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Abstract

We address the task of inducing explanatory models from
observations and knowledge about candidate biological pro-
cesses, using the illustrative problem of modeling photo-
synthesis regulation. We cast both models and background
knowledge in terms of processes that interact to account
for behavior. We also describe IPM, an algorithm for in-
ducing quantitative process models from such input, and
we demonstrate its use on the photosynthesis domain. In
closing, we consider the generality of our approach, discuss
related research on biological modeling, and suggest direc-
tions for future work.

1. Introduction and Background

Biomedical science aims to understand the mechanisms by
which organisms survive, grow, and reproduce. Like other
scientific fields, it collects observations, identifies recurring
phenomena, and attempts to explain these phenomena us-
ing existing knowledge. However, this endeavor is a com-
plex one, and biologists would benefit from additional tools
to assist them in constructing and evaluating their models.

The success of machine learning and data mining in com-
mercial domains has led to increased interest in using simi-
lar methods to discover biological knowledge. However, the
best-developed techniques are designed to operate on large
data sets and in the absence of background knowledge. De-
spite rhetoric the contrary,! biology remains a data-sparse
field, but it has considerable knowledge available to con-
strain the search for models.

Another drawback of standard induction methods is that
they construct descriptive models. These can make accu-
rate predictions on new test cases, which may be sufficient
for commercial applications, but biologists typically desire
explanatory models of behavior. An explanation of some
phenomenon is cast in terms of other knowledge, such as
structures or processes that are familiar to domain experts.

'For example, microarray technology produces many num-
bers but very few samples, whereas most induction methods
assume many of the latter.

Finally, traditional induction techniques produce models
that are expressed in notations developed by computer sci-
entists, few of which biologists find comprehensible. Even
work on inducing causal models, which sometimes have
an explanatory flavor, focuses on abstract formalisms that
make little contact with concepts from biomedical science.
Notations that incorporate domain concepts more directly
would presumably be easier to understand and provide ad-
ditional constraints on model induction.

In this paper, we describe an approach to inducing bio-
logical models that responds to each of these issues. Our
models are cast as sets of interacting processes that explain
rather than describe the data, and we report a method that
constructs such models from background knowledge stated
as generic processes, which serve both to constrain search
through the model space and make contact with familiar
concepts. We illustrate this approach on a problem of cen-
tral interest to biologists — the regulation of photosynthe-
sis — for which there is limited data but some knowledge.
However, the approach is a general one that should apply
to other biomedical problems, which we discuss in closing
along with related research and our plans for future work.

2. The Regulation of Photosynthesis

Photosynthesis is a complex combination of reactions that
are catalyzed by a system of protein complexes, most of
which are bound into the thylakoid membrane of the chloro-
plasts of higher plants. These include ‘light’ reactions,
which operate only in the light and use absorbed energy
to produce a variety of biochemical species, which are in
turn used by the remainder of the cell as energy. In con-
trast, ‘dark’ reactions do not require light but use energy
produced by the light reactions to combine CO» molecules
into sugars, which are then used to produce cellular energy
and other products or stored for later utilization.

One side effect of the normal photosynthetic reaction is the
creation of ‘reactive oxygen species’ (ROS), which can be
very damaging to cellular components, especially those in
the photosynthetic apparatus. Cells appear to have systems
that aim to minimize creation of ROS, that ‘clean up’ or



neutralize ROS, and for repairing damage. For these and
other reasons, the complex network of mechanisms for en-
ergy production, storage, and utilization in cells includes
many regulatory controls.

Although the biochemical reactions involved in photosyn-
thesis, and the general shape of its regulation, are fairly
well understood, the details of regulatory signals and mech-
anisms remain obscure. Biologists know about a variety
of abstract regulatory mechanisms that could affect pho-
tosynthetic activity, such as signal transduction and tran-
scription, but they are uncertain about which ones are re-
sponsible and the detailed forms in which they occur. For
instance, the protein produced during translation is known
to degrade, but it remains unclear whether this takes place
at a constant rate or whether it is regulated.

To further elucidate the details of photosynthesis regula-
tion, Labiosa et al. (2003) carried out an experiment with
Cyanobacteria, a unicellular organism, under simulated
naturalistic conditions. In particular, they constructed a
cyclostat which replicated the light variations that occur
with the 24-hour day-night cycle.? Samples of the organism
were collected at nine distinct times throughout the day-
night cycle, then analyzed using cDNA microarray technol-
ogy to measure mRNA levels for 3000 genes in each sample.

Inspection revealed that the 17 genes whose expression lev-
els were most highly correlated with light intensity had each
been implicated in photosynthesis previously, which makes
biological sense. However, the shape of their curves was
somewhat unexpected. Expression levels were low at night,
increased rapidly when the sun rose, and decreased again
after sunset, but they also exhibited a substantial drop
around noon. An adequate model of these genes’ regulation
should account for all of these regularities in at least qual-
itative terms, and preferably in quantitative ones as well.
In addition, it should be consistent with existing knowledge
about photosynthesis and other biological mechanisms.

3. Process Models of Biological Systems

Before we can assist biologists in constructing models of
gene regulation, we must select some formalism in which to
represent candidate models. Because biology does not have
a tradition, like physics and chemistry, of formal notations,
most work along these lines has borrowed frameworks from
other fields, yet only some of these formalisms characterize
the behavior of dynamical systems that change over time.
These include Boolean networks (e.g., Shmulevich et al.,
2002), dynamic Bayesian networks (e.g., Ong et al., 2002),
differential equations (e.g., Tomita et al., 1999), and Petri
networks (e.g., Peleg et al., 2002; Matsuno et al., 2002).
But despite their representational power, these frameworks
make limited contact with established biological concepts.

The problem is that biologists’ papers and talks repeatedly
make informal reference to processes that operate within

2This device was built, and the study run, in the Carnegie
Institute of Washington’s Department of Plant Biology.

Table 1. A process model for photosynthetic regulation.

model Photo_Reg;

variables light, nRN A, protein, ROS, redox, transcr_rate;
observables light, mRN A;

process photosynthesis;
equations d[redox,t,1] = 1.50 * light * protein;
d[ros,t,1] = 1.00 * light * protein;
process photo_translation;
equations d[protein,t,1] = 0.20 x mRN A;
process protein_degradation_ros;
conditions protein > 0, ROS > 0;
equations d[protein,t,1] = —0.05 * ROS;
d[ROS,t,1] = —0.05 * ROS;
process mRNA transcription;
equations di[mRN A, t,1] = transcr rate;
process regulate_light;
equations transcr_rate = 0.80 * light;
process regulate_redox;
conditions redox > 0;
equations transcr_rate = —2.00 * redoz;
d[redoz,t,1] = —1.00 * redoz;
process mRNA _degradation;
equations dfmRNA,t,1] = —0.20 *x mRN A;

living organisms. Research in artificial intelligence has
produced formalisms that cast models as sets of interact-
ing processes to explain dynamical behavior, with Forbus’
(1984) qualitative process theory being a notable example.
This offers a notation for biological mechanisms, but it fo-
cuses on qualitative simulations that predict only the direc-
tions in which continuous variables change over time.

Instead, we have explored a hybrid representation that em-
beds numeric equations within the qualitative structures
provided by Forbus’ approach. A model consists of a set of
biological processes, each of which describes the quantita-
tive relations among two or more variables that are cast as
one or more algebraic or differential equations. Each pro-
cess may also include arithmetic conditions on quantitative
variables that specify when it is active. Such a quantitative
process model must refer to some measurable variables, but
it may also include unobservable, theoretical terms.

For example, Table 1 shows one possible model of the ex-
pression phenomena described earlier. This specifies six
quantitative variables — light intensity, the concentrations of
mRNA, photosynthetic protein, and reactive oxygen species
(ROS), energy in the system (redox), and the rate of mRNA
transcription. Only two of these variables — light and
mRNA - are directly observable, with the remainder be-
ing theoretical terms that are biologically plausible.

The model incorporates seven distinct processes. Pho-
tosynthesis combines light with proteins to produce en-
ergy or redox, but it also increases ROS as a side ef-
fect. The photo_translation process increases the concen-
tration of photosynthetic proteins, with the increase de-
pending on the concentration of mRNA. However, another
process, protein_degradation ros, leads to a reduction in
both protein and ROS concentration. A fourth process,



mRNA _transcription, increases the mRNA concentration
by an amount controlled by the variable transcr_rate, which
is in turn influenced by two other processes. The first, reg-
ulate_light, states that the rate is directly proportional to
light, whereas the other process, regulate_redox, states that
it is inversely proportional to redox, which is itself reduced.
A final process, mnRNA_degradation, claims the mRNA con-
centration decreases by a fixed proportion every time step.

Like any model, this example makes important simplifying
assumptions. For instance, it refers to a single, aggregate
measure of mRNA rather than to the amounts for individ-
ual genes, and does the same for protein and transcr_rate.
Photosynthesis is treated as a single process, rather than
as the complex set of activities that we know it involves,
and the processes of transcription, degradation, and tran-
scription regulation are abstracted in a similar way. Also,
the component processes are all plausible biologically, but
some are more so than others. For instance, we know that
transcription is regulated and that both protein and mRNA
can degrade, but not the details of these activities.

Nevertheless, given such a quantitative process model, we
can simulate it to make predictions about how variables will
change over time. This involves compiling the process nota-
tion into a set of linked algebraic and differential equations,
giving them initial values for some variables, and invoking
numerical approximation techniques to calculate values for
trajectories. Omne complication is that the conditions on
processes may lead different sets of equations to apply dur-
ing different intervals. Also, if multiple processes influence
the same variable, we assume their effects are additive. Oth-
erwise, the simulation process is straightforward. However,
finding a model that can generate the observed trajectory is
another story, and the model in Table 1 provides a poor fit
to the Labiosa et al. data. We would like a computational
method that combines knowledge and data to search the
space of models, to which we now turn.

4. Encoding Background Knowledge

A key characteristic of the model just described is that it
moves beyond a simple description of observations to ez-
plain them in terms of other, more basic, structures or pro-
cesses. The explanatory referents are typically unobserv-
able in the current situation, but they make contact with
known, familiar mechanisms. The automated construction
of such explanatory models requires that we represent the
background knowledge to which they refer.

To this end, we utilize the notion of generic processes.
These are similar in spirit to the specific processes that
appear in a model, in that they incorporate equations and
activation conditions, but they do not commit to particu-
lar variables or parameter values. Table 2 presents seven
generic processes for the domain of plant biochemistry, most
of which have direct analogs in Table 1.

Note that each generic process includes a set of generic vari-
ables, along with type information that constrains the spe-
cific variables against which they can match. Each structure

Table 2. Seven generic processes for gene regulation.

process photosynthesis;
variables L{light}, P{protein}, R{redoz}, S{ROS};
parameters alpha [0, 1], beta [0, 1];
equations d[R,t,1] = alpha * L % P;
d[S,t,1] = beta = L * P;
process controlled_degradation;
variables D{degradable}, E{degrader};
parameters delta [0, 1];
conditions D > 0, E > 0;
equations d[D,t,1] = —1 « delta * E;
d[E,t,1] = —1 = delta % E;
process automatic_degradation;
variables C{concentration};
parameters gamma [0, 1];
conditions C' > 0;
equations d[C,t,1] = —1 * gamma * C
process translation;
variables P{protein}, M{mRN A};
parameters rho [0, 10];
equations d[P,t,1] = rho * M;
process transcription;
variables M{mRN A}, R{rate};
equations d[M,t,1] = R;
process unconsuming_regulation;
variables R{rate}, S{signal};
parameters mu [—1,1];
equations R = mu * S;
process consuming_regulation;
variables R{rate}, C{concentration};
parameters nu [—1, 1], pi [0, 1];
equations R = nu * C|
d[C,t,1] = —1 = pi * C;

also includes the names of parameters that appear in con-
ditions or equations, along with upper and lower bounds
on their values. For instance, the generic process consum-
ing_regulation involves one variable, R, that must be a rate,
and another, C, that must be a concentration (such as re-
dox or ROS), and it refers to two parameters, one of which
(pi) must fall between zero and one.

Some generic processes are more specific than others. For
example, those for photosynthesis, transcription, and trans-
lation effectively refer to specific variables, and are generic
only in not committing to parameter values. Others, like
those for degradation and regulation, refer to classes of vari-
ables and can be instantiated in different ways. This lets us
encode uncertainty about which variables are actually in-
volved in these processes, but still supports the constrained
search for specific models.

5. Inducing Dynamic Biological Models

Taken together, time-series data about gene expressions and
generic biological processes provide us with the raw mate-
rial to construct regulatory models. This task is an instance
of what we have called inductive process modeling (Langley
et al., 2003). The goal of process model induction is to gen-
erate a specific process model, like the one in Table 1, that
makes reference to known generic processes and that fits



the trajectories of observed variables. The resulting model
is explanatory, rather than purely descriptive, because it
refers to unobserved variables and processes. Moreover, it
should be understandable to domain scientists because it is
cast in terms of familiar concepts, much as in Falkenhainer
and Forbus’ (1991) work on compositional modeling.

In our current problem, the data concern the expression lev-
els of photosynthetic genes over time, along with the associ-
ated light intensities. The background knowledge includes
plausible forms for processes like photosynthesis, transcrip-
tion, translation, and degradation, like those in Table 2,
including type constraints on their variables and bounds
on their parameters. The target is a model like that in
Table 1, which contains variants of these generic processes
that commit to specific variables and their parameter val-
ues. Ideally, this specific model should generate trajectories
that match the training data and make accurate predictions
about future values.

We have implemented an algorithm, TPM, that addresses
this task. Its inputs include a set of observable and op-
tional unobservable variables to be included in the model,
the types for these variables, a set of generic processes from
which to construct candidate models, and a time series of
observed values to which models should be fit. As output,
the system produces a set of parameterized models ranked
their by mean squared error on the training data.

IPM decomposes the task of inductive process modeling into
two subproblems, with the first involving a constrained ex-
haustive search through the space of model structures. To
this end, the system finds all ways to instantiate the generic
processes with known specific variables that are consistent
with the type constraints. Some 14 instantiated processes
are generated in this manner from the background knowl-
edge about photosynthesis and gene regulation presented
earlier. IPM then composes these instantiated components
in all possible ways that involve at least L and no more than
U processes, that include all observed variables, and that
form a single connected graph. For the run below, we used
L =4 and U = 10, which produced 158 model structures.

Each such candidate specifies the model’s variables and
their causal relationships, but it does not include the val-
ues for parameters. Thus, IPM’s second stage carries out a
search through the parameter space defined by each model
structure. The system first selects a random set of val-
ues that fall within the parameter ranges specified in the
generic processes, then carries out gradient descent using
the Levenberg-Marquardt method until it converges to a lo-
cal optimum. Next, IPM generates several new candidates
by making random jumps for the values of each parameter.
If one or more jumps produces lower error, it selects the best
such point and continues using the Levenberg-Marquadt
method; otherwise, the system repeatedly increases the
jump size and generates new candidates. However, if no
no improvement occurs after 20 iterations, it restarts the
entire process from a new random initial point. We have
found this parameter-estimation method to produce reason-
able matches to time series from various domains.

Table 3. Model for photosynthetic regulation induced by IPM.

model Photo_Reg;

variables light, nRN A, protein, ROS, redox, transcr_rate;
observables light, mRN A;

process photosynthesis;
equations d[redox,t,1] = 3.623 * light * protein;
d[ROS, t,1] = 1.340 * light * protein;
process photo_translation;
equations d[protein,t,1] = 0.048 * mRN A;

process mRNA transcription;
equations di[mRN A, t, 1] = transcr rate;

process consuming regulation_1;
equations transcr_rate = —12.720 * redoz;
dredoz,t,1] = —1 % 5.309 * redoz;

process controlled_degradation_1;
conditions protein > 0, ROS > 0;
equations d[protein,t,1] = —1 % 0.102 * ROS;
d[ROS,t,1] = —1%0.102 * ROS;
process automatic_degradation_1;
conditions mRNA > 0;
equations dfmNRNA,t,1] = —1 % 0.816 + mRN A;

Recall that the example model in Table 1 includes a num-
ber of unobserved variables, some of which occur in the
left-hand sides of differential equations. This means that,
in addition to finding values for the parameters in each
process, IPM must also infer the initial values for each such
variable. To this end, the system simply treats these as ad-
ditional terms that must be fit by the parameter estimation
module. Elsewhere (Langley et al., 2003) we have evaluated
this capability on synthetic data, and also shown that one
can use a similar approach to induce the thresholds that
appear in conditions on processes.

To demonstrate that ITPM can produce reasonable models
of the processes that govern photosynthesis regulation, we
provided it with the background knowledge from Table 2
and time-series data from the cyclostat study. However,
because we had only nine samples, we did not attempt to
construct a model that predicted separate expression levels
for each of the 17 genes. Instead, we averaged the results for
these genes at each time step and use the resulting means
as the training set for model induction. We also told the
system that candidate models should include the observable
variables light and mRNA, along with the optional unob-
servable variables protein, ROS, redox, and transcr_rate.

The top-ranked process model that IPM generated from
these data, shown in Table 3, has similarities to and dif-
ferences from the model presented earlier in Table 1. The
new model includes processes for photosynthesis, transla-
tion, and transcription, but this is hardly surprising, since
their variable types were so constrained as to demand their
incorporation. More interesting was the inclusion of con-
trolled degradation of photosynthetic proteins by ROS, au-
tomatic degradation of mRNA, and controlled regulation
of transcription rate. The model claims that light affects
mRNA transcription, but only indirectly through its influ-
ence on redox, rather than through a direct causal link.
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Figure 1. Average expression for 17 genes related to photosyn-
thesis over a 24-hour period, as predicted by the best induced
model. The dependent variable is the ratio of mRNA in each
sample to the mRNA in a mixture of all the samples.

Figure 1 shows the trajectories that this model predicts
over a 24-hour period. We have not reported the average
expression levels from the cyclostat experiment because our
biologist collaborators have not yet published them, but the
quantitative fit is quite good, with a mean squared error of
0.000289. The qualitative match is also good, in that the
model reproduces the general M shape that was observed
in the study. Equally important, it makes biological sense
in that it includes plausible processes for photosynthesis,
translation, transcription, regulation, and degradation.

However, we should note that data obtained from microar-
rays are typically very noisy, and with only nine samples,
we should not be confident that the model is correct. Our
main goal has been to demonstrate that inductive process
modeling can construct a model for phenomena of scientific
interest that is consistent with biological knowledge and
matches the data. We should also note that IPM cannot
produce models that fit arbitrary curves even in cases where
they contain more parameters than the number of observa-
tions. The constraints imposed by generic processes, in-
cluding ranges on parameters and functional forms, should
produce relatively low variance even on the small data sets
that predominate in biological studies.

6. Generality, Limits, and Related Work

Although we have focused here on inducing models of gene
regulation, the paradigm of inductive process modeling is
quite general. Elsewhere (Langley et al., 2003) we have
demonstrated that the approach can infer process models
of ecosystem behavior, and the basic approach is appli-
cable to any biological domain in which one can identify
generic processes with plausible functional forms and for
which quantitative data are available. Here we have empha-
sized dynamical models and time series, but our methods
can handle algebraic models and static data equally well.

One biomedical area that seems a likely candidate is physi-
ology, where there have already been efforts to manually de-
velop quantitative models of behavior using the formalism
of differential equations. Another promising topic involves
the spread of infectious diseases, for which there already
exist numerical models that incorporate ideas from popu-
lation dynamics. Both fields have considerable knowledge
about component processes and functional forms, but data
are expensive to collect and the model space is large.

Although our initial results in modeling gene regulation
have been encouraging, it is clear that more work still lies
ahead. One obvious direction for future research would de-
velop analogous process models for other facets of photosyn-
thesis, such as energy storage and utilization. This would
require the creation of generic processes for these mecha-
nisms and their use in modeling the expression levels of
these genes. We should also carry out studies with syn-
thetic data, averaged over different training sets, to better
understand how our methods scale to settings with differ-
ent noise levels, more generic processes, and more complex
target models.

More important, we must extend our framework to support
larger-scale models of biological systems. A promising re-
sponse would utilize hierarchical models that describe the
organism in terms of subsystems and that are based on
background knowledge about generic subsystems in addi-
tion to generic processes. Also, we should adapt our ap-
proach to reflect the qualitative nature of many biological
models and the fact that biomedical scientists often care
only about qualitative fits. In response, we plan to explore
methods that induce semi-quantitative process models (e.g.,
Kay et al., 2000), which can specify ranges on parameters
rather than precise values. Such a revised system might
direct search based on models’ abilities to account for qual-
itative relations (e.g., one measurement being higher than
another) rather than mean squared error.

Our approach to biological discovery has close connec-
tions with other recent efforts. For example, Bay et al.
(2003) present an approach to inducing linear causal mod-
els of gene regulation from expression data and background
knowledge stated as an initial model. Both Zupan et al.
(2001) and Bryant et al. (2001) report systems that infer
qualitative genetic networks from biological knowledge and
the results of auxotrophic growth experiments, while Mahi-
dadia and Compton (2001) report a similar system that
revises qualitative causal models based on experimental re-
sults in neuroendocrinology. Ong et al. (2002) describe yet
another technique that uses knowledge about promoters to
constrain induction of dynamical models for Tryptophan
metabolic regulation. However, all have assumed abstract
representations that make limited contact with biological
concepts like translation, transcription, and degradation.

Another line of research that is closer in its technical de-
tails has addressed the induction of quantitative models of
dynamical systems. For example, Koza et al. (2001) used
genetic methods to infer the structure and parameters of
a metabolic model from time-series data about concentra-



tions. Bradley et al. (1999) describe a different approach to
finding differential equation models that draws on knowl-
edge about the behaviors produced by alternative classes
of equations. The most similar research comes from Todor-
ovski (2003), whose LAGRAMGE system utilizes domain-
specific knowledge, some cast as processes, to guide search
for differential equation models. However, his work has
focused on environmental domains rather than biomedical
ones, such as the one we have addressed here.

7. Concluding Remarks

In this paper, we have described an approach to repre-
senting, utilizing, and inducing causal biological models.
This paradigm — inductive process modeling — supports the
construction of explanatory rather than descriptive models,
casts these models in terms of familiar biological processes,
and takes advantage of background knowledge to constrain
search and produce plausible accounts even when there are
few samples. We reported a specific system, IPM, that car-
ries out a two-stage search through a space of model struc-
tures and their parameters, and we illustrated its operation
on background knowledge and time-series data related to
the regulation of photosynthesis.

The system produced a model that reproduced both the
qualitative shape and the quantitative details of the ex-
pression data, while incorporating processes that made bi-
ological sense. The small number of samples make this re-
sult unreliable, but, we maintain, more plausible than ones
found without the benefit of background knowledge. We
argued that our approach is a general one that has applica-
tions to other biomedical domains like physiology and epi-
demiology, but we also identified limitations that should be
addressed in future research. Finally, we noted its connec-
tions to other work on computational scientific discovery
that uses background knowledge to produce interpretable
causal models.
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