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tIn this paper, we pose a novel resear
h prob-lem for ma
hine learning that involves 
on-stru
ting a pro
ess model from 
ontinuousdata. We 
laim that 
asting learned knowl-edge in terms of pro
esses with asso
iatedequations is desirable for s
ienti�
 and en-gineering domains, where su
h notations are
ommonly used. We also argue that exist-ing indu
tion methods are not well suitedto this task, although some te
hniques holdpartial solutions. In response, we des
ribean approa
h to learning pro
ess models fromtime-series data and illustrate its behavior ina population dynami
s domain. In 
losing,we des
ribe open issues in pro
ess model in-du
tion and en
ourage other resear
hers tota
kle this important problem.1. Introdu
tion and MotivationMany s
ienti�
 and engineering domains involve 
on-tinuous variables that 
hange over time. The in
reas-ing availability of data from su
h systems presentsboth an opportunity and a 
hallenge for ma
hine learn-ing. Su

essful appli
ations of indu
tion methods holdobvious bene�ts, and there exist large literatures on
omputational methods for regression and time-seriespredi
tion. But however a

urate the predi
tive mod-els these te
hniques indu
e from data, they usuallymake little 
onta
t with the formalisms and 
on
eptsused by s
ientists and engineers. And as Pazzani et al.(2001) have shown, experts in some domains will reje
ta learning system's output, even when very a

urate,unless it makes 
onta
t with their prior knowledge.

Resear
h on dis
overing numeri
 laws (e.g., Langley,1981; Washio et al., 2000) addresses this 
on
ern, inthat many s
ientists �nd equations familiar. However,although the resulting knowledge generalizes beyondthe training data, it is typi
ally des
riptive in that itdire
tly relates observable variables. In 
ontrast, mod-els in s
ien
e and engineering often provide an explana-tion whi
h in
ludes variables, obje
ts, or me
hanismsthat are unobserved, but that help predi
t the behav-ior of observed variables. Moreover, explanations oftenmake use of general 
on
epts or relations that o

urin di�erent models. One example is Newton's theoryof gravitation, whi
h moved beyond Kepler's des
rip-tive laws to an explanation of planetary traje
tories interms of straight line motion and attra
tive for
e.We 
laim that explanations in s
ien
e and engineer-ing are often stated in terms of generi
 pro
esses fromsome domain. We will fo
us here on a parti
ular 
lassof pro
esses that des
ribe one or more 
ausal relationsbetween input variables and output variables. A pro-
ess states these relations in terms of di�erential equa-tions (for a pro
ess that involves 
hange over time) orstati
 equations (for one that involves instantaneouse�e
ts). A pro
ess may also in
lude 
onditions, statedas threshold tests on its input variables, that des
ribewhen it is a
tive. A pro
ess model 
onsists of a setof pro
esses that link observable input variables withobservable output variables, possibly through unob-served theoreti
al terms.Table 1 shows a simple pro
ess model for the 
hangesin an i
e-water system as a fun
tion of the heat putinto it. The model in
ludes three pro
esses, one (i
e-warming) a
tive when the i
e's mass is nonzero andthe system temperature is less than zero, another (i
e-melting) when the i
e's mass is nonzero and the tem-
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hez, Todorovski, and D�zeroskiperature is zero, and a third (water-warming) whenall the i
e has melted and the temperature is between100 and zero. The �rst and third pro
esses in
uen
eonly the temperature, whereas the se
ond pro
ess af-fe
ts only the masses of i
e and water. Given initial
onditions (e.g., i
e mass = 10, water mass = 0, andtemp = �10) and heat measurements, this model 
ansimulate 
hanges over time.1 Note that the model pre-di
ts the i
e-warming pro
ess will be followed by i
e-melting and then water-warming, but it does not statethis expli
itly, as would empiri
al laws. Thus, the pro-
ess model explains the system's temporal behavior.We maintain that pro
ess models of the sort in Table 1o

ur frequently in s
ien
e and engineering, and thatindu
ing them from data is a worthwhile task for our�eld to address. We 
an state this task as:� Given: Observations for a set of 
ontinuous vari-ables as they vary over time;� Given: Generi
 pro
esses that spe
ify 
ausal rela-tions among variables using 
onditional equations;� Given: Optionally, 
onstraints on the types of vari-ables involved in ea
h pro
ess and knowledge aboutthese variables' types;� Find: A spe
i�
 pro
ess model that explains theobserved data and predi
ts future data a

urately.Note that this formulation distinguishes between thegeneri
 pro
esses given as input and the spe
i�
 pro-
esses in the indu
ed model, whi
h mention parti
ularvariables and values for their parameters. Also, wehave allowed for type 
onstraints on pro
ess variables,whi
h are available for many domains.We intend this paper as an exploratory resear
h reportin the sense des
ribed by Dietteri
h (1990). Followinghis advi
e, we state 
learly a promising new problemfor ma
hine learning and explore its various fa
ets. Inthe se
tion that follows, we 
onsider some 
hallengesposed by the problem of indu
ing quantitative pro-
ess models. Next we review a variety of establishedindu
tion paradigms, 
on
luding that none 
an be ap-plied dire
tly to this task, though some hold promisingideas on whi
h we 
an build. After this, we des
ribeone prospe
tive approa
h for pro
ess model indu
tionand illustrate it with some initial results from pop-ulation dynami
s. Finally, we 
lose by suggesting anagenda for future resear
h on this important topi
. Wewill not report extensive experimental results, leavingsu
h studies for those who implement this agenda.1Our framework 
an be viewed readily as a quantitativeversion of Forbus' (1984) qualitative pro
ess theory, fromwhi
h we have borrowed many ideas.

Table 1. A quantitative pro
ess model of mass and tem-perature 
hange in an i
e-water system.model WaterPhaseChangevariables: temp;heat; i
e mass;water massobservables: temp; heat; i
e mass;water masspro
ess i
e-warming
onditions: i
e mass > 0; temp < 0equations: d[temp; t℄ = heat=(0:00206 � i
e mass)pro
ess i
e-melting
onditions: i
e mass > 0; temp == 0equations: d[i
e mass; t℄ = �(18 � heat)=6:02,d[water mass; t℄ = (18 � heat)=6:02pro
ess water-warming
onditions: i
e mass == 0; water mass > 0;temp >= 0; temp < 100equations: d[temp; t℄ = heat=(0:004184 � water mass)2. Challenges of Pro
ess ModelingWe have 
laimed that the indu
tion of pro
ess mod-els di�ers from the tasks typi
ally studied in ma
hinelearning. Thus, before pro
eeding further, we shouldreview the 
hara
teristi
s that distinguish it from tra-ditional indu
tion problems and that pose resear
h
hallenges. Some 
hara
teristi
s fo
us on aspe
ts ofthe training data, whereas others involve 
onstraintson the nature of a
quired knowledge.Pro
ess models are designed to 
hara
terize the be-havior of dynami
al systems that 
hange over time,though they 
an also handle systems in equilibrium.The data produ
ed by su
h systems di�er from thosethat arise in most indu
tion tasks in a variety of ways.First, these variables are primarily 
ontinuous, sin
ethey represent quantitative measurements of the sys-tem under study. Se
ond, the observed values are notindependently and identi
ally distributed, sin
e thoseobserved at later time steps depend on those measuredearlier. Finally, the training data are primarily unsu-pervised, in that they des
ribe a set of variables that
hange over time, with no variable being singled outfor spe
ial attention.We have already noted that pro
ess models are ex-planatory in nature. The pro
esses themselves arenot observable, and multiple pro
esses 
an intera
t toprodu
e 
omplex behavior. Moreover, pro
ess models
an in
lude theoreti
al variables that are also unob-servable. These 
hara
teristi
s involve the knowledgea
quired during learning, but they have impli
ationsfor task diÆ
ulty as well. In parti
ular, indu
ing pro-
ess models is a plausible option only for domains thatare 
omplex enough to require su
h explanatory a
-
ounts. Fortunately, this 
hallenge is o�set by knowl-
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 pro
esses that 
an serve as 
ompo-nents of 
andidate models.Another assumption also makes pro
ess model indu
-tion more tra
table than it might be otherwise: the dy-nami
al systems they explain are generally viewed asdeterministi
. The observations themselves may well
ontain noise, whi
h 
an 
ompli
ate matters for thisparadigm as it does for others. However, the frame-work posits that pro
esses themselves are always a
-tive whenever their 
onditions are met and that theirequations have the spe
i�ed e�e
ts. S
ientists and en-gineers often treat the systems they study as determin-isti
, and we will operate under the same assumption.3. Limitations of Existing Approa
hesA

ording to Dietteri
h (1990), an exploratory re-sear
h paper should not only de�ne a novel problem,but also show the inability of existing methods to solvethat problem. Thus, we should 
onsider whether anyestablished learning te
hniques 
an handle indu
tivepro
ess modeling. Our dis
ussion will draw on 
om-ments in the previous se
tion about the distin
tive
hara
teristi
s of this task.We have argued that methods for equation dis
overy,although they generate knowledge in formalisms famil-iar to s
ientists, are not suÆ
ient for our task be
ausethey produ
e des
riptive summaries of data ratherthan explanations in terms of underlying pro
esses.A few ex
eptions to this trend exist, su
h as Bradleyet al.'s (2001) work on 
onstru
ting di�erential equa-tion models from existing 
omponents, Todorovski andD�zeroski's (1997) use of 
ontext-free grammars for gen-erating 
andidate equations, and Koza et al.'s (2001)method for inferring quantitative metaboli
 pathways.However, even these e�orts do not 
ombine knowngeneri
 pro
esses into explanatory models, and mostwork on equation dis
overy is far less relevant.Mainstream methods for supervised learning fall shorton the same front, in that they may develop a

uratepredi
tors but fail to make 
onta
t with explanatory
on
epts familiar to domain experts. Thus, widelyused algorithms for indu
ing regression trees and mul-tilayer neural networks do not, by themselves, seemsuÆ
ient for indu
tive pro
ess modeling, nor do others
hemes for predi
ting 
ontinuous variables, in
ludingones for time-series analysis. However, this does notmean they 
annot prove useful in the overall task, aswe will see later with te
hniques for equation dis
overy.Be
ause we have emphasized the explanatory na-ture of pro
ess models, we should 
onsider whetherexplanation-based learning (e.g., Mit
hell et al., 1986)

lends itself to their 
onstru
tion. This paradigm alsouses ba
kground knowledge to a

ount for observa-tions, but nearly all su
h resear
h has dealt with 
las-si�
ation or problem solving, rather than with pre-di
ting 
ontinuous variables.2 Moreover, the standardformulation assumes the training data are supervised,whereas indu
tive pro
ess modeling deals primarilywith observational data in whi
h no variable is treatedas spe
ial. Similar points hold for resear
h on the-ory revision (e.g., Ourston & Mooney, 1990), whi
h
ombines indu
tive learning with domain knowledge,often stated as Horn 
lause programs that 
ontaintheoreti
al terms. Also, this paradigm assumes thatone has an explanatory model at the outset, ratherthan 
onstru
ting it from available 
omponents su
has generi
 pro
esses. Thus, both approa
hes seem likepoor mat
hes, though we will return to theory revisionwhen we dis
uss open resear
h issues.Another paradigm { indu
tive logi
 programming(e.g., Lavra�
 & D�zeroski, 1994) { fares somewhat bet-ter on the task of learning pro
ess models. Thisframework takes advantage of ba
kground knowledge,stated as Horn 
lauses and ground literals, to learnfrom training 
ases. The resulting knowledge is itself
ast as a set of Horn 
lauses, possibly with nonter-minal (i.e., theoreti
al) symbols, and thus 
an havean explanatory 
hara
ter. However, as usually pra
-ti
ed, indu
tive logi
 programming fo
uses on super-vised learning for 
lassi�
ation tasks. Moreover, theresear
h emphasis has been on generating logi
al stru
-tures rather than numeri
al ones.3 Thus, the frame-work holds some promise as an approa
h to indu
tivepro
ess modeling, but it requires some revisions andextensions to this end.Be
ause hidden Markov models (e.g., Poritz, 1988) 
andes
ribe systems that 
hange over time, we should alsoevaluate their relevan
e to our learning problem. Thestates in su
h models are unobservable, whi
h givesthem an explanatory 
avor, but typi
ally only onestate 
an be a
tive at a time, whereas any number ofpro
esses 
an be a
tive simultaneously. Furthermore,a hidden Markov model requires expli
it links thatspe
ify whi
h states 
an follow ea
h other, rather thanletting this behavior emerge from a set of pro
esses.Finally, the probabilisti
 assumptions of Markov mod-els are unne
essary for s
ienti�
 and engineering do-mains that are deterministi
 in nature.2DeJong's (1994) work on explanation-based learningfor motor 
ontrol 
omes 
loser to our needs, but theparadigm as a whole seems ill suited.3Garrett et al. (in press) have used this approa
h toinfer metaboli
 pathways involving bio
hemi
al pro
esses,but these are qualitative rather than quantitative models.
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h involves learning `dynami
 Bayesiannetworks' that 
hara
terize how the values of variablesat one time step in
uen
e their values at the next step(e.g., Ghahramani, 1998). Su
h models en
ode theprobabilisti
 analog for sets of di�erential equations,but they do not organize these equations into pro-
esses. Also, work in this paradigm has fo
used ondis
rete variables and, as with hidden Markov mod-els, the probabilisti
 representation seems inappropri-ate for deterministi
 pro
ess models. The situationfor dynami
 Bayes nets is similar to that with logi
programs, in that one might adapt them to supportindu
tion of pro
ess models, but they bring unne
es-sary assumptions and ma
hinery to the task.4. Indu
tive Pro
ess ModelingAlthough our primary aim here has been to 
hara
ter-ize the problem of learning pro
ess models, our argu-ments will be more 
onvin
ing if we 
an report someinitial results on this task. In this se
tion, we des
ribeone approa
h that we have implemented and reportits behavior on data from the domain of populationdynami
s. We will present this approa
h in the tradi-tional order, �rst dis
ussing a formalism for represent-ing pro
ess models, then 
onsidering the performan
eelement that uses them, and �nally des
ribing the in-du
tion method that 
onstru
ts models from data.4.1 Representing Pro
esses and ModelsWe have already seen one example that involves athree-pro
ess model for an i
e-water system. To reit-erate, a pro
ess model spe
i�es a set of pro
esses that
hara
terize quantitative relations among a set of ob-served, and possibly unobserved, variables. Ea
h pro-
ess spe
i�es zero or more 
onditions under whi
h it isa
tive, along with one or more 
ausal equations that
hara
terize the in
uen
e one or more variables exerton another. Although the pro
esses in a given modelare unordered and 
an o

ur in parallel, we 
an orga-nize them into a 
ausal graph that equates the outputsof some pro
esses with the inputs of others.Table 2 presents a set of pro
esses for population dy-nami
s, whi
h 
on
erns 
hanges in spe
ies' populationlevels over time (Murray, 1993). The table 
ontainsgeneri
 pro
esses that serve as ba
kground knowledgefor learning; unlike spe
i�
 pro
esses, these do not
ommit to parti
ular variables or parameter values,but they 
an indi
ate 
onstraints on them. For ex-ample, the pro
ess for exponential growth states thatits variable P must have type population and thatits equation's 
oeÆ
ient must be nonnegative, with 1as its default value. The ba
kground knowledge also

Table 2. Seven generi
 pro
esses for population dynami
swith 
onstraints on their variables and parameters.pro
ess exponential growthvariables: Pfpopulationgequations: d[P; t℄ = [0; 1;1℄ � Ppro
ess logisti
 growthvariables: Pfpopulationgequations: d[P; t℄ = [0; 1;1℄ � P � (1� P=[0; 1;1℄)pro
ess exponential de
ayvariables: Pfpopulationgequations: d[P; t℄ = �[0; 1;1℄ � Ppro
ess 
onstant in
owvariables: Ifinorgani
 nutrientgequations: d[I; t℄ = [0; 1;1℄pro
ess 
onsumptionvariables: P1fpopulationg; P2fpopulationg,nutrient P2fnumbergequations: d[P1; t℄ = [0; 1;1℄ � P1 � nutrient P2,d[P2; t℄ = �[0; 1;1℄ � P1 � nutrient P2pro
ess no saturationvariables: Pfnumberg; nutrient Pfnumbergequations: nutrient P = Ppro
ess saturationvariables: Pfnumberg; nutrient Pfnumbergequations: nutrient P = P=(P + [0; 1;1℄)mutually ex
lusive: fexponential growth, logisti
 growthgmutually ex
lusive: fno saturation, saturationgspe
i�es that 
ertain generi
 pro
esses, su
h as satu-ration and nonsaturation, 
annot be instantiated withthe same variables. Note that pro
esses in this domainin
lude no 
onditions, so they are 
ontinuously a
tive.The indu
tion system is also given a set of observedvariables, possibly with information about their types.For example, we might observe the dynami
 behav-ior of an aquati
 e
osystem that involves zooplankton,phytoplankton, and nitrogen. Here the �rst two vari-ables are populations, whereas the third is an inorgani
nutrient. The training data 
onsist of measurementsfor all three variables as they 
hange over time.The result of learning is a pro
ess model like the oneshown in Table 3, whi
h in
ludes six spe
i�
 instan
esof the generi
 pro
esses in Table 2. The �rst two pro-
esses state that phytoplankton grows in an unlimited(exponential) manner, whereas zooplankton growth islimited by the environment's 
apa
ity. The next pro-
ess spe
i�es that phytoplankton 
onsumes the inor-gani
 nutrient nitrogen, whi
h in
reases its populationand de
reases the amount of nutrient. The fourth pro-
ess posits that the 
onsumption 
apa
ity of phyto-planton for nitrogen is unlimited. The last two pro-
esses spe
ify that zooplankton's predation on phyto-plankton has limited 
apa
ity (that it saturates). This



Indu
ing Pro
ess Models 5Table 3. A pro
ess model for an aquati
 e
osystem.model Aquati
E
osystemvariables: nitro; phyto; zoo; nutrient nitro; nutrient phytoobservables: nitro; phyto; zoopro
ess phyto exponential growthequations: d[phyto; t℄ = 0:1 � phytopro
ess zoo logisti
 growthequations: d[zoo; t℄ = 0:1 � zoo=(1� zoo=1:5)pro
ess phyto nitro 
onsumptionequations: d[nitro; t℄ = �1 � phyto � nutrient nitro;d[phyto; t℄ = 1 � phyto � nutrient nitropro
ess phyto nitro no saturationequations: nutrient nitro = nitropro
ess zoo phyto 
onsumptionequations: d[phyto; t℄ = �1 � zoo � nutrient phyto;d[zoo; t℄ = 1 � zoo � nutrient phytopro
ess zoo phyto saturationequations: nutrient phyto = phyto=(phyto+ 0:5)model in
orporates two unobservable variables, ea
hrelated to a population's 
onsumption 
apa
ity, andassumes a 
losed e
osystem with no in
ow.4.2 Making Predi
tions with Pro
ess ModelsAny indu
tion system requires some performan
e el-ement that 
an utilize knowledge on
e it has beenlearned. In this 
ase, we require some interpreter that
an use a quantitative pro
ess model to 
arry out for-ward simulation that generates a predi
ted time seriesfor ea
h observable variable. To this end, we haveimplemented a module that invokes established meth-ods for solving �rst-order di�erential equations, whi
hare available in publi
-domain software (e.g., Cohen &Hindmarsh, 1996), along with simple arithmeti
 oper-ations for handling instantaneous equations. For thispurpose, we must spe
ify initial values for ea
h ob-servable variable and the size of the time step, whi
hdetermines the temporal resolution of the simulation.Su
h an approa
h suÆ
es for predi
ting the e�e
ts ofindividual di�erential equations, but a pro
ess modelmay involve 
hains of su
h equations. Thus, for ea
hpro
ess P , the performan
e element solves the asso
i-ated instantaneous and di�erential equations for the
urrent time step to determine new values for P 's out-put variables, uses these values to solve the equationsasso
iated with any pro
esses that o

ur in the nextstep on the 
ausal 
hain, and so on, until rea
hing the
hain's �nal variables. The interpreter utilizes only a
-tive pro
esses on ea
h time step, that is, those whose
onditions are met. When multiple a
tive pro
essesin
uen
e the same variable, the system makes the sim-plifying assumption that their e�e
ts are additive.

4.3 Constru
ting a Model from ComponentsRe
all that our learning task involves 
onstru
ting apro
ess model from a known set of generi
 pro
esses,whi
h we assume 
omes from a domain expert, andtime-series data about the quantitative variables onewants to explain. We have implemented an initial sys-tem, whi
h we will 
all IPM (for Indu
tive Pro
essModeler) that 
arries out 
onstrained sear
h throughthe spa
e of pro
ess models for one that a

ounts forthese observations. The sear
h me
hanism operates infour su

essive stages.The �rst step involves �nding all ways to instantiatethe known generi
 pro
esses with spe
i�
 variables.For ea
h generi
 pro
ess, IPM simply 
he
ks every pos-sible assignment of observable variables to generi
 vari-ables mentioned in the pro
ess, retaining only assign-ments that satisfy the type 
onstraints. For example,the variables for zooplankton (zoo) and phytoplank-ton (phyto) have type population, so they mat
h thegeneri
 variable P in the pro
ess exponential growth,whereas nitrogen has type inorgani
 nutrient, so itmat
hes I in the pro
ess 
onstant in
ow. The resultis a set of instantiated pro
esses that spe
ify parti
u-lar variables but still la
k parameter values. Be
ause amodel 
an refer to theoreti
al variables, this step alsogenerates instantiated pro
esses that in
orporate oneor more su
h terms.In the se
ond stage, IPM 
ombines subsets of these in-stantiated pro
esses into generi
 models , ea
h of whi
hspe
i�es an explanatory stru
ture, mu
h like a prooftree. One 
onstraint here is that the 
andidate modelsmust 
onsist of 
onne
ted graphs, on the assumptionthat the data are produ
ed by a single system. An-other forbids mapping any spe
i�
 variable onto morethan one generi
 variable in a given pro
ess. We alsospe
ify the maximum number of pro
esses that 
an
onne
t any two variables and the maximum numberof pro
esses in a model. Within these boundaries, IPM
arries out a ba
kward-
haining sear
h for all generi
models, sin
e this s
heme is guaranteed to �nd all 
on-ne
ted graphs. This sear
h requires some uni�
ation,in that it must link unobservable variables that areinput by one pro
ess to the output of others.The third step fo
uses on indu
ing values for the pa-rameter in ea
h generi
 model. To this end, IPM 
allson LaGramge (Todorovski & D�zeroski, 1997), whi
hin
orporates a de
larative bias to 
onstrain sear
h fordi�erential equation models. This program uses es-tablished methods for optimization sear
h to �t theparameters in equations, but, sin
e the details haveappeared elsewhere, we will not re
ount them here.More important, be
ause the de
larative bias takes
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Figure 1. Observations (jagged lines) generated by the pro-
ess model in Table 3, with noise added, and predi
tions(smooth lines) from the indu
ed model in Table 4.the form of a 
ontext-free grammar, IPM translatesea
h generi
 model into su
h a grammar and passes itto LaGramge. These grammars in
lude one rewriterule for ea
h pro
ess-equation pair, with ea
h nonter-minal symbol o

urring in only one rule. This does nottake full advantage of LaGramge's ability to handlemore general grammars, but IPM's sear
h through thespa
e of generi
 models serves an analogous fun
tion.For ea
h generi
 model, LaGramge returns a spe
i�
model with spe
i�
 values for ea
h parameter, alongwith a s
ore for ea
h su
h 
andidate. This s
ore re-
e
ts the overall di�eren
e between the model's pre-di
tions and observations, stated as the sum of thesquared errors over all observed variables. In the �nalstep, IPM simply sele
ts the spe
i�
 model with thebest s
ore and halts upon returning it.4.4 Learning a Population Dynami
s ModelTo demonstrate IPM's fun
tionality at indu
ing pro-
ess models, we de
ided to run it on syntheti
 datafor a known system. For this purpose, we used theaquati
 e
osystem model in Table 3 to generate ob-servations for 100 time steps, using the initial valuesnitrogen = 1:0, phyto = 0:01, and zoo = 0:01 for theobservable variables.To make these data more realisti
, we introdu
ed noiseby repla
ing ea
h `true' value x with x� (1+r�0:05),where we sampled r from a Gaussian distribution withmean 0 and standard deviation 1. This produ
es noiserelative in size to the a
tual value, giving the obser-vations shown in Figure 1. We then ran the programon the noisy data, giving it type 
onstraints and thegeneri
 pro
esses in Table 2 as ba
kground knowledge.

Table 4. E
osystem model indu
ed by the IPM algorithm.model Aquati
E
osystemvariables: nitro; phyto; zoo; nutrient phyto;nutrient nitro 1; nutrient nitro 2observables: nitro; phyto; zoopro
ess phyto exponential growthequations: d[phyto; t℄ = 0:089 � phytopro
ess zoo logisti
 growthequations: d[zoo; t℄ = 0:013 � zoo=(1 � zoo=0:469)pro
ess phyto nitro 
onsumptionequations: d[nitro; t℄ = �1:174�phyto�nutrient nitro 1;d[phyto; t℄ = 1:058 � phyto � nutrient nitro 1pro
ess phyto nitro no saturationequations: nutrient nitro 1 = nitropro
ess zoo phyto 
onsumptionequations: d[phyto; t℄ = �0:986 � zoo � nutrient phyto;d[zoo; t℄ = 1:089 � zoo � nutrient phytopro
ess zoo phyto saturationequations: nutrient phyto = phyto=(phyto+ 0:487)pro
ess nitro 
onstant in
owequations: d[nitro; t℄ = 0:067pro
ess zoo nitro 
onsumptionequations: d[nitro; t℄ = �0:470 � zoo � nutrient nitro 2;d[zoo; t℄ = 1:089 � zoo � nutrient nitro 2pro
ess zoo nitro saturationequations: nutrient nitro 2 = nitro=(nitro+ 0:020)Table 4 presents the pro
ess model that resulted fromthis run, whi
h has a form very similar to the e
osys-tem model that generated the data. The IPM algo-rithm sele
ted this model stru
ture from 2196 
andi-dates that it 
onsidered during sear
h. Some di�er-en
es from the model in Table 3 involve parametersthat appear in the shared pro
esses, all of whi
h havevalues 
lose to the `true' ones. But the indu
ed modelalso in
ludes three extra pro
esses, shown at the bot-tom of Table 4, that do not o

ur in the original. Onepro
ess states that nitrogen 
ows into the system at a
onstant rate. The other two 
laim that zooplankton
onsumes nitrogen with a limited 
apa
ity.Fortunately, these extra pro
esses have little e�e
t onthe model's overall behavior. Figure 1 shows that thepredi
ted traje
tories for the three variables are 
loseto their observed values. In more quantitative terms,the root mean-squared error for the indu
ed model onthe training data is 0.026 for nitro, 0.085 for phytoand 0.067 for zoo. These 
ompare favorably with theerrors for the `true' model on the same data, whi
h are0.024 for nitro, 0.045 for phyto, and 0.043 for zoo.These results are en
ouraging, as they demonstratethat the IPM algorithm 
an indu
e a reasonable pro-
ess model from noisy time-series data. However, itsin
lusion of unne
essary pro
esses suggests the need



Indu
ing Pro
ess Models 7for a pruning method, along with experiments on otherdata sets, in
luding ones from a
tual e
osystems, thatuse a standard division into training and test 
ases.Su
h studies may reveal other limitations and suggestimproved algorithms for this important task.5. A Proposed Resear
h AgendaAlthough our initial results with IPM suggest the vi-ability of indu
ing pro
ess models from observationaldata, they leave many questions unanswered. Before
losing, we should dis
uss some issues that future re-sear
h in the area should address and 
onsider somepromising approa
hes that should be explored withinthis resear
h agenda.For example, the IPM algorithm assumes that the
onditions on 
omponent pro
esses are 
orre
t. Fu-ture methods should determine from training data theproper thresholds on 
onditions spe
i�ed in generi
pro
esses or even learn whi
h variables should o

ur intheir 
onditions. We also need resear
h that extendsmodel representations in tra
table ways. For instan
e,variables in s
ienti�
 models are often asso
iated withphysi
al obje
ts; en
oding su
h obje
ts and their rolesexpli
itly 
ould provide further 
onstraints on a

ept-able models. We should even 
onsider methods whi
h
an generate explanations that involve at least somepro
esses with unknown forms. Overall, there remains
onsiderable room for demonstrating new fun
tionalityin the indu
tion of pro
ess models.Another important issue 
on
erns making robust al-gorithms for pro
ess model indu
tion. Over�tting thetraining data 
an arise in nearly every learning task,and we need resear
h on ways to guard against thistenden
y, espe
ially as we develop algorithms that gen-erate more 
omplex pro
ess models. One avenue wouldexamine analogs to methods that have proven su

ess-ful in other indu
tion paradigms. These in
lude te
h-niques for early halting in de
ision-tree 
onstru
tionusing minimum des
ription length and methods forpostpruning using 
ross validation. Other te
hniquesin
lude ensemble methods like boosting and bagging,though these would redu
e the 
ommuni
ability of theresulting models. In addition, we should explore otherdefenses against over�tting spe
i�
 to pro
ess models.We also need resear
h on ways to further dire
t thesear
h for pro
ess models. Our IPM algorithm uses
onstraints on variable types to this end, but we shouldexamine other ways to in
orporate su
h knowledge, es-pe
ially as we move to more diÆ
ult modeling tasks.One approa
h would draw on a taxonomy of pro
esstypes to organize and limit further the sear
h e�ort.

Knowledge about the dimensional units of variableswould also 
onstrain model indu
tion, as would theintrodu
tion of knowledge that sums of 
ertain vari-ables are 
onserved over time. We should also buildon Bradley et al.'s (2001) use of qualitative patterns tofo
us on 
ertain 
lasses of equations. Future resear
hshould 
onsider these and other methods for makingthe sear
h for pro
ess models more tra
table.An alternative approa
h to aiding model indu
tionborrows an idea from work on theory revision. Ratherthan 
onstru
ting a pro
ess model from s
rat
h, one
an instead start with a spe
i�
 model and revisedetails to improve its �t to observations. Resear
hon this topi
 should explore ways to revise a spe
i�
model's parameters, 
hange the 
onditions on its 
om-ponent pro
esses, repla
e these pro
esses with othersthat relate the same variables, and even alter the ba-si
 stru
ture of the initial model. Model revision willrequire the ability to remove 
omponents as well asadd them, but otherwise the same issues arise as inthe basi
 problem of pro
ess model indu
tion.We have fo
used here on pro
ess models that in
ludenumeri
 equations, but our resear
h agenda shouldalso explore te
hniques for indu
ing models 
omposedof qualitative pro
esses (Forbus, 1984). These take asimilar form to quantitative pro
esses, but use propor-tionalities to des
ribe relations between variables. Inthis framework, the pro
esses of exponential growthand logisti
 growth in Table 2 both map onto a singlequalitative pro
ess whi
h states that d[P; t℄ is dire
tlyproportional to P . Su
h models are appropriate fordomains like mole
ular biology, where s
ientists oftenstate their knowledge in qualitative form. Moreover,qualitative models generally have fewer e�e
tive pa-rameters than quantitative ones, making them usefulfor situations with few observations. Many issues thatarise with quantitative models also o

ur with theirqualitative analogs, so we also need work on this front.In pursuing this resear
h agenda, we should fol-low the a

epted standards for established indu
tionparadigms. Thus, papers should make expli
it 
laimsabout a method's abilities and support them with ex-perimental or theoreti
al eviden
e. Ideally, experimen-tal studies should in
lude a mixture of natural do-mains to ensure relevan
e and syntheti
 domains thatlet one vary dimensions of interest. However, the fo-
us on familiarity and ba
kground knowledge re
om-mends studies that involve 
ollaborations with domains
ientists or engineers. Finally, despite the distin
tivenature of pro
ess model indu
tion, resear
hers shouldin
orporate ideas from other learning tasks and utilizeexisting methods as subroutines whenever sensible.
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hez, Todorovski, and D�zeroski6. Con
luding RemarksIn this paper, we proposed a new problem for learn-ing resear
hers that addresses the indu
tion of pro
essmodels from observations. We de�ned this task as the
onstru
tion of models that 
ombine known 
ompo-nent pro
esses to explain time series or other 
ontinu-ous data. We 
onsidered the 
hallenges posed by pro-
ess model indu
tion and the potential of establishedmethods to address them, 
on
luding that it demandsresear
h on new indu
tion methods spe
ialized to pro-
ess modeling. We also presented an initial algorithmof this sort and demonstrated its fun
tionality in apopulation dynami
s domain, after whi
h we outlineda resear
h agenda for future work on the topi
.Pro
ess models 
onstitute a novel representation ofknowledge that di�ers from the formalisms tradition-ally used in ma
hine learning. They are 
ast in thesame terms as many s
ienti�
 and engineering models,whi
h should make them more 
ommuni
able to pra
-titioners in those �elds. However, they have the samemodularity as other formalisms that support learn-ing, and they provide a 
lear fa
ility for in
orporat-ing domain knowledge into learning me
hanisms. Wemaintain that resear
h on pro
ess model indu
tion willbroaden the s
ope of ma
hine learning in signi�
antways, and we en
ourage others to join us in exploringmethods that address this important new problem.A
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