while 
ensuring that the resulting values fall within specified bounds. This 
algorithm performs a local search, so the system lets one specify a 
number of restarts that each explore the parameter space from a ran
domly selected point. In practice, we have found this approach to run 
slowly and to have high variance, which influences the selection of model 
structures. The FUSE algorithm (Bridewell et al., 2005) integrates 
research on ensemble methods to reduce overall variance, but we have 
yet to incorporate this solution into PROMETHEUS. 

PROMETHEUS meets the challenge of model revision by providing the 
scientist with several controls to influence semi-automated revision. As 
input, the scientist provides an initial model along with three lists: (1) 
processes that may be removed, (2) generic processes that may be 
instantiated, and (3) processes and entities whose parameters may be 
changed. The structural search uses the iuitial model with all deletable 
processes removed to seed the search. From that point on, the algorithm 
tries both to add deleted processes back to the model and to add instan
tiations of the specified generic processes when possible. For the most 
part, revision operates just like induction from scratch, but the scientist's 
guidance further limits the possible moves in the search space. Upon 
completion, the program returns a list of the best models ranked by the 
chosen measure of quantitative fit. Each of these models can serve as a 
foundation for future revisions. 
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We can best describe the use of PROMETHEUS by example. Consider the 
ecologist described at the beginning of this chapter. This modeler begins by 
identifying a set of generic entities and processes expected to operate within 
the observed ecosystem. One could draw this knowledge from an earlier 
developed library, extract it from textbooks or articles, or create it a new. 
After developing this library, the ecologist can build an initial model in 
PROMETHEUS. The model may contain nothing more than a list of the entities, 
or it could be fully detailed, with all suspected relationships indicated with 
instantiated processes. For this example, we will assume the second case. 

With a model structure in place, the ecologist can then fit the parameters 
using all available data and simulate the resulting model to compare the 
output with observations. Now, suppose that the scientist notices that the 
simulated phytoplankton population fails to decrease as expected. 
Examination of the model shows that nothing grazes on the phytoplankton, 
even though zooplankton exist in the region under study. The ecologist can 
either manually select and add the grazing process or have PROMETHEUS 

search the reduced space of models consisting of the initial structure plus 
all possible options for the inclusion of grazing. If the user opts for auto
mated revision, the program will yield a ranked list of plausible models. The 
scientist may select, simulate, and evaluate each of the results, and if 
necessary, the revision process can continue. 

Importantly, PROMETHEUS transforms the modeling task by automating 
lower-level tasks such as assembling equations, fitting parameters, and 
generating alternatives. Instead, the ecologist can concentrate on the types 
of processes likely to appear in an ecosystem, their alternative functional 
forms, and the constraints among the processes. More directly, the auto
mated search tools in PROMETHEUS let one work closer to the theoretical 
structures and modeling assumptions that characterize plausible explana
tions. Given this information, the software explores the space of candidates, 
highlighting those few that both fit the background knowledge of the 
domain and match available observations. 

INITIAL EXPERIENCES WITH
 

PROMETHEUS
 

Researchers have evaluated PROMETHEUS'S behavior in a variety of scientific 
domains. In this section, we summarize the nature of the tasks, the results 



- 300
-' 
E 
(;; 
a. 250 
<Jl 
(ij 
;:J 

"0 
:~ 200 
"0 
:.§. 

.~ 
c 

150 ,, 
Q) 

"0 

,, 
, . 

". 
50 

...... .~ .... ' :' ...:.....:: ".> \\~~J~~Y.(.... 
. . 

226 TOOLS FOR INNOVATION 

obtained with the system, and some lessons suggested by those experiences. 
We focus on model induction in our description of two scientific tasks, and 
discuss an application of model revision to the Ross Sea domain. Detailed 
results appear in earlier papers, so here we present only the highlights. 

Predator-Prey Interactions in Protists 

Predator-Prey systems are among the simplest ID ecology, which 
makes them a good starting point for evaluating PROMETHEUS. In 
earlier work (Asgharbeygi et aI., 2006; Todorovski et aI., 2005), we 
explored the protist system composed of the predator Didinium 
nasutum and the prey Paramecium aurelia using data from experi
ments originally reported by Veilleux (1979). Jost and Ellner (2000) 
report the observed values, which consist of population concentra
tions recorded in 12-hour intervals for three experimental conditions. 
The data, some of which appear in Figure 11-2, are fairly smooth and 
exhibit osci1la tory behavior. 

400 
P. aurelia: sim -
P. aurelia: obs .u . 

350 D. nasutum: sim . 
D. nasu(um: obs . 

10 15 20 25 30 35 
time (days) 

Figure 11-2 Population dynamics in a simple predator-prey ecosystem. 
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For this domain, we provided PROMETHEUS with generic processes for prey 
growth, predator decay, and predation, including alternative functional 
forms. When constrained by the process hierarchy, these defined a space 
of 24 distinct model structures that, with parameters specified, predict 
trajectories for the two species' concentrations from their initial values. 
The system's search of this space produced a plausible model that included 
processes for growth, predation, and decay. As shown in Figure 11-2, the 
simulated curves track the heights and timing of the observed trajectories 
reasonably welL 

Notably, we encountered problems when we presented the system with 
the entire Jost and Ellner data set, and obtained these results only when 
we provided it with a selected subset. Measurements early in the time 
series had considerably lower peaks, which suggested a different regime 
was operating for unknown reasons. This result reveals an important 
ability that PROMETHEUS currently lacks: When a scientific modeling 
system cannot explain an entire set of observations, it should consider 
ignoring some of the data. This capability could help the system both 
identify separate regimes and minimize the effects of outliers during the 
early stages of modeling. Clearly, human scientists have this capacity, and 
future versions of PROMETHEUS would benefit from a solution that meets 
this challenge. 

Population Dynamics in the Ross Sea 

The Ross Sea in the Southern Ocean involves a somewhat more complex 
ecosystem. Here the phytoplankton, which may play an important role in 
the global carbon cycle (DiTullio et al., 2000), undergo repeated cycles of 
population increase and decrease. In this case (Asgharbeygi et al., 2006), we 
had access to two sets of 188 daily measurements for phytoplankton that 
spanned two successive years. Concurrent data were also available for 
nitrate concentrations and ice coverage; we used an algebraic equation to 
simulate the light dynamics. 

Based on discussions with the team's biological oceanographer (Kevin 
Arrigo), we identified entities of interest and developed 25 generic processes 
that encoded how they might interact. In addition to phytoplankton and 
nitrate, the entities included detritus, which results from phytoplankton 
decay, and zooplankton, which feeds on phytoplankton. Because neither 
were measured, the researchers treated attributes of both as unobserved 
theoretical variables. In addition, they seeded PROMETHEUS with an initial 
model that substantially reduced the size of the structural search space. 
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PROMETHEUS produced a number of models that made sense ecologically and 
that fit the first year's data closely, but they generalized poorly to the second 
year's observations. 

Inspection of the model suggested that ice differences across the 
years had little effect on phytoplankton growth, although this had 
originally seemed a likely explanation of differences between the two 
years. Discussion with the oceanographer led the group to include 
another generic process, which states that phytoplankton's absorption 
of nitrate depends on available light. Based on this information, 
PROMETHEUS found another model that fit the first year's data nearly 
as weB as the earlier candidate but that, as Figure 11-3 shows, general
ized much better to the second year. The implication is that the 
nitrogen-to-carbon ratio for phytoplankton varies as a function of 
light availability, which the oceanographer believes is an important 
ecological claim.2 The original vision for PROMETHEUS was that it 
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Figure 11-3 Performance on test data from the Ross Sea. 

2 This finding was made before support [or entities and process hierarchies was complete. 
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should support the scientist's search for models in a well-defined space. 
However, our experience with the Ross Sea revealed another key ability 
that the system lacks: When a scientific modeling system cannot account 
for observed differences, it should consider new mechanisms that expand 
its space of plausible models. Human scientists prefer to explain phe
nomena in terms of familiar mechanisms, but they can consider new 
processes when necessary, presumably by falling back on more general 
knowledge. Adding such a capability to PROMETHEUS is another 
important direction for future work. 

Biochemical Kinetics 

We also applied PROMETHEUS to a problem from biochemical kinetics 
(Langley et a!., 2006), which studies physiologjcal changes in metabolites 
over time. Here we drew upon time-series data collected by Torralba et al. 
(2003) about the glycolysis pathway, which converts glucose into pyruvate 
and which plays an essential role in most life forms. Torralba's group used 
an impulse-response method that, given a biochemical system in steady 
state, briefly increases the inflow of one substance and measures jts effects 
on others over time. We used 14 data points for six distinct glycolitic 
metabolites. 

For this domain, we provided the system with five generic processes that 
encoded four types of metabolic reactions appearing in pathway models. 
These differ in how they affect positive and negative fluxes (i.e., flow into 
and out of a reaction pathway) of the substances involved. The researchers 
crafted four generic processes-irreversible, reversible, inhibition, and 
activation reactions-along with a fifth that stated a metabolite's concen
tration changes as a weighted sum of its positive and negative fluxes, with 
each flux term being multiplied by its respective rate. 

When provided with the data and these generic processes, 
PROMETHEUS searched a space of 172 distinct models and estimated para
meters for each candidate. Figure 11-4 shows both the observed 
trajectories and those predicted by the best-scoring model, which pro
duces good fits in both qualitative and quantitative terms. However, the 
model structure differs from the generally accepted glycolysis pathway in 
that it lacks inhibition and activation processes. Presumably, this 
occurred because the system could not introduce unobserved entities to 
serve as inhibitors and activators, which suggests another limitation: 
A scientific modeling system should consider introducing theoretical entities 
that augment those provided by the user. PROMETHEUS can already generate 
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Figure 11-4 Observed (points) and predicted (lines) trajectories of 
chemical concentrations in the biochemical kinetics domain. 

models with unobserved terms, but only when they are given as input. 
Introducing the ability to postulate new entities, as constrained by back
ground knowledge, would extend the system's ability to generate plau
sible explanatory models. 

DISCUSSION 
..................... .o ..
 

At the outset, we described five challenges that arise when building a tool to 
support the construction of scientific models. These included sparsity of 
relevant data, the presence of prior models and knowledge, a match between 
system output and the primary domain language, the production of expla
natory models, and an emphasis on interactivity. We designed the form
alism for quantitative process models and generic processes with these 
challenges in mind, and we integrated techniques from artificial intelligence 
and system identification in response. 

o0+---------.--------.-------,.-----------, 
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The formalism for quantitative process models has some clear advan
tages. First, one can directly translate the models into a more familiar 
representation for scientists, thereby addressing the challenge of commu
nication. Second, casting the domain knowledge as processes leads to 
mechanisms that explain the studied system's behavior. Finally, the 
processes mesh well with the conceptual stage of model-building, which 
eases the input of domain knowledge and prior models to the program. 

To meet the challenges involved in model construction and revision, we 
borrowed from several research traditions. Heuristic search of AND/OR 
trees provides a means for navigating the space of model structures, while 
tools from system identification (e.g., Astrbm and Eykhoff, 1971) direct 
search through the parameter space. The use of prior knowledge helps 
constrain search to produce pia usible models even without large data sets. 
Finally, theory revision techniques (e.g., Ourston and Mooney, 1990) 
support interactive search, letting the user gauge the scope and nature of 
revisions at each step in the modeling process. 

Experiments with PROMETHEUS identified several open challenges for the 
artificial intelligence community. First, we need a way to ignore connected 
sets of data, not just isolated outliers, that may stem from a different 
regime and keep a program from producing good models. In dynamic 
systems, assigning observations to different operating regimes will allow 
easier identification of the active mechanisms. Second, a program should 
be able to introduce new processes to its library. Third, model construction 
methods should introduce theoretical entities that are not specified expli
citly by the user. These last two additions can increase the search space 
substantially, so we need more intelligent mechanisms to guide the 
structural search. 

Perhaps the biggest surprise we encountered involved current software 
capabilities. In the early stages of our work, we believed that techniques for 
parameter estimation were ready for application. However, we found the 
tools available for nonlinear dynamical systems to be both unreliable and 
slow. Generally, parameter estimation techniques use very little knowledge, 
and we believe that ideas from artificial intelligence and knowledge-based 
reasoning could improve these systems on both fronts. One possibility is to 
incorporate scientists' knowledge of both the general shape that trajectories 
should take and the relationships among trajectories and parameters. 
Bradley et al. (2001) explored another possibility that llsed heuristics to 
avoid unnecessary parameter estimation. Capitalizing on this type ofknow1
edge is the strength of artificial intelligence, and innovations in this area will 
have broad applicability. 
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In summary, we have seen that PROMETIlEUS introduces a number of 
innovations that respond directly to the outlined challenges and support 
creative acts in science. These include a representation for models and back
ground knowledge that supports communication with scientists, integration 
of domain knowledge to guide symbolic and numerical search, and incor
poration of initial models and user input to guide revision. However, we have 
also seen that this combination of ideas does not exhaust the ways that we can 
support the creative activities ofscientists as they develop models ofdynamic 
systems. We need additional research that extends the power and flexibility of 
the modenng methods to better serve the needs of scientists. 
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