From Proceedings of the Nineteenth International Conference
on Machine Learning (2002). Sydney: Morgan Kaufmann.

Inducing Process Models from Continuous Data

Pat Langley

LANGLEY@QISLE.ORG

Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306 USA

Javier Sanchez

JSANCHEZ@QCS.STANFORD.EDU

Computational Learning Laboratory, Center for the Study of Language and Information,

Stanford University, Stanford, CA 94305 USA

Ljupco Todorovski
Saso Dzeroski

LJUPCO.TODOROVSKIQ1JS.SI
SASO.DZEROSKIQIJS.SI

Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Abstract

In this paper, we pose a novel research prob-
lem for machine learning that involves con-
structing a process model from continuous
data. We claim that casting learned knowl-
edge in terms of processes with associated
equations is desirable for scientific and en-
gineering domains, where such notations are
commonly used. We also argue that exist-
ing induction methods are not well suited
to this task, although some techniques hold
partial solutions. In response, we describe
an approach to learning process models from
time-series data and illustrate its behavior in
a population dynamics domain. In closing,
we describe open issues in process model in-
duction and encourage other researchers to
tackle this important problem.

1. Introduction and Motivation

Many scientific and engineering domains involve con-
tinuous variables that change over time. The increas-
ing availability of data from such systems presents
both an opportunity and a challenge for machine learn-
ing. Successful applications of induction methods hold
obvious benefits, and there exist large literatures on
computational methods for regression and time-series
prediction. But however accurate the predictive mod-
els these techniques induce from data, they usually
make little contact with the formalisms and concepts
used by scientists and engineers. And as Pazzani et al.
(2001) have shown, experts in some domains will reject
a learning system’s output, even when very accurate,
unless it makes contact with their prior knowledge.

Research on discovering numeric laws (e.g., Langley,
1981; Washio et al., 2000) addresses this concern, in
that many scientists find equations familiar. However,
although the resulting knowledge generalizes beyond
the training data, it is typically descriptive in that it
directly relates observable variables. In contrast, mod-
els in science and engineering often provide an ezplana-
tion which includes variables, objects, or mechanisms
that are unobserved, but that help predict the behav-
ior of observed variables. Moreover, explanations often
make use of general concepts or relations that occur
in different models. One example is Newton’s theory
of gravitation, which moved beyond Kepler’s descrip-
tive laws to an explanation of planetary trajectories in
terms of straight line motion and attractive force.

We claim that explanations in science and engineer-
ing are often stated in terms of generic processes from
some domain. We will focus here on a particular class
of processes that describe one or more causal relations
between input variables and output variables. A pro-
cess states these relations in terms of differential equa-
tions (for a process that involves change over time) or
static equations (for one that involves instantaneous
effects). A process may also include conditions, stated
as threshold tests on its input variables, that describe
when it is active. A process model consists of a set
of processes that link observable input variables with
observable output variables, possibly through unob-
served theoretical terms.

Table 1 shows a simple process model for the changes
in an ice-water system as a function of the heat put
into it. The model includes three processes, one (ice-
warming) active when the ice’s mass is nonzero and
the system temperature is less than zero, another (ice-
melting) when the ice’s mass is nonzero and the tem-

perature is zero, and a third (water-warming) when
all the ice has melted and the temperature is between
100 and zero. The first and third processes influence
only the temperature, whereas the second process af-
fects only the masses of ice and water. Given initial
conditions (e.g., ice_mass = 10, water_mass = 0, and
temp = —10) and heat measurements, this model can
simulate changes over time.! Note that the model pre-
dicts the ice-warming process will be followed by ice-
melting and then water-warming, but it does not state
this explicitly, as would empirical laws. Thus, the pro-
cess model explains the system’s temporal behavior.

We maintain that process models of the sort in Table 1
occur frequently in science and engineering, and that
inducing them from data is a worthwhile task for our
field to address. We can state this task as:

e (Given: Observations for a set of continuous vari-
ables as they vary over time;

e (Given: Generic processes that specify causal rela-
tions among variables using conditional equations;

e (iven: Optionally, constraints on the types of vari-
ables involved in each process and knowledge about
these variables’ types;

e Find: A specific process model that explains the
observed data and predicts future data accurately.

Note that this formulation distinguishes between the
generic processes given as input and the specific pro-
cesses in the induced model, which mention particular
variables and values for their parameters. Also, we
have allowed for type constraints on process variables,
which are available for many domains.

We intend this paper as an exploratory research report
in the sense described by Dietterich (1990). Following
his advice, we state clearly a promising new problem
for machine learning and explore its various facets. In
the section that follows, we consider some challenges
posed by the problem of inducing quantitative pro-
cess models. Next we review a variety of established
induction paradigms, concluding that none can be ap-
plied directly to this task, though some hold promising
ideas on which we can build. After this, we describe
one prospective approach for process model induction
and illustrate it with some initial results from pop-
ulation dynamics. Finally, we close by suggesting an
agenda for future research on this important topic. We
will not report extensive experimental results, leaving
such studies for those who implement this agenda.

1Our framework can be viewed readily as a quantitative
version of Forbus’ (1984) qualitative process theory, from
which we have borrowed many ideas.

LANGLEY, SANCHEZ, TODOROVSKI, AND DZEROSKI

Table 1. A quantitative process model of mass and tem-
perature change in an ice-water system.

model WaterPhaseChange

variables: temp, heat,ice_mass, water_mass
observables: temp, heat,ice_mass, water_mass
process ice-warming
conditions: ice_mass > 0,temp < 0
equations: d[temp,t] = heat/(0.00206 * ice_mass)
process ice-melting
conditions: ice_mass > 0, temp == 0
equations: dfice_nass,t] = —(18 * heat)/6.02,
dlwater_mass,t] = (18 * heat)/6.02
process water-warming
conditions: ice_mass == 0, water_mass > 0,
temp >= 0, temp < 100
equations: d[temp,t] = heat/(0.004184 x water_mass)

2. Challenges of Process Modeling

We have claimed that the induction of process mod-
els differs from the tasks typically studied in machine
learning. Thus, before proceeding further, we should
review the characteristics that distinguish it from tra-
ditional induction problems and that pose research
challenges. Some characteristics focus on aspects of
the training data, whereas others involve constraints
on the nature of acquired knowledge.

Process models are designed to characterize the be-
havior of dynamical systems that change over time,
though they can also handle systems in equilibrium.
The data produced by such systems differ from those
that arise in most induction tasks in a variety of ways.
First, these variables are primarily continuous, since
they represent quantitative measurements of the sys-
tem under study. Second, the observed values are not
independently and identically distributed, since those
observed at later time steps depend on those measured
earlier. Finally, the training data are primarily unsu-
pervised, in that they describe a set of variables that
change over time, with no variable being singled out
for special attention.

We have already noted that process models are ex-
planatory in nature. The processes themselves are
not observable, and multiple processes can interact to
produce complex behavior. Moreover, process models
can include theoretical variables that are also unob-
servable. These characteristics involve the knowledge
acquired during learning, but they have implications
for task difficulty as well. In particular, inducing pro-
cess models is a plausible option only for domains that
are complex enough to require such explanatory ac-
counts. Fortunately, this challenge is offset by knowl-

INDUCING PROCESS MODELS

edge about generic processes that can serve as compo-
nents of candidate models.

Another assumption also makes process model induc-
tion more tractable than it might be otherwise: the dy-
namical systems they explain are generally viewed as
deterministic. The observations themselves may well
contain noise, which can complicate matters for this
paradigm as it does for others. However, the frame-
work posits that processes themselves are always ac-
tive whenever their conditions are met and that their
equations have the specified effects. Scientists and en-
gineers often treat the systems they study as determin-
istic, and we will operate under the same assumption.

3. Limitations of Existing Approaches

According to Dietterich (1990), an exploratory re-
search paper should not only define a novel problem,
but also show the inability of existing methods to solve
that problem. Thus, we should consider whether any
established learning techniques can handle inductive
process modeling. Our discussion will draw on com-
ments in the previous section about the distinctive
characteristics of this task.

We have argued that methods for equation discovery,
although they generate knowledge in formalisms famil-
iar to scientists, are not sufficient for our task because
they produce descriptive summaries of data rather
than explanations in terms of underlying processes.
A few exceptions to this trend exist, such as Bradley
et al.’s (2001) work on constructing differential equa-
tion models from existing components, Todorovski and
Dzeroski’s (1997) use of context-free grammars for gen-
erating candidate equations, and Koza et al.’s (2001)
method for inferring quantitative metabolic pathways.
However, even these efforts do not combine known
generic processes into explanatory models, and most
work on equation discovery is far less relevant.

Mainstream methods for supervised learning fall short
on the same front, in that they may develop accurate
predictors but fail to make contact with explanatory
concepts familiar to domain experts. Thus, widely
used algorithms for inducing regression trees and mul-
tilayer neural networks do not, by themselves, seem
sufficient for inductive process modeling, nor do other
schemes for predicting continuous variables, including
ones for time-series analysis. However, this does not
mean they cannot prove useful in the overall task, as
we will see later with techniques for equation discovery.

Because we have emphasized the explanatory na-
ture of process models, we should consider whether
explanation-based learning (e.g., Mitchell et al., 1986)

lends itself to their construction. This paradigm also
uses background knowledge to account for observa-
tions, but nearly all such research has dealt with clas-
sification or problem solving, rather than with pre-
dicting continuous variables.? Moreover, the standard
formulation assumes the training data are supervised,
whereas inductive process modeling deals primarily
with observational data in which no variable is treated
as special. Similar points hold for research on the-
ory revision (e.g., Ourston & Mooney, 1990), which
combines inductive learning with domain knowledge,
often stated as Horn clause programs that contain
theoretical terms. Also, this paradigm assumes that
one has an explanatory model at the outset, rather
than constructing it from available components such
as generic processes. Thus, both approaches seem like
poor matches, though we will return to theory revision
when we discuss open research issues.

Another paradigm inductive logic programming
(e.g., Lavra¢ & Dzeroski, 1994) fares somewhat bet-
ter on the task of learning process models. This
framework takes advantage of background knowledge,
stated as Horn clauses and ground literals, to learn
from training cases. The resulting knowledge is itself
cast as a set of Horn clauses, possibly with nonter-
minal (i.e., theoretical) symbols, and thus can have
an explanatory character. However, as usually prac-
ticed, inductive logic programming focuses on super-
vised learning for classification tasks. Moreover, the
research emphasis has been on generating logical struc-
tures rather than numerical ones.®> Thus, the frame-
work holds some promise as an approach to inductive
process modeling, but it requires some revisions and
extensions to this end.

Because hidden Markov models (e.g., Poritz, 1988) can
describe systems that change over time, we should also
evaluate their relevance to our learning problem. The
states in such models are unobservable, which gives
them an explanatory flavor, but typically only one
state can be active at a time, whereas any number of
processes can be active simultaneously. Furthermore,
a hidden Markov model requires explicit links that
specify which states can follow each other, rather than
letting this behavior emerge from a set of processes.
Finally, the probabilistic assumptions of Markov mod-
els are unnecessary for scientific and engineering do-
mains that are deterministic in nature.

*DeJong’s (1994) work on explanation-based learning
for motor control comes closer to our needs, but the
paradigm as a whole seems ill suited.

3Garrett et al. (in press) have used this approach to
infer metabolic pathways involving biochemical processes,
but these are qualitative rather than quantitative models.

A final approach involves learning ‘dynamic Bayesian
networks’ that characterize how the values of variables
at one time step influence their values at the next step
(e.g., Ghahramani, 1998). Such models encode the
probabilistic analog for sets of differential equations,
but they do not organize these equations into pro-
cesses. Also, work in this paradigm has focused on
discrete variables and, as with hidden Markov mod-
els, the probabilistic representation seems inappropri-
ate for deterministic process models. The situation
for dynamic Bayes nets is similar to that with logic
programs, in that one might adapt them to support
induction of process models, but they bring unneces-
sary assumptions and machinery to the task.

4. Inductive Process Modeling

Although our primary aim here has been to character-
ize the problem of learning process models, our argu-
ments will be more convincing if we can report some
initial results on this task. In this section, we describe
one approach that we have implemented and report
its behavior on data from the domain of population
dynamics. We will present this approach in the tradi-
tional order, first discussing a formalism for represent-
ing process models, then considering the performance
element that uses them, and finally describing the in-
duction method that constructs models from data.

4.1 Representing Processes and Models

We have already seen one example that involves a
three-process model for an ice-water system. To reit-
erate, a process model specifies a set, of processes that
characterize quantitative relations among a set of ob-
served, and possibly unobserved, variables. Each pro-
cess specifies zero or more conditions under which it is
active, along with one or more causal equations that
characterize the influence one or more variables exert
on another. Although the processes in a given model
are unordered and can occur in parallel, we can orga-
nize them into a causal graph that equates the outputs
of some processes with the inputs of others.

Table 2 presents a set of processes for population dy-
namics, which concerns changes in species’ population
levels over time (Murray, 1993). The table contains
generic processes that serve as background knowledge
for learning; unlike specific processes, these do not
commit to particular variables or parameter values,
but they can indicate constraints on them. For ex-
ample, the process for exponential growth states that
its variable P must have type population and that
its equation’s coefficient must be nonnegative, with 1
as its default value. The background knowledge also

LANGLEY, SANCHEZ, TODOROVSKI, AND DZEROSKI

Table 2. Seven generic processes for population dynamics
with constraints on their variables and parameters.

process exponential_growth
variables: P{population}
equations: d[P,t] = [0, 1, co] * P
process logistic_growth
variables: P{population}
equations: d[P,t] = [0,1,00] * P % (1 — P/[0, 1, oc])
process exponential_decay
variables: P{population}
equations: d[P,t] = —[0,1, cc] * P
process constant_inflow
variables: I{inorganic_nutrient}
equations: d[I,t] = [0, 1, o0]
process consumption
variables: P1l{population}, P2{population},
nutrient _P2{number}
equations: d[P1,t] = [0,1, co] * P1 % nutrient_P2,
d[P2,t] = —[0, 1, 0] * P1 % nutrient_P2
process no_saturation
variables: P{number}, nutrient_P{number}
equations: nutrient_P = P
process saturation
variables: P{number}, nutrient_P{number}
equations: nutrient_P = P/(P + [0, 1, c])
mutually exclusive: {exponential_growth, logistic_growth}
mutually exclusive: {no_saturation, saturation}

specifies that certain generic processes, such as satu-
ration and nonsaturation, cannot be instantiated with
the same variables. Note that processes in this domain
include no conditions, so they are continuously active.

The induction system is also given a set of observed
variables, possibly with information about their types.
For example, we might observe the dynamic behav-
ior of an aquatic ecosystem that involves zooplankton,
phytoplankton, and nitrogen. Here the first two vari-
ables are populations, whereas the third is an inorganic
nutrient. The training data consist of measurements
for all three variables as they change over time.

The result of learning is a process model like the one
shown in Table 3, which includes six specific instances
of the generic processes in Table 2. The first two pro-
cesses state that phytoplankton grows in an unlimited
(exponential) manner, whereas zooplankton growth is
limited by the environment’s capacity. The next pro-
cess specifies that phytoplankton consumes the inor-
ganic nutrient nitrogen, which increases its population
and decreases the amount of nutrient. The fourth pro-
cess posits that the consumption capacity of phyto-
planton for nitrogen is unlimited. The last two pro-
cesses specify that zooplankton’s predation on phyto-
plankton has limited capacity (that it saturates). This

INDUCING PROCESS MODELS

Table 3. A process model for an aquatic ecosystem.

model AquaticEcosystem
variables: nitro, phyto, zoo, nutrient_nitro, nutrient_phyto
observables: nitro, phyto, zoo
process phyto_exponential_growth
equations: d[phyto,t] = 0.1 % phyto
process zoo_logistic_growth
equations: d[z00,t] = 0.1 * zoo/(1 — z00/1.5)
process phytonitro_consumption
equations: d[nitro,t] = —1 * phyto * nutrient_nitro,
d[phyto, t] = 1 x phyto * nutrient_nitro
process phyto_nitro_no_saturation
equations: nutrient_nitro = nitro
process zoo_phyto_consumption
equations: d[phyto,t] = —1 % zoo * nutrient_phyto,
d[zo0,t] = 1 * zoo * nutrient_phyto
process zoo_phyto_saturation
equations: nutrient_phyto = phyto/(phyto + 0.5)

model incorporates two unobservable variables, each
related to a population’s consumption capacity, and
assumes a closed ecosystem with no inflow.

4.2 Making Predictions with Process Models

Any induction system requires some performance el-
ement that can utilize knowledge once it has been
learned. In this case, we require some interpreter that
can use a quantitative process model to carry out for-
ward simulation that generates a predicted time series
for each observable variable. To this end, we have
implemented a module that invokes established meth-
ods for solving first-order differential equations, which
are available in public-domain software (e.g., Cohen &
Hindmarsh, 1996), along with simple arithmetic oper-
ations for handling instantaneous equations. For this
purpose, we must, specify initial values for each ob-
servable variable and the size of the time step, which
determines the temporal resolution of the simulation.

Such an approach suffices for predicting the effects of
individual differential equations, but a process model
may involve chains of such equations. Thus, for each
process P, the performance element solves the associ-
ated instantaneous and differential equations for the
current time step to determine new values for P’s out-
put variables, uses these values to solve the equations
associated with any processes that occur in the next
step on the causal chain, and so on, until reaching the
chain’s final variables. The interpreter utilizes only ac-
tive processes on each time step, that is, those whose
conditions are met. When multiple active processes
influence the same variable, the system makes the sim-
plifying assumption that their effects are additive.

4.3 Constructing a Model from Components

Recall that our learning task involves constructing a
process model from a known set of generic processes,
which we assume comes from a domain expert, and
time-series data about the quantitative variables one
wants to explain. We have implemented an initial sys-
tem, which we will call IPM (for Inductive Process
Modeler) that carries out constrained search through
the space of process models for one that accounts for
these observations. The search mechanism operates in
four successive stages.

The first step involves finding all ways to instantiate
the known generic processes with specific variables.
For each generic process, IPM simply checks every pos-
sible assignment of observable variables to generic vari-
ables mentioned in the process, retaining only assign-
ments that satisfy the type constraints. For example,
the variables for zooplankton (zoo) and phytoplank-
ton (phyto) have type population, so they match the
generic variable P in the process exponential_growth,
whereas nitrogen has type inorganic_nutrient, so it
matches I in the process constant_inflow. The result
is a set of instantiated processes that specify particu-
lar variables but still lack parameter values. Because a
model can refer to theoretical variables, this step also
generates instantiated processes that incorporate one
or more such terms.

In the second stage, IPM combines subsets of these in-
stantiated processes into generic models, each of which
specifies an explanatory structure, much like a proof
tree. One constraint here is that the candidate models
must consist of connected graphs, on the assumption
that the data are produced by a single system. An-
other forbids mapping any specific variable onto more
than one generic variable in a given process. We also
specify the maximum number of processes that can
connect any two variables and the maximum number
of processes in a model. Within these boundaries, IPM
carries out a backward-chaining search for all generic
models, since this scheme is guaranteed to find all con-
nected graphs. This search requires some unification,
in that it must link unobservable variables that are
input by one process to the output of others.

The third step focuses on inducing values for the pa-
rameter in each generic model. To this end, IPM calls
on LAGRAMGE (Todorovski & Dzeroski, 1997), which
incorporates a declarative bias to constrain search for
differential equation models. This program uses es-
tablished methods for optimization search to fit the
parameters in equations, but, since the details have
appeared elsewhere, we will not recount them here.
More important, because the declarative bias takes

2
1

15
1

Observed/predicted value

1
1

0.5

0.0

0 1 2 3 4 5 6 7 8 9 10
Time
Figure 1. Observations (jagged lines) generated by the pro-
cess model in Table 3, with noise added, and predictions
(smooth lines) from the induced model in Table 4.

the form of a context-free grammar, IPM translates
each generic model into such a grammar and passes it
to LAGRAMGE. These grammars include one rewrite
rule for each process-equation pair, with each nonter-
minal symbol occurring in only one rule. This does not
take full advantage of LAGRAMGE’s ability to handle
more general grammars, but IPM’s search through the
space of generic models serves an analogous function.

For each generic model, LAGRAMGE returns a specific
model with specific values for each parameter, along
with a score for each such candidate. This score re-
flects the overall difference between the model’s pre-
dictions and observations, stated as the sum of the
squared errors over all observed variables. In the final
step, IPM simply selects the specific model with the
best score and halts upon returning it.

4.4 Learning a Population Dynamics Model

To demonstrate IPM’s functionality at inducing pro-
cess models, we decided to run it on synthetic data
for a known system. For this purpose, we used the
aquatic ecosystem model in Table 3 to generate ob-
servations for 100 time steps, using the initial values
nitrogen = 1.0, phyto = 0.01, and zoo = 0.01 for the
observable variables.

To make these data more realistic, we introduced noise
by replacing each ‘true’ value = with x x (1+7 x 0.05),
where we sampled r from a Gaussian distribution with
mean 0 and standard deviation 1. This produces noise
relative in size to the actual value, giving the obser-
vations shown in Figure 1. We then ran the program
on the noisy data, giving it type constraints and the
generic processes in Table 2 as background knowledge.

LANGLEY, SANCHEZ, TODOROVSKI, AND DZEROSKI

Table 4. Ecosystem model induced by the IPM algorithm.

model AquaticEcosystem

variables: nitro, phyto, zoo, nutrient_phyto,
nutrient_nitro_1, nutrient_nitro_2

observables: nitro, phyto, zoo
process phyto_exponential_growth

equations: d[phyto,t] = 0.089 % phyto
process zoo_logistic_growth

equations: d[zoo, t] = 0.013 * zoo/(1 — z00/0.469)
process phyto_nitro_consumption

equations: d[nitro,t] = —1.174*phyto *nutrient nitro_1,

d[phyto, t] = 1.058 * phyto * nutrient_nitro_1

process phyto_nitro_no_saturation

equations: nutrient_nitro_1 = nitro

process zoo_phyto_consumption
equations: d[phyto,t] = —0.986 * zoo * nutrient_phyto,
d[zo0,t] = 1.089 * zoo * nutrient_phyto
process zoo_phyto_saturation
equations: nutrient_phyto = phyto/(phyto + 0.487)
process nitro_constant_inflow
equations: d[nitro,t] = 0.067
process zoo_nitro_consumption
equations: d[nitro,t] = —0.470 * zoo * nutrient_nitro_2,
d[zo0,t] = 1.089 * zoo * nutrient_nitro_2

process zoo_nitro_saturation
equations: nutrient_nitro_2 = nitro/(nitro + 0.020)

Table 4 presents the process model that resulted from
this run, which has a form very similar to the ecosys-
tem model that generated the data. The IPM algo-
rithm selected this model structure from 2196 candi-
dates that it considered during search. Some differ-
ences from the model in Table 3 involve parameters
that appear in the shared processes, all of which have
values close to the ‘true’ ones. But the induced model
also includes three extra processes, shown at the bot-
tom of Table 4, that do not occur in the original. One
process states that nitrogen flows into the system at a
constant rate. The other two claim that zooplankton
consumes nitrogen with a limited capacity.

Fortunately, these extra processes have little effect on
the model’s overall behavior. Figure 1 shows that the
predicted trajectories for the three variables are close
to their observed values. In more quantitative terms,
the root mean-squared error for the induced model on
the training data is 0.026 for nitro, 0.085 for phyto
and 0.067 for zoo. These compare favorably with the
errors for the ‘true’ model on the same data, which are
0.024 for nitro, 0.045 for phyto, and 0.043 for zoo.

These results are encouraging, as they demonstrate
that the IPM algorithm can induce a reasonable pro-
cess model from noisy time-series data. However, its
inclusion of unnecessary processes suggests the need

INDUCING PROCESS MODELS

for a pruning method, along with experiments on other
data sets, including ones from actual ecosystems, that
use a standard division into training and test cases.
Such studies may reveal other limitations and suggest
improved algorithms for this important task.

5. A Proposed Research Agenda

Although our initial results with IPM suggest the vi-
ability of inducing process models from observational
data, they leave many questions unanswered. Before
closing, we should discuss some issues that future re-
search in the area should address and consider some
promising approaches that should be explored within
this research agenda.

For example, the IPM algorithm assumes that the
conditions on component processes are correct. Fu-
ture methods should determine from training data the
proper thresholds on conditions specified in generic
processes or even learn which variables should occur in
their conditions. We also need research that extends
model representations in tractable ways. For instance,
variables in scientific models are often associated with
physical objects; encoding such objects and their roles
explicitly could provide further constraints on accept-
able models. We should even consider methods which
can generate explanations that involve at least some
processes with unknown forms. Overall, there remains
considerable room for demonstrating new functionality
in the induction of process models.

Another important issue concerns making robust al-
gorithms for process model induction. Overfitting the
training data can arise in nearly every learning task,
and we need research on ways to guard against this
tendency, especially as we develop algorithms that gen-
erate more complex process models. One avenue would
examine analogs to methods that have proven success-
ful in other induction paradigms. These include tech-
niques for early halting in decision-tree construction
using minimum description length and methods for
postpruning using cross validation. Other techniques
include ensemble methods like boosting and bagging,
though these would reduce the communicability of the
resulting models. In addition, we should explore other
defenses against overfitting specific to process models.

We also need research on ways to further direct the
search for process models. Our IPM algorithm uses
constraints on variable types to this end, but we should
examine other ways to incorporate such knowledge, es-
pecially as we move to more difficult modeling tasks.
One approach would draw on a taxonomy of process
types to organize and limit further the search effort.

Knowledge about the dimensional units of variables
would also constrain model induction, as would the
introduction of knowledge that sums of certain vari-
ables are conserved over time. We should also build
on Bradley et al.’s (2001) use of qualitative patterns to
focus on certain classes of equations. Future research
should consider these and other methods for making
the search for process models more tractable.

An alternative approach to aiding model induction
borrows an idea from work on theory revision. Rather
than constructing a process model from scratch, one
can instead start with a specific model and revise
details to improve its fit to observations. Research
on this topic should explore ways to revise a specific
model’s parameters, change the conditions on its com-
ponent processes, replace these processes with others
that relate the same variables, and even alter the ba-
sic structure of the initial model. Model revision will
require the ability to remove components as well as
add them, but otherwise the same issues arise as in
the basic problem of process model induction.

We have focused here on process models that include
numeric equations, but our research agenda should
also explore techniques for inducing models composed
of qualitative processes (Forbus, 1984). These take a
similar form to quantitative processes, but use propor-
tionalities to describe relations between variables. In
this framework, the processes of exponential growth
and logistic growth in Table 2 both map onto a single
qualitative process which states that d[P,t] is directly
proportional to P. Such models are appropriate for
domains like molecular biology, where scientists often
state their knowledge in qualitative form. Moreover,
qualitative models generally have fewer effective pa-
rameters than quantitative ones, making them useful
for situations with few observations. Many issues that
arise with quantitative models also occur with their
qualitative analogs, so we also need work on this front.

In pursuing this research agenda, we should fol-
low the accepted standards for established induction
paradigms. Thus, papers should make explicit claims
about a method’s abilities and support them with ex-
perimental or theoretical evidence. Ideally, experimen-
tal studies should include a mixture of natural do-
mains to ensure relevance and synthetic domains that
let one vary dimensions of interest. However, the fo-
cus on familiarity and background knowledge recom-
mends studies that involve collaborations with domain
scientists or engineers. Finally, despite the distinctive
nature of process model induction, researchers should
incorporate ideas from other learning tasks and utilize
existing methods as subroutines whenever sensible.

6. Concluding Remarks

In this paper, we proposed a new problem for learn-
ing researchers that addresses the induction of process
models from observations. We defined this task as the
construction of models that combine known compo-
nent processes to explain time series or other continu-
ous data. We considered the challenges posed by pro-
cess model induction and the potential of established
methods to address them, concluding that it demands
research on new induction methods specialized to pro-
cess modeling. We also presented an initial algorithm
of this sort and demonstrated its functionality in a
population dynamics domain, after which we outlined
a research agenda for future work on the topic.

Process models constitute a novel representation of
knowledge that differs from the formalisms tradition-
ally used in machine learning. They are cast in the
same terms as many scientific and engineering models,
which should make them more communicable to prac-
titioners in those fields. However, they have the same
modularity as other formalisms that support learn-
ing, and they provide a clear facility for incorporat-
ing domain knowledge into learning mechanisms. We
maintain that research on process model induction will
broaden the scope of machine learning in significant
ways, and we encourage others to join us in exploring
methods that address this important new problem.

Acknowledgements

The research reported in this paper was supported
in part by NTT Communication Science Laborato-
ries, Nippon Telegraph and Telephone Corporation, in
part by Grant NCC 2-1220 from NASA Ames Research
Center, and in part by EU Grant IST-2000-26469.

References

Bradley, E., Easley, M., & Stolle, R. (2001). Reason-
ing about nonlinear system identification. Artificial
Intelligence, 133, 139 188.

Cohen, S., & Hindmarsh, A. (1996). CVODE: A stiff/
nonstiff ODE solver in C. Computers in Physics, 10,
138-43.

DeJong, G. F. (1994). Learning to plan in continuous
domains. Artificial Intelligence, 64, 71 141.

Dietterich, T. G., (1990). Exploratory research in ma-
chine learning. Machine Learning, 5, 5-10.

Forbus, K. D. (1984). Qualitative process theory. Ar-
tificial Intelligence, 24, 85 168.

LANGLEY, SANCHEZ, TODOROVSKI, AND DZEROSKI

Garrett, S. M., Coghill, G. M., Shrinivasan A., & King
R. D. (in press). Learning qualitative models of
physical and biological systems. In S. Dzeroski & L.
Todorovski (Eds.), Computational discovery of com-
municable knowledge. Berlin: Springer.

Ghahramani, Z. (1998). Learning dynamic Bayesian
networks. In C. L. Giles & M. Gori (Eds.), Adaptive
processing of sequences and data structures. Berlin:
Springer.

Koza, J. R., Mydlowec, W., Lanza, G., Yu, J., &
Keane, M. A. (2001). Reverse engineering and au-
tomatic synthesis of metabolic pathways from ob-
served data using genetic programming. Pacific
Symposium on Biocomputing, 6, 434 445.

Langley, P. (1981). Data-driven discovery of physical
laws. Cognitive Science, 5, 31-54.

Lavrac, N., & Dzeroski, S. (1994). Inductive logic pro-
gramming: Techniques and applications. New York:
Ellis Horwood.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S.
(1986). Explanation-based generalization: A unify-
ing view. Machine Learning, 1, 47 80.

Murray, J. D. (1993). Mathematical biology (2nd ed.).
Berlin: Springer.

Ourston, D., & Mooney, R. (1990). Changing the
rules: A comprehensive approach to theory refine-
ment. Proceedings of the Eighth National Con-
ference on Artificial Intelligence (pp. 815 820).
Boston: AAAI Press.

Pazzani, M. J., Mani, S., & Shankle, W. R. (2001)
Acceptance of rules generated by machine learning
among medical experts. Methods of Information in
Medicine, 40, 380-385.

Poritz, A. B. (1988). Hidden Markov models: A
guided tour. Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing
(pp. 7-13). New York: IEEE Press.

Todorovski, L., & Dzeroski, S. (1997). Declarative bias
in equation discovery. Proceedings of the Fourteenth
International Conference on Machine Learning (pp.
376 384). San Francisco: Morgan Kaufmann.

Washio, T., Motoda, H., & Niwa, Y. (2000). En-
hancing the plausibility of law equation discovery.
Proceedings of the Seventeenth International Con-
ference on Machine Learning (pp. 1127 1134). San
Francisco: Morgan Kaufmann.

