
From Proeedings of the Nineteenth International Confereneon Mahine Learning (2002). Sydney: Morgan Kaufmann.Induing Proess Models from Continuous DataPat Langley langley�isle.orgInstitute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306 USAJavier Sanhez jsanhez�s.stanford.eduComputational Learning Laboratory, Center for the Study of Language and Information,Stanford University, Stanford, CA 94305 USALjup�o Todorovski ljupo.todorovski�ijs.siSa�so D�zeroski saso.dzeroski�ijs.siJo�zef Stefan Institute, Jamova 39, 1000 Ljubljana, SloveniaAbstratIn this paper, we pose a novel researh prob-lem for mahine learning that involves on-struting a proess model from ontinuousdata. We laim that asting learned knowl-edge in terms of proesses with assoiatedequations is desirable for sienti� and en-gineering domains, where suh notations areommonly used. We also argue that exist-ing indution methods are not well suitedto this task, although some tehniques holdpartial solutions. In response, we desribean approah to learning proess models fromtime-series data and illustrate its behavior ina population dynamis domain. In losing,we desribe open issues in proess model in-dution and enourage other researhers totakle this important problem.1. Introdution and MotivationMany sienti� and engineering domains involve on-tinuous variables that hange over time. The inreas-ing availability of data from suh systems presentsboth an opportunity and a hallenge for mahine learn-ing. Suessful appliations of indution methods holdobvious bene�ts, and there exist large literatures onomputational methods for regression and time-seriespredition. But however aurate the preditive mod-els these tehniques indue from data, they usuallymake little ontat with the formalisms and oneptsused by sientists and engineers. And as Pazzani et al.(2001) have shown, experts in some domains will rejeta learning system's output, even when very aurate,unless it makes ontat with their prior knowledge.

Researh on disovering numeri laws (e.g., Langley,1981; Washio et al., 2000) addresses this onern, inthat many sientists �nd equations familiar. However,although the resulting knowledge generalizes beyondthe training data, it is typially desriptive in that itdiretly relates observable variables. In ontrast, mod-els in siene and engineering often provide an explana-tion whih inludes variables, objets, or mehanismsthat are unobserved, but that help predit the behav-ior of observed variables. Moreover, explanations oftenmake use of general onepts or relations that ourin di�erent models. One example is Newton's theoryof gravitation, whih moved beyond Kepler's desrip-tive laws to an explanation of planetary trajetories interms of straight line motion and attrative fore.We laim that explanations in siene and engineer-ing are often stated in terms of generi proesses fromsome domain. We will fous here on a partiular lassof proesses that desribe one or more ausal relationsbetween input variables and output variables. A pro-ess states these relations in terms of di�erential equa-tions (for a proess that involves hange over time) orstati equations (for one that involves instantaneouse�ets). A proess may also inlude onditions, statedas threshold tests on its input variables, that desribewhen it is ative. A proess model onsists of a setof proesses that link observable input variables withobservable output variables, possibly through unob-served theoretial terms.Table 1 shows a simple proess model for the hangesin an ie-water system as a funtion of the heat putinto it. The model inludes three proesses, one (ie-warming) ative when the ie's mass is nonzero andthe system temperature is less than zero, another (ie-melting) when the ie's mass is nonzero and the tem-



2 Langley, Sanhez, Todorovski, and D�zeroskiperature is zero, and a third (water-warming) whenall the ie has melted and the temperature is between100 and zero. The �rst and third proesses inueneonly the temperature, whereas the seond proess af-fets only the masses of ie and water. Given initialonditions (e.g., ie mass = 10, water mass = 0, andtemp = �10) and heat measurements, this model ansimulate hanges over time.1 Note that the model pre-dits the ie-warming proess will be followed by ie-melting and then water-warming, but it does not statethis expliitly, as would empirial laws. Thus, the pro-ess model explains the system's temporal behavior.We maintain that proess models of the sort in Table 1our frequently in siene and engineering, and thatinduing them from data is a worthwhile task for our�eld to address. We an state this task as:� Given: Observations for a set of ontinuous vari-ables as they vary over time;� Given: Generi proesses that speify ausal rela-tions among variables using onditional equations;� Given: Optionally, onstraints on the types of vari-ables involved in eah proess and knowledge aboutthese variables' types;� Find: A spei� proess model that explains theobserved data and predits future data aurately.Note that this formulation distinguishes between thegeneri proesses given as input and the spei� pro-esses in the indued model, whih mention partiularvariables and values for their parameters. Also, wehave allowed for type onstraints on proess variables,whih are available for many domains.We intend this paper as an exploratory researh reportin the sense desribed by Dietterih (1990). Followinghis advie, we state learly a promising new problemfor mahine learning and explore its various faets. Inthe setion that follows, we onsider some hallengesposed by the problem of induing quantitative pro-ess models. Next we review a variety of establishedindution paradigms, onluding that none an be ap-plied diretly to this task, though some hold promisingideas on whih we an build. After this, we desribeone prospetive approah for proess model indutionand illustrate it with some initial results from pop-ulation dynamis. Finally, we lose by suggesting anagenda for future researh on this important topi. Wewill not report extensive experimental results, leavingsuh studies for those who implement this agenda.1Our framework an be viewed readily as a quantitativeversion of Forbus' (1984) qualitative proess theory, fromwhih we have borrowed many ideas.

Table 1. A quantitative proess model of mass and tem-perature hange in an ie-water system.model WaterPhaseChangevariables: temp;heat; ie mass;water massobservables: temp; heat; ie mass;water massproess ie-warmingonditions: ie mass > 0; temp < 0equations: d[temp; t℄ = heat=(0:00206 � ie mass)proess ie-meltingonditions: ie mass > 0; temp == 0equations: d[ie mass; t℄ = �(18 � heat)=6:02,d[water mass; t℄ = (18 � heat)=6:02proess water-warmingonditions: ie mass == 0; water mass > 0;temp >= 0; temp < 100equations: d[temp; t℄ = heat=(0:004184 � water mass)2. Challenges of Proess ModelingWe have laimed that the indution of proess mod-els di�ers from the tasks typially studied in mahinelearning. Thus, before proeeding further, we shouldreview the harateristis that distinguish it from tra-ditional indution problems and that pose researhhallenges. Some harateristis fous on aspets ofthe training data, whereas others involve onstraintson the nature of aquired knowledge.Proess models are designed to haraterize the be-havior of dynamial systems that hange over time,though they an also handle systems in equilibrium.The data produed by suh systems di�er from thosethat arise in most indution tasks in a variety of ways.First, these variables are primarily ontinuous, sinethey represent quantitative measurements of the sys-tem under study. Seond, the observed values are notindependently and identially distributed, sine thoseobserved at later time steps depend on those measuredearlier. Finally, the training data are primarily unsu-pervised, in that they desribe a set of variables thathange over time, with no variable being singled outfor speial attention.We have already noted that proess models are ex-planatory in nature. The proesses themselves arenot observable, and multiple proesses an interat toprodue omplex behavior. Moreover, proess modelsan inlude theoretial variables that are also unob-servable. These harateristis involve the knowledgeaquired during learning, but they have impliationsfor task diÆulty as well. In partiular, induing pro-ess models is a plausible option only for domains thatare omplex enough to require suh explanatory a-ounts. Fortunately, this hallenge is o�set by knowl-



Induing Proess Models 3edge about generi proesses that an serve as ompo-nents of andidate models.Another assumption also makes proess model indu-tion more tratable than it might be otherwise: the dy-namial systems they explain are generally viewed asdeterministi. The observations themselves may wellontain noise, whih an ompliate matters for thisparadigm as it does for others. However, the frame-work posits that proesses themselves are always a-tive whenever their onditions are met and that theirequations have the spei�ed e�ets. Sientists and en-gineers often treat the systems they study as determin-isti, and we will operate under the same assumption.3. Limitations of Existing ApproahesAording to Dietterih (1990), an exploratory re-searh paper should not only de�ne a novel problem,but also show the inability of existing methods to solvethat problem. Thus, we should onsider whether anyestablished learning tehniques an handle indutiveproess modeling. Our disussion will draw on om-ments in the previous setion about the distintiveharateristis of this task.We have argued that methods for equation disovery,although they generate knowledge in formalisms famil-iar to sientists, are not suÆient for our task beausethey produe desriptive summaries of data ratherthan explanations in terms of underlying proesses.A few exeptions to this trend exist, suh as Bradleyet al.'s (2001) work on onstruting di�erential equa-tion models from existing omponents, Todorovski andD�zeroski's (1997) use of ontext-free grammars for gen-erating andidate equations, and Koza et al.'s (2001)method for inferring quantitative metaboli pathways.However, even these e�orts do not ombine knowngeneri proesses into explanatory models, and mostwork on equation disovery is far less relevant.Mainstream methods for supervised learning fall shorton the same front, in that they may develop auratepreditors but fail to make ontat with explanatoryonepts familiar to domain experts. Thus, widelyused algorithms for induing regression trees and mul-tilayer neural networks do not, by themselves, seemsuÆient for indutive proess modeling, nor do othershemes for prediting ontinuous variables, inludingones for time-series analysis. However, this does notmean they annot prove useful in the overall task, aswe will see later with tehniques for equation disovery.Beause we have emphasized the explanatory na-ture of proess models, we should onsider whetherexplanation-based learning (e.g., Mithell et al., 1986)

lends itself to their onstrution. This paradigm alsouses bakground knowledge to aount for observa-tions, but nearly all suh researh has dealt with las-si�ation or problem solving, rather than with pre-diting ontinuous variables.2 Moreover, the standardformulation assumes the training data are supervised,whereas indutive proess modeling deals primarilywith observational data in whih no variable is treatedas speial. Similar points hold for researh on the-ory revision (e.g., Ourston & Mooney, 1990), whihombines indutive learning with domain knowledge,often stated as Horn lause programs that ontaintheoretial terms. Also, this paradigm assumes thatone has an explanatory model at the outset, ratherthan onstruting it from available omponents suhas generi proesses. Thus, both approahes seem likepoor mathes, though we will return to theory revisionwhen we disuss open researh issues.Another paradigm { indutive logi programming(e.g., Lavra� & D�zeroski, 1994) { fares somewhat bet-ter on the task of learning proess models. Thisframework takes advantage of bakground knowledge,stated as Horn lauses and ground literals, to learnfrom training ases. The resulting knowledge is itselfast as a set of Horn lauses, possibly with nonter-minal (i.e., theoretial) symbols, and thus an havean explanatory harater. However, as usually pra-tied, indutive logi programming fouses on super-vised learning for lassi�ation tasks. Moreover, theresearh emphasis has been on generating logial stru-tures rather than numerial ones.3 Thus, the frame-work holds some promise as an approah to indutiveproess modeling, but it requires some revisions andextensions to this end.Beause hidden Markov models (e.g., Poritz, 1988) andesribe systems that hange over time, we should alsoevaluate their relevane to our learning problem. Thestates in suh models are unobservable, whih givesthem an explanatory avor, but typially only onestate an be ative at a time, whereas any number ofproesses an be ative simultaneously. Furthermore,a hidden Markov model requires expliit links thatspeify whih states an follow eah other, rather thanletting this behavior emerge from a set of proesses.Finally, the probabilisti assumptions of Markov mod-els are unneessary for sienti� and engineering do-mains that are deterministi in nature.2DeJong's (1994) work on explanation-based learningfor motor ontrol omes loser to our needs, but theparadigm as a whole seems ill suited.3Garrett et al. (in press) have used this approah toinfer metaboli pathways involving biohemial proesses,but these are qualitative rather than quantitative models.



4 Langley, Sanhez, Todorovski, and D�zeroskiA �nal approah involves learning `dynami Bayesiannetworks' that haraterize how the values of variablesat one time step inuene their values at the next step(e.g., Ghahramani, 1998). Suh models enode theprobabilisti analog for sets of di�erential equations,but they do not organize these equations into pro-esses. Also, work in this paradigm has foused ondisrete variables and, as with hidden Markov mod-els, the probabilisti representation seems inappropri-ate for deterministi proess models. The situationfor dynami Bayes nets is similar to that with logiprograms, in that one might adapt them to supportindution of proess models, but they bring unnees-sary assumptions and mahinery to the task.4. Indutive Proess ModelingAlthough our primary aim here has been to harater-ize the problem of learning proess models, our argu-ments will be more onvining if we an report someinitial results on this task. In this setion, we desribeone approah that we have implemented and reportits behavior on data from the domain of populationdynamis. We will present this approah in the tradi-tional order, �rst disussing a formalism for represent-ing proess models, then onsidering the performaneelement that uses them, and �nally desribing the in-dution method that onstruts models from data.4.1 Representing Proesses and ModelsWe have already seen one example that involves athree-proess model for an ie-water system. To reit-erate, a proess model spei�es a set of proesses thatharaterize quantitative relations among a set of ob-served, and possibly unobserved, variables. Eah pro-ess spei�es zero or more onditions under whih it isative, along with one or more ausal equations thatharaterize the inuene one or more variables exerton another. Although the proesses in a given modelare unordered and an our in parallel, we an orga-nize them into a ausal graph that equates the outputsof some proesses with the inputs of others.Table 2 presents a set of proesses for population dy-namis, whih onerns hanges in speies' populationlevels over time (Murray, 1993). The table ontainsgeneri proesses that serve as bakground knowledgefor learning; unlike spei� proesses, these do notommit to partiular variables or parameter values,but they an indiate onstraints on them. For ex-ample, the proess for exponential growth states thatits variable P must have type population and thatits equation's oeÆient must be nonnegative, with 1as its default value. The bakground knowledge also

Table 2. Seven generi proesses for population dynamiswith onstraints on their variables and parameters.proess exponential growthvariables: Pfpopulationgequations: d[P; t℄ = [0; 1;1℄ � Pproess logisti growthvariables: Pfpopulationgequations: d[P; t℄ = [0; 1;1℄ � P � (1� P=[0; 1;1℄)proess exponential deayvariables: Pfpopulationgequations: d[P; t℄ = �[0; 1;1℄ � Pproess onstant inowvariables: Ifinorgani nutrientgequations: d[I; t℄ = [0; 1;1℄proess onsumptionvariables: P1fpopulationg; P2fpopulationg,nutrient P2fnumbergequations: d[P1; t℄ = [0; 1;1℄ � P1 � nutrient P2,d[P2; t℄ = �[0; 1;1℄ � P1 � nutrient P2proess no saturationvariables: Pfnumberg; nutrient Pfnumbergequations: nutrient P = Pproess saturationvariables: Pfnumberg; nutrient Pfnumbergequations: nutrient P = P=(P + [0; 1;1℄)mutually exlusive: fexponential growth, logisti growthgmutually exlusive: fno saturation, saturationgspei�es that ertain generi proesses, suh as satu-ration and nonsaturation, annot be instantiated withthe same variables. Note that proesses in this domaininlude no onditions, so they are ontinuously ative.The indution system is also given a set of observedvariables, possibly with information about their types.For example, we might observe the dynami behav-ior of an aquati eosystem that involves zooplankton,phytoplankton, and nitrogen. Here the �rst two vari-ables are populations, whereas the third is an inorganinutrient. The training data onsist of measurementsfor all three variables as they hange over time.The result of learning is a proess model like the oneshown in Table 3, whih inludes six spei� instanesof the generi proesses in Table 2. The �rst two pro-esses state that phytoplankton grows in an unlimited(exponential) manner, whereas zooplankton growth islimited by the environment's apaity. The next pro-ess spei�es that phytoplankton onsumes the inor-gani nutrient nitrogen, whih inreases its populationand dereases the amount of nutrient. The fourth pro-ess posits that the onsumption apaity of phyto-planton for nitrogen is unlimited. The last two pro-esses speify that zooplankton's predation on phyto-plankton has limited apaity (that it saturates). This



Induing Proess Models 5Table 3. A proess model for an aquati eosystem.model AquatiEosystemvariables: nitro; phyto; zoo; nutrient nitro; nutrient phytoobservables: nitro; phyto; zooproess phyto exponential growthequations: d[phyto; t℄ = 0:1 � phytoproess zoo logisti growthequations: d[zoo; t℄ = 0:1 � zoo=(1� zoo=1:5)proess phyto nitro onsumptionequations: d[nitro; t℄ = �1 � phyto � nutrient nitro;d[phyto; t℄ = 1 � phyto � nutrient nitroproess phyto nitro no saturationequations: nutrient nitro = nitroproess zoo phyto onsumptionequations: d[phyto; t℄ = �1 � zoo � nutrient phyto;d[zoo; t℄ = 1 � zoo � nutrient phytoproess zoo phyto saturationequations: nutrient phyto = phyto=(phyto+ 0:5)model inorporates two unobservable variables, eahrelated to a population's onsumption apaity, andassumes a losed eosystem with no inow.4.2 Making Preditions with Proess ModelsAny indution system requires some performane el-ement that an utilize knowledge one it has beenlearned. In this ase, we require some interpreter thatan use a quantitative proess model to arry out for-ward simulation that generates a predited time seriesfor eah observable variable. To this end, we haveimplemented a module that invokes established meth-ods for solving �rst-order di�erential equations, whihare available in publi-domain software (e.g., Cohen &Hindmarsh, 1996), along with simple arithmeti oper-ations for handling instantaneous equations. For thispurpose, we must speify initial values for eah ob-servable variable and the size of the time step, whihdetermines the temporal resolution of the simulation.Suh an approah suÆes for prediting the e�ets ofindividual di�erential equations, but a proess modelmay involve hains of suh equations. Thus, for eahproess P , the performane element solves the assoi-ated instantaneous and di�erential equations for theurrent time step to determine new values for P 's out-put variables, uses these values to solve the equationsassoiated with any proesses that our in the nextstep on the ausal hain, and so on, until reahing thehain's �nal variables. The interpreter utilizes only a-tive proesses on eah time step, that is, those whoseonditions are met. When multiple ative proessesinuene the same variable, the system makes the sim-plifying assumption that their e�ets are additive.

4.3 Construting a Model from ComponentsReall that our learning task involves onstruting aproess model from a known set of generi proesses,whih we assume omes from a domain expert, andtime-series data about the quantitative variables onewants to explain. We have implemented an initial sys-tem, whih we will all IPM (for Indutive ProessModeler) that arries out onstrained searh throughthe spae of proess models for one that aounts forthese observations. The searh mehanism operates infour suessive stages.The �rst step involves �nding all ways to instantiatethe known generi proesses with spei� variables.For eah generi proess, IPM simply heks every pos-sible assignment of observable variables to generi vari-ables mentioned in the proess, retaining only assign-ments that satisfy the type onstraints. For example,the variables for zooplankton (zoo) and phytoplank-ton (phyto) have type population, so they math thegeneri variable P in the proess exponential growth,whereas nitrogen has type inorgani nutrient, so itmathes I in the proess onstant inow. The resultis a set of instantiated proesses that speify partiu-lar variables but still lak parameter values. Beause amodel an refer to theoretial variables, this step alsogenerates instantiated proesses that inorporate oneor more suh terms.In the seond stage, IPM ombines subsets of these in-stantiated proesses into generi models , eah of whihspei�es an explanatory struture, muh like a prooftree. One onstraint here is that the andidate modelsmust onsist of onneted graphs, on the assumptionthat the data are produed by a single system. An-other forbids mapping any spei� variable onto morethan one generi variable in a given proess. We alsospeify the maximum number of proesses that anonnet any two variables and the maximum numberof proesses in a model. Within these boundaries, IPMarries out a bakward-haining searh for all generimodels, sine this sheme is guaranteed to �nd all on-neted graphs. This searh requires some uni�ation,in that it must link unobservable variables that areinput by one proess to the output of others.The third step fouses on induing values for the pa-rameter in eah generi model. To this end, IPM allson LaGramge (Todorovski & D�zeroski, 1997), whihinorporates a delarative bias to onstrain searh fordi�erential equation models. This program uses es-tablished methods for optimization searh to �t theparameters in equations, but, sine the details haveappeared elsewhere, we will not reount them here.More important, beause the delarative bias takes
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Figure 1. Observations (jagged lines) generated by the pro-ess model in Table 3, with noise added, and preditions(smooth lines) from the indued model in Table 4.the form of a ontext-free grammar, IPM translateseah generi model into suh a grammar and passes itto LaGramge. These grammars inlude one rewriterule for eah proess-equation pair, with eah nonter-minal symbol ourring in only one rule. This does nottake full advantage of LaGramge's ability to handlemore general grammars, but IPM's searh through thespae of generi models serves an analogous funtion.For eah generi model, LaGramge returns a spei�model with spei� values for eah parameter, alongwith a sore for eah suh andidate. This sore re-ets the overall di�erene between the model's pre-ditions and observations, stated as the sum of thesquared errors over all observed variables. In the �nalstep, IPM simply selets the spei� model with thebest sore and halts upon returning it.4.4 Learning a Population Dynamis ModelTo demonstrate IPM's funtionality at induing pro-ess models, we deided to run it on syntheti datafor a known system. For this purpose, we used theaquati eosystem model in Table 3 to generate ob-servations for 100 time steps, using the initial valuesnitrogen = 1:0, phyto = 0:01, and zoo = 0:01 for theobservable variables.To make these data more realisti, we introdued noiseby replaing eah `true' value x with x� (1+r�0:05),where we sampled r from a Gaussian distribution withmean 0 and standard deviation 1. This produes noiserelative in size to the atual value, giving the obser-vations shown in Figure 1. We then ran the programon the noisy data, giving it type onstraints and thegeneri proesses in Table 2 as bakground knowledge.

Table 4. Eosystem model indued by the IPM algorithm.model AquatiEosystemvariables: nitro; phyto; zoo; nutrient phyto;nutrient nitro 1; nutrient nitro 2observables: nitro; phyto; zooproess phyto exponential growthequations: d[phyto; t℄ = 0:089 � phytoproess zoo logisti growthequations: d[zoo; t℄ = 0:013 � zoo=(1 � zoo=0:469)proess phyto nitro onsumptionequations: d[nitro; t℄ = �1:174�phyto�nutrient nitro 1;d[phyto; t℄ = 1:058 � phyto � nutrient nitro 1proess phyto nitro no saturationequations: nutrient nitro 1 = nitroproess zoo phyto onsumptionequations: d[phyto; t℄ = �0:986 � zoo � nutrient phyto;d[zoo; t℄ = 1:089 � zoo � nutrient phytoproess zoo phyto saturationequations: nutrient phyto = phyto=(phyto+ 0:487)proess nitro onstant inowequations: d[nitro; t℄ = 0:067proess zoo nitro onsumptionequations: d[nitro; t℄ = �0:470 � zoo � nutrient nitro 2;d[zoo; t℄ = 1:089 � zoo � nutrient nitro 2proess zoo nitro saturationequations: nutrient nitro 2 = nitro=(nitro+ 0:020)Table 4 presents the proess model that resulted fromthis run, whih has a form very similar to the eosys-tem model that generated the data. The IPM algo-rithm seleted this model struture from 2196 andi-dates that it onsidered during searh. Some di�er-enes from the model in Table 3 involve parametersthat appear in the shared proesses, all of whih havevalues lose to the `true' ones. But the indued modelalso inludes three extra proesses, shown at the bot-tom of Table 4, that do not our in the original. Oneproess states that nitrogen ows into the system at aonstant rate. The other two laim that zooplanktononsumes nitrogen with a limited apaity.Fortunately, these extra proesses have little e�et onthe model's overall behavior. Figure 1 shows that thepredited trajetories for the three variables are loseto their observed values. In more quantitative terms,the root mean-squared error for the indued model onthe training data is 0.026 for nitro, 0.085 for phytoand 0.067 for zoo. These ompare favorably with theerrors for the `true' model on the same data, whih are0.024 for nitro, 0.045 for phyto, and 0.043 for zoo.These results are enouraging, as they demonstratethat the IPM algorithm an indue a reasonable pro-ess model from noisy time-series data. However, itsinlusion of unneessary proesses suggests the need



Induing Proess Models 7for a pruning method, along with experiments on otherdata sets, inluding ones from atual eosystems, thatuse a standard division into training and test ases.Suh studies may reveal other limitations and suggestimproved algorithms for this important task.5. A Proposed Researh AgendaAlthough our initial results with IPM suggest the vi-ability of induing proess models from observationaldata, they leave many questions unanswered. Beforelosing, we should disuss some issues that future re-searh in the area should address and onsider somepromising approahes that should be explored withinthis researh agenda.For example, the IPM algorithm assumes that theonditions on omponent proesses are orret. Fu-ture methods should determine from training data theproper thresholds on onditions spei�ed in generiproesses or even learn whih variables should our intheir onditions. We also need researh that extendsmodel representations in tratable ways. For instane,variables in sienti� models are often assoiated withphysial objets; enoding suh objets and their rolesexpliitly ould provide further onstraints on aept-able models. We should even onsider methods whihan generate explanations that involve at least someproesses with unknown forms. Overall, there remainsonsiderable room for demonstrating new funtionalityin the indution of proess models.Another important issue onerns making robust al-gorithms for proess model indution. Over�tting thetraining data an arise in nearly every learning task,and we need researh on ways to guard against thistendeny, espeially as we develop algorithms that gen-erate more omplex proess models. One avenue wouldexamine analogs to methods that have proven suess-ful in other indution paradigms. These inlude teh-niques for early halting in deision-tree onstrutionusing minimum desription length and methods forpostpruning using ross validation. Other tehniquesinlude ensemble methods like boosting and bagging,though these would redue the ommuniability of theresulting models. In addition, we should explore otherdefenses against over�tting spei� to proess models.We also need researh on ways to further diret thesearh for proess models. Our IPM algorithm usesonstraints on variable types to this end, but we shouldexamine other ways to inorporate suh knowledge, es-peially as we move to more diÆult modeling tasks.One approah would draw on a taxonomy of proesstypes to organize and limit further the searh e�ort.

Knowledge about the dimensional units of variableswould also onstrain model indution, as would theintrodution of knowledge that sums of ertain vari-ables are onserved over time. We should also buildon Bradley et al.'s (2001) use of qualitative patterns tofous on ertain lasses of equations. Future researhshould onsider these and other methods for makingthe searh for proess models more tratable.An alternative approah to aiding model indutionborrows an idea from work on theory revision. Ratherthan onstruting a proess model from srath, onean instead start with a spei� model and revisedetails to improve its �t to observations. Researhon this topi should explore ways to revise a spei�model's parameters, hange the onditions on its om-ponent proesses, replae these proesses with othersthat relate the same variables, and even alter the ba-si struture of the initial model. Model revision willrequire the ability to remove omponents as well asadd them, but otherwise the same issues arise as inthe basi problem of proess model indution.We have foused here on proess models that inludenumeri equations, but our researh agenda shouldalso explore tehniques for induing models omposedof qualitative proesses (Forbus, 1984). These take asimilar form to quantitative proesses, but use propor-tionalities to desribe relations between variables. Inthis framework, the proesses of exponential growthand logisti growth in Table 2 both map onto a singlequalitative proess whih states that d[P; t℄ is diretlyproportional to P . Suh models are appropriate fordomains like moleular biology, where sientists oftenstate their knowledge in qualitative form. Moreover,qualitative models generally have fewer e�etive pa-rameters than quantitative ones, making them usefulfor situations with few observations. Many issues thatarise with quantitative models also our with theirqualitative analogs, so we also need work on this front.In pursuing this researh agenda, we should fol-low the aepted standards for established indutionparadigms. Thus, papers should make expliit laimsabout a method's abilities and support them with ex-perimental or theoretial evidene. Ideally, experimen-tal studies should inlude a mixture of natural do-mains to ensure relevane and syntheti domains thatlet one vary dimensions of interest. However, the fo-us on familiarity and bakground knowledge reom-mends studies that involve ollaborations with domainsientists or engineers. Finally, despite the distintivenature of proess model indution, researhers shouldinorporate ideas from other learning tasks and utilizeexisting methods as subroutines whenever sensible.



8 Langley, Sanhez, Todorovski, and D�zeroski6. Conluding RemarksIn this paper, we proposed a new problem for learn-ing researhers that addresses the indution of proessmodels from observations. We de�ned this task as theonstrution of models that ombine known ompo-nent proesses to explain time series or other ontinu-ous data. We onsidered the hallenges posed by pro-ess model indution and the potential of establishedmethods to address them, onluding that it demandsresearh on new indution methods speialized to pro-ess modeling. We also presented an initial algorithmof this sort and demonstrated its funtionality in apopulation dynamis domain, after whih we outlineda researh agenda for future work on the topi.Proess models onstitute a novel representation ofknowledge that di�ers from the formalisms tradition-ally used in mahine learning. They are ast in thesame terms as many sienti� and engineering models,whih should make them more ommuniable to pra-titioners in those �elds. However, they have the samemodularity as other formalisms that support learn-ing, and they provide a lear faility for inorporat-ing domain knowledge into learning mehanisms. Wemaintain that researh on proess model indution willbroaden the sope of mahine learning in signi�antways, and we enourage others to join us in exploringmethods that address this important new problem.AknowledgementsThe researh reported in this paper was supportedin part by NTT Communiation Siene Laborato-ries, Nippon Telegraph and Telephone Corporation, inpart by Grant NCC 2-1220 from NASA Ames ResearhCenter, and in part by EU Grant IST-2000-26469.ReferenesBradley, E., Easley, M., & Stolle, R. (2001). Reason-ing about nonlinear system identi�ation. Arti�ialIntelligene, 133 , 139{188.Cohen, S., & Hindmarsh, A. (1996). CVODE: A sti�/nonsti� ODE solver in C. Computers in Physis , 10 ,138{43.DeJong, G. F. (1994). Learning to plan in ontinuousdomains. Arti�ial Intelligene, 64 , 71{141.Dietterih, T. G., (1990). Exploratory researh in ma-hine learning. Mahine Learning , 5 , 5{10.Forbus, K. D. (1984). Qualitative proess theory. Ar-ti�ial Intelligene, 24 , 85{168.
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