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a b s t r a c t

Most research on computational scientific discovery has focused on developing an initial

model, but an equally important task involves revising a model in response to new data. In

this paper, we present an approach that represents candidate models as sets of quantitative

processes and that treats revision as search through a model space which is guided by time-

series observations and constrained by background knowledge cast as generic processes that
Differential equations

Scientific discovery

Model revision

serve as templates for the specific processes used in models. We demonstrate our system’s

ability on three different scientific domains and associated data sets. We also discuss its

relation to other work on model revision and consider directions for additional research.

© 2004 Published by Elsevier B.V.

1. Introduction and motivation

Most research on computational scientific discovery (e.g.,
Langley, 2000) has emphasized the generation of entirely new
models to describe or explain data. However, scientists spend
much of their time not developing new accounts of phenom-
ena but rather revising and improving an existing model that
already has credibility. If we desire computational tools that
help scientists in practice, we should examine seriously issues
that arise in the revision of scientific models.

There are other excellent reasons for focusing on model
revision rather than generation. Most approaches to scientific
discovery carry out search through the space of hypotheses or
models, which can be quite large. By starting from an existing
candidate, we can reduce the effective size of this space, mak-
ing some tasks tractable that would otherwise be too difficult.
This approach also places constraints on the search mecha-
nism that can reduce variance and thus decrease chances of
overfitting the data. Finally, model revision gives the domain
user more control over the region of the model space explored,
and increases the chances that he will find the new model

In this paper, we report one approach to the problem of sci-
entific model revision. Unlike most earlier work on this topic,
we focus on the modification of quantitative process models, a
representation of knowledge that we believe offers additional
advantages related to search and interpretability. We review
this formalism briefly in the section that follows, along with
RPM, an algorithm that alters an initial process model in re-
sponse to time-series data. After this, we report experimental
results on three environmental domains that involve a protist
predator–prey system, water behavior in a Danish Fjord, and
phytoplankton growth in an Antarctic sea. In closing, we dis-
cuss related work on model revision and outline directions for
future research.

2. Process models and their revision

In this section, we review our previous work on pro-
cess models and their induction from time-series data
and background knowledge. After this, we present our ap-
proach to revising models within the process-modeling
comprehensible.
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2.1. Quantitative process models

Scientific models are often stated formally as sets of equa-
tions, but they are also described informally in terms of the
processes that determine those equations. We have developed
the formalism of quantitative process models to encode both
aspects of scientific knowledge. In this framework, a model
consists of a set of processes, each of which specifies one or
more equations that represent causal relations among vari-
ables. These are cast as algebraic equations for instantaneous
effects or differential equations for changes over time. Pro-
cesses can also include threshold conditions on variables that
characterize when they are active.

A process model specifies not only a set of processes, but
also the variables which they connect. A given variable may
be labeled as observable, meaning it is present in the data, or
it may play the role of a theoretical term that serves mainly
to link processes. Each variable may also be labeled as exoge-
nous, in that it influences other variables but is not influenced
in return, or as endogenous, which means it appears in the
left-hand side of one or more equations. Our framework is a
quantitative variant of Forbus’ (1984) qualitative process the-
ory, from which we have borrowed many ideas.

Table 1 shows a process model for the aquatic ecosystem
of the Ross Sea in Antarctica, which is based on an earlier dif-
ferential equation model developed by the biolocial oceanog-
rapher member of our team (Arrigo et al., 2003). The model in-
cludes three observable terms—the exogenous variable light
and the endogenous concentrations of phytoplankton (phyto)
and nitrate, a nutrient. Theoretical terms that are unobserv-
able but play key roles include detritus (dead organic matter),
r max (the maximum growth rate), n to c ratio (the nitrogen
to carbon ratio), and four variables (growth rate, nitrate rate,
light rate, remin rate) that determine the rates of certain pro-
cesses.

Table 1 – A quantitative process model for the Ross Sea
ecosystem

model Ross Sea Ecosystem;
variables phyto, detritus, nitrate, light, growth rate, nitrate rate,

light rate, n to c ratio, r max, remin rate;
observable phyto, nitrate, light;
exogenous light;
process phyto loss;

equations d[phyto, t, 1] = −0.1 ∗ phyto;
d[detritus, t, 1] = 0.1 ∗ phyto;

process phyto growth;
equations d[phyto, t, 1] = growth rate ∗ phyto;

process phyto uptakes nitrate;
equations d[nitrate, t, 1] = −1 ∗ n to c ratio ∗ growth rate ∗ phyto;

process growth limitation;
equations growth rate = r max ∗ min(nitrate rate, light rate);

process nitrate availability;
equations nitrate rate = nitrate/(nitrate + 5);

process light availability;
equations light rate = light/(light + 50);

process global parameters;
equations n to c ratio = 0.251;

r max = 0.194;
remin rate = 0.0676;

Table 2 – The process model for the Ross Sea ecosystem
translated into the traditional notation of differential
and algebraic equations

d[phyto, t, 1] = −0.1 ∗ phyto + growth rate ∗ phyto
d[detritus, t, 1] = 0.1 ∗ phyto
d[nitrate, t, 1] = −1 ∗ n to c ratio ∗ growth rate ∗ phyto

growth rate = r max ∗ min(nitrate rate, light rate)
nitrate rate = nitrate/(nitrate + 5)
light rate = light/(light + 50)

n to c ratio = 0.251
r max = 0.194
remin rate = 0.0676

The first process in the model characterizes loss of phyto
due to miscellaneous sources (e.g., grazing and sinking), along
with an increase in detritus, whereas the second specifies the
rate of change for phyto as a function of its current concen-
tration and its growth rate.1 The third process concerns the
decrease in nitrate due to uptake by phytoplankton. Next,
growth limitation indicates that growth rate is the maximum
rate r max times the minimum of two theoretical terms for
growth limitation, nitrate rate and light rate, which are func-
tions of nitrate and light availability.

A final “process” specifies the values of three parameters
that occur across other processes. This has no causal inter-
pretation, but it does clarify that quantities like the nitrogen
to carbon ratio and maximum growth rate must be the same
throughout the model. This will prove important later, when
we consider techniques for revising models in response to eco-
logical and environmental data.

We can utilize a process model of this sort, together with
initial values, to simulate the system’s behavior over time and
thus predict values for each endogenous variable. We have
implemented a module that transforms a given model into a
set of algebraic and ordinary differential equations, as shown
in Table 2, after which it uses standard computational tech-
niques to solve these equations and generate predicted tra-
jectories for the variables. The only nonstandard issues that
arise involve checking processes to determine whether their
conditions are satisfied and, if not, excluding their influence

on those time steps. Later, we present trajectories that a re-
vised version of this model predicts for phyto and nitrate,
along with observations for the same variables.

Process models provide an explanation of observations in
that they offer a causal account in terms of processes and
equations that are familiar to domain specialists. For example,
Table 3 presents some generic processes relevant to aquatic
ecosystems that serve as background knowledge. These differ
from specific processes in that they do not commit to particu-
lar variables or parameter values. However, they can indicate
constraints, such as stating that the variable P in the generic
process grazing must have type p species and that its coeffi-
cient gamma must fall between 0 and 1. The table also states
that the same parameter must appear in multiple equations
within some processes.

1 The notation d[X, t, 1] here refers to the first derivative of X with
respect to time.
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Table 3 – Some generic processes for aquatic ecosystems with type constraints on their variables and range constraints
on their parameters

generic process grazing; generic process exponential growth;
variables P{prey species}, Z{pred species}, variables P{prey species}, G{grow rate};

R{detritus}, G{graze rate}; equations d[P, t, 1] = G ∗ P;
parameters gamma [0, 1]; generic process uptakes nutrient;
equations d[P, t, 1] = −1.0 ∗ G ∗ Z; variables N{nutrient}, G{grow rate},

d[R, t, 1] = gamma ∗ G ∗ Z; P{prey species}, NtoC{n const};
d[Z, t, 1] = (1 − gamma) ∗ G ∗ Z; equations d[N, t, 1] = −1 ∗ NtoC ∗ G ∗ P;

generic process Ivlev rate; generic process growth limitation;
variables G{graze rate}, P{prey species}; variables G{grow rate}, MAX{r const},
parameters delta[0, 10], rho[0, 10]; NR{n rate}, LR{l rate};
equations G = rho ∗ (1 − exp(−1 ∗ delta ∗ P)); equations G = MAX ∗ min(NR, LR);

generic process nutrient remineralization; generic process detritus loss to remin;
variables N{nutrient}, M{remin rate}, variables R{detritus}, M{remin rate};

R{detritus}, NtoC{n const}; equations d[R, t, 1] = −1 ∗ M ∗ R;
equations d[N, t, 1] = M ∗ NtoC ∗ R;

In a previous paper (Langley et al., 2003), we proposed the
task of inducing process models like the one in Table 1 from
time-series data and from background knowledge like the
generic processes in Table 3. We noted that this task differs
from those typically studied in machine learning, in that pro-
cess models characterize the behavior of dynamical systems
with continuous variables that change over time, and thus are
not independently and identically distributed. Moreover, such
models are explanatory in nature, in that processes them-
selves are not observable, processes can interact to produce
complex behavior, and process models can include theoretical
variables that are also unobservable. However, these compli-
cating factors are offset by the assumption that the dynamical
systems are deterministic (although observations may contain
noise), since scientists often make this assumption.

We have also made arguments, which we will not repeat
here, that existing methods for machine learning and knowl-
edge discovery do not solve the task of inductive process mod-
eling. In order to address this task we developed an initial algo-
rithm, called IPM, that carries out exhaustive search through
the entire space of process models. The system then selects
the parameterized model which produces the best score on an
evaluation criterion that incorporates both error and model
complexity.

Experiments with IPM produced encouraging results on
real-world data collected from batteries on the Space Station,
but our studies with environmental models, which had mo-

might find more plausible. As argued earlier, model revision
seems an appropriate response to both issues, so we devel-
oped an extended system, RPM, that adopts this approach to
process model induction. This revision module is a key com-
ponent in an integrated environment that we are developing to
aid scientists in developing and improving their models. This
environment assumes that models are cast as sets of quanti-
tative processes and that generic versions of these processes
are available as background knowledge.

The RPM algorithm requires the user to specify four inputs.
These include: an initial model that encodes beliefs about the
processes that are most likely involved; a set of constraints
representing acceptable changes to the initial model that spec-
ify which initial processes should be fixed, can be removed,
or have their parameters changed; a set of generic processes
that may be added to the initial model; and observations to
which the revised model should be fit. The initial model con-
stitutes the user’s best guess about the processes that are
present in the system, whereas the allowed changes indicate
his areas of uncertainty. Combined with the candidate addi-
tions, these provide RPM with a heuristic that guides search
toward parts of the space that are consistent with domain
knowledge.

As output, the algorithm generates a set of revised mod-
els that are sorted by their distance from the initial model
and presented with their mean squared error on the train-
tivated our research on process model induction, dealt only
with synthetic data and involved a target model with only five
processes. The availability of both new environmental data
sets and codification of additional ecosystem processes has
encouraged us to extend the IPM framework and evaluate its
behavior in this new context.

2.2. The RPM revision algorithm

Although IPM produced promising results, it had drawbacks
that limited its applicability. The system constrained its search
space by utilizing background knowledge about generic pro-
cesses, but the space of models could still be large. Also, IPM
provided no way to guide the search toward models a scientist
ing data. The distance between a revised model and the
initial model is defined as the number of processes that are
present in one but not in the other. This output format lets
one observe the trade-off between performance of revised
models and their similarity to the initial model, leaving the
user to determine the best compromise between the fac-
tors and to select an appropriate model from those in the
suggested set.

The RPM system operates in two main stages. The first
involves searching through the model space and finding all
model structures that are consistent with the specified con-
straints, including user-approved changes. The system first
generates all instantiations of the user-recommended generic
processes that satisfy constraints on variable types; these be-
come candidates for addition to the model. Next, RPM carries
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out search through the space of model structures, using the
initial model as the start state. The search method utilizes
two operators: adding a process from the set of instantiated
generic processes and removing a process from the initial
model. The current implementation uses breadth-first search
so that models closer to the initial model are considered
first. The algorithm also performs sanity checks on each
candidate that ensure it forms a single connected graph and
includes all observable variables. The result is a set of revised
model structures that attempt to explain relations among the
variables.

The second stage determines, for each model structure,
the parameter values for new processes and ones allowed
to change. To this end, RPM utilizes a combination of the
Levenberg–Marquardt method (Levenberg, 1944; Marquardt,
1963) interleaved with randomized jumps. The search algo-
rithm starts by selecting a random initial point that falls
within the parameter ranges specified in the generic pro-
cesses. The algorithm then attempts to optimize the parame-
ters with the Levenberg–Marquardt routine until it converges
to a local optimum. RPM then generates several new candi-
dates by positing random jumps along the dimensions of the
parameter vector. If a jump leads to lower error, it moves to
that point and returns to the Levenberg–Marquadt method;
otherwise, the system repeatedly generates new candidates
and gradually increases the jump size. However, if RPM ob-
serves no improvement after 20 iterations, it restarts the en-
t
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Table 4 – A simple process model for a predator–prey
ecosytem

model Predator Prey;
variables nasutum, aurelia;
observable nasutum, aurelia;
process nasutum decay;

equations d[nasutum, t, 1] = −1 ∗ 1.2 ∗ nasutum;
process aurelia decay;

equations d[aurelia, t, 1] = −1 ∗ 0.5 ∗ aurelia;
process aurelia exponential growth;

equations d[aurelia, t, 1] = 2.5 ∗ aurelia;

nasutum decay, states that the population of the predator
nasutum decreases as a direct function of the current popula-
tion size. An analogous relationship, aurelia decay, posits that
a similar relation produces decreases in the prey population
but involves a different parameter. The third process, aure-
lia exponential growth, claims that the prey also grows over
time at a rate that more than offsets decay. Of course, this
model lacks a crucial feature, in that it includes no process
for predation, which we have omitted for the purposes of
demonstration.

As noted earlier, before RPM can improve an incomplete
model of this sort, the user must provide a set of generic pro-
cesses it can use to this end. Table 5 shows some processes
that we extracted from our reading of the Jost and Adiriti arti-
cle. Again, each generic process specifies one or more generic
variables with type constraints (in braces), a set of parameters
with ranges for their values (in brackets), and a set of algebraic
or differential equations that encode causal relations among
the variables. Each process can also include one or more con-
ditions, although none appear in this example.

The table shows four such generic processes. The first-
two—logistic growth and exponential growth—characterize
the increase in a species’ population in an environment that
has unlimited resources, but they differ in their precise func-
tional forms. The other two processes—predation holling and
ire process from a new random initial point. We have found
hat this parameter-fitting method gives enough flexibility to
roduce reasonable matches to time series from a variety of
omains.

. Experimental evaluation of RPM

aturally, we were interested in how RPM behaves in practice
n actual modeling problems. In this section, we report our
xperience with three distinct domains with different charac-
eristics, ranging from purely physical to ecological processes
nd taken from both experimental and observational settings.
e also compare RPM’s results to those produced by the earlier

PM system, which constructs models from generic processes
ather than revising an initial candidate.

.1. Predator–prey interactions in protists

ithin ecology, models of predator–prey systems are among
he simplest in terms of the number of variables and parame-
ers involved, making them good starting points for our evalu-
tion. In particular, the protist system composed of the preda-
or Didinium nasutum and the prey Paramecium aurelia is well
nown in population ecology, and Jost and Adiriti (2000) report
ime-series data for this system, recovered from an earlier re-
ort by Veilleux (1976), that are now available on the World
ide Web. These include measurements for the two species’

opulations at 12-hour intervals, as shown later. The data are
airly smooth, with observations at regular intervals and sev-
ral clear cycles.

Table 4 presents an initial model for this two-species
ystem that includes three processes. One such process,
Table 5 – A set of generic processes for predator–prey
models

generic process logistic growth;
variables S{prey};
parameters psi [0, 3], kappa [0, 1];
equations d[S, t, 1] = psi ∗ S ∗ (1 − kappa ∗ S);

generic process exponential growth;
variables S{prey};
parameters beta [0, 2];
equations d[S, t, 1] = beta ∗ S;

generic process predation volterra;
variables S1{prey}, S2{predator};
parameters pi [0, 1], nu [0, 1];
equations d[S1, t, 1] = −1 ∗ pi ∗ S1 ∗ S2;

d[S2, t, 1] = nu ∗ pi ∗ S1 ∗ S2;

generic process predation holling;
variables S1{prey}, S2{predator};
parameters rho [0, 1], gamma [0, 1], eta [0, 1];
equations d[S1, t, 1]= − 1 ∗ gamma ∗ S1 ∗ S2/(1+rho ∗ gamma ∗ S1);

d[S2, t, 1]= eta ∗ gamma ∗ S1 ∗ S2/(1 + rho ∗ gamma ∗ S1);
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Table 6 – Best revised process model for the
predator–prey ecosytem

model Predator Prey;
variables nasutum, aurelia;
observable nasutum, aurelia;
process nasutum decay;

equations d[nasutum, t, 1] = −1 ∗ 1.057 ∗ nasutum;
process aurelia logistic growth;

equations d[aurelia, t, 1] =
1.943 ∗ aurelia ∗ (1 − 0.000579 ∗ aurelia);

process nasutum aurelia holling;
equations d[aurelia, t, 1] = −1 ∗ 0.0329 ∗ aurelia ∗

nasutum/(1 + 0.0126 ∗ 0.0329 ∗ aurelia);
d[nasutum, t, 1] = 0.294 ∗ 0.0329 ∗ aurelia ∗

nasutum/(1 + 0.0126 ∗ 0.0329 ∗ aurelia);

predation volterra—describe alternative forms of feeding that
produce an increase in the number of predators and a decrease
in the prey, again differing only in the forms of their equations.
All four processes are generic in the sense that they do not
commit to specific variables.

We ran RPM on the Veilleux time series, telling it to re-
tain the nasutum decay process from Table 4 but to consider
removing the other two processes and to consider adding
processes from Table 5. We also told it to improve the pa-
rameters in any processes that were retained. The result-
ing search space contained 26 model structures, which RPM
took about 3 hours to examine on a Linux PC with a 2.8 GHz
Pentium 4 processor. Table 6 presents the revised model
with the best score, which lacks the original process aure-
lia decay, replaces the exponential growth process for this or-
ganism with one for logistic growth, and adds a new predation
process.

Fig. 1 shows the trajectories observed for both species,
along with those generated by the best revised model. The
mean squared error is 340.584 for D. nasutum and 2390.537 for P.
aurelia, which is substantially better than the errors produced
by the initial model structure with improved parameters. More
important, the theoretical curves track the heights and timing
of the observed trajectories quite well. RPM appears to account
for the major behavioral features of this ecosystem in ecolog-
ically plausible terms.

However, we should note that these results are based on

surements have considerably lower peaks, suggesting that a
different regime is operating. RPM was unable to find a model
that could reproduce the entire time series accurately, which
led us to provide it with the reduced set of observations. Thus,
we do not yet have a complete explanation of these data,
which indicates either that that the data were influenced by
unknown factors, that our model space omitted some im-
portant processes, or that our revision system can still be
improved.

3.2. Water dynamics in Ringkøbing Fjord

The Ringkøbing Fjord, on the Danish west coast, is a shallow
body of water that is fed by tributaries from the land and that
exchanges water with the North Sea through a narrow chan-
nel on its western edge. A barrier with 14 gates has been con-
structed across this channel in order to regulate water flow
between the Fjord and the sea. Officials would like to predict
in advance the water level at the gates, so they can be ready
to open or close them as needed.

Our treatment of this domain borrows from work by
Todorovski (2003), who reports that domain experts specified
a partial dynamic model. They hypothesized that, when the
gates are closed, the dominant influences on the water level
H inside the gates to the Fjord are the wind direction Wdir
and wind speed Wvel, as well as the inflow Q of fresh water
per second. When the gates between the Fjord and the sea

the p
only a portion of Veilleux’s data. The first ten days of mea-

Fig. 1 – Concentrations of the predator D. nasutum (left) and
by the revised model in Table 6.
are open, the difference between H and sea level (hsea) is also
an important factor. Following Todorovski, we have incorpo-
rated all of these influences into the initial model presented in
Table 7.

The domain experts maintained that wind affects height,
but they did not provide a specific function for this relation-
ship. As shown in the table, we included the process wind-
ForcingSine to serve this role in our initial model, but we also
provided RPM with the four other generic processes shown
in Table 8. The first incorporates the cosine of wind direction
in an effort to capture influences of the wind’s other com-
ponents. Three other processes reflect the idea that, as wind
pushes water to one side of the Fjord, gravitational potential
energy builds up in the water and causes it to resist. Our treat-
ment is similar to that reported by Todorovski, although we
believe our processes provide clearer physical accounts than
the polynomial functions he utilized.

rey P. aurelia (right) as measured by Veilleux and predicted
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Table 7 – Initial process model for Ringkøbing
Fjord

model Fjord Height Dynamics;
variables H, hsea, n, Q, Wdir, Wvel, WaterFlow, hf, hw;
observable H, hsea, n, Q, Wdir, Wvel;
exogenous hsea, n, Q, Wdir, Wvel;
process waterFlowThroughGates;

equations WaterFlow = −1000 ∗ 0.5 ∗ n ∗ (H − hsea);
process freshWaterInput;

equations WaterFlow = Q ;
process flowHeightRelation;

equations d[hf, t, 1] = 86400 ∗ WaterFlow/A(H);
process windForcingSine;

equations d[hw, t, 1] = 0.05 ∗ Wvel ∗ sin(Wdir);
process totalHeight;

equations H = hf + hw;

We had access to almost one year’s observations of the
Fjord, sampled every 5 hours, for all of the variables in the
initial process model. To evaluate RPM in this domain, we
treated the first 1100 observations as a training set and used
the remaining 551 data points as a test set to measure gen-
eralization error. We provided the initial model, the generic
processes, and the training data to RPM, which searched the
revision space and returned the best model at each distance
from the initial one. The system considered 32 distinct model
structures, which took about 12 CPU hours.

The best-scoring model on the training set included
two processes not in the initial version. One of these,
wind forcing cosine, posits that the east-west component of
the wind, measured in polar notation, has an effect on the wa-
ter height. The other, wind forcing simple damping, incorpo-
rates resistance to the wind force due to the gravitational force.
The resulting model had a mean squared error of 0.0056725 on
the training data and 0.0099752 on the test data. Equally im-
portant, it appears to be reasonable physically, which of course
was encouraged by the generic processes we provided.

This model’s predictions for water height are shown in Fig.
2, with points to the left of the vertical line denoting the train-
ing set and those to its right the test set. As the figure shows,
RPM predicts the qualitative behavior of the Fjord dynamics in

Table 8 – Additional generic processes for Ringkøbing

Fig. 2 – Observed water height in Ringkøbing Fjord over a
year, along with heights predicted by the revised model.

a reasonable way. In particular, the trajectory tracks the high
peaks of the water height very well. These results offer evi-
dence that the system can revise a model in ways that explain
the training set and also extrapolate effectively to new obser-
vations. Todorovski also reports encouraging results with his
LaGramge discovery system, although our results are not di-
rectly comparable because he used ten-fold cross validation,
rather than testing the induced model’s extrapolative ability.

3.3. Population dynamics in the Ross Sea

The Ross Sea in Antarctica has been the focus of many stud-
ies (Arrigo et al., 2003) because it has a relatively simple food
web in comparison to open ocean systems. Bacteria, protists,
and larger grazers play only a minor role, which means that
we can safely ignore many processes, such as microbial in-
teractions. Moreover, two recent scientific programs have col-
lected field data from the southwestern Ross Sea over nearly
complete growth cycles, which we can use to evaluate our ap-
proach to model revision. The most important organism in this
ecosystem is phytoplankton, which undergoes repeated cycles
of population increase and decrease, but measurements are
also available for nitrate concentrations and sea ice coverage.

Incorporating domain knowledge from our team’s biolog-
ical oceanographer (Arrigo), we developed the initial process
model shown in Table 1, which relates resources such as light
and nutrients to phytoplankton growth. The model encodes
Fjord

generic process wind forcing cosine;
variables Wvel{speed}, Wdir{direction}, h{sublevel};
parameters b[−0.1, 0.1];
equations d[h, t, 1] = b ∗ Wvel ∗ cos(Wdir);

generic process wind forcing cosine damped;
variables Wvel{speed}, Wdir{direction}, h{sublevel};
parameters b[−0.1, 0.1], c[−0.1, 0.1];
equations d[h, t, 1] = b ∗ (c ∗ Wvel ∗ cos(Wdir) − h);

generic process wind forcing sine damped;
variables Wvel{speed}, Wdir{direction}, h{sublevel};
parameters b[−0.1, 0.1], c[−0.1, 0.1];
equations d[h, t, 1] = b ∗ (c ∗ Wvel ∗ sin(Wdir) − h);

generic process wind forcing simple damping;
variables h{sublevel};
parameters c[0, 1], k[0, 1];
equations d[h, t, 1] = −k ∗ (h − c);
much existing knowledge about how variables interact, but
uncertainty about several components led us to consider al-
ternative generic processes like those in Table 3. These include
mechanisms for zooplankton grazing on phytoplankton, ni-
trate remineralization, and detritus loss. Because zooplankton
was not measured, we treated it as an unobserved theoretical
variable.

We have two sets of daily measurements of phytoplankton
and nitrate concentrations in the Ross Sea, along with light
levels and ice coverage, each spanning 188 days for two con-
sequent years. We used the first year’s observations as train-
ing data, combined with the generic processes from Table
3, to generate a revised model. In this run, we told RPM to
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Fig. 3 – Observed phytoplankton and nitrate concentrations in the Ross Sea, along with predictions from the best revised
process model, for training (left) and test (right) data.

consider removing from the initial model only the process
phyto uptakes nitrate, but to improve the parameters of all
processes and to consider adding instances of the generic pro-
cesses grazing, Ivlev rate, nutrient remineralization, and de-
tritus loss to remin.

Detailed inspection of the results suggested that RPM’s revi-
sions were ecologically plausible. The best model at distance
one added the process nutrient remineralization, which in-
volves restoring nitrate ions into the water from the detritus of
dead phytoplankton. The best candidate at distance two also
added the process detritus loss to remin, which is a conserva-
tion term that balances mass transfer from detritus to nitrate
ions. The next two changes introduced grazing and Ivlev rate,
which together describe the activity of zooplankton grazing
on phytoplankton.

Fig. 3 shows the observed trajectories for the first year,
along with trajectories generated by the best revised model,
which has the four additions just described. The fit to both
concentrations is quite good, with a mean squared error of
4.486 for phytoplankton and 2.010 for nitrate. The errors on
the training set for the original model structure with revised
parameters were 8.431 and 236.2, respectively, which indicates
that the additional processes are helping substantially to fit
the observations.

However, we want models that do more than match and
explain such training data; we also want them to generalize
well to unseen time series. When we used the best revised

Fig. 3 also presents the trajectories predicted by this slightly
altered model, along with the concentrations observed dur-
ing the second year. The height of the phytoplankton peak is
much closer than the one predicted by the unmodified initial
values. The mean squared error was 15.711 for phytoplank-
ton and 9.377 for nitrate, as compared with 60.366 and 256.96
for the model structure from Table 1 with revised parameters.
The timing of the nitrate trough occurs somewhat earlier than
predicted, but the overall fit seems reasonable.

The figures also plot the inferred concentrations of zoo-
plankton for both years, showing a higher initial level for the
second year, which accounts for the lower peak because expo-
nential growth of the zooplankton depletes the phytoplankton
more rapidly. The graphs also reveal that the model does not
predict a zooplankton decrease when food is no longer avail-
able. This would not alter the main effect we were seeking,
but it does indicate that the model would be more plausible
with another process, analogous to phyto loss in Table 1, for
zooplankton.

Informal analysis of the revised model’s behavior also sug-
gested another explanation of the lowered phytoplankton
peak: the presence of a mechanism that causes phytoplank-
ton to absorb more nitrate when it has insufficient light. In
response, we added a new generic process that decreases ni-
trate as a linear function of the effective light but does not in-
crease the concentration of phytoplankton. We ran RPM with
this additional background knowledge on the first year’s data
model to predict trajectories on the second year, we found that
it produced almost exactly the same behavior, even though
the observed peak for phytoplankton was much lower than
in the first year. Inspection of the model suggested that ice
differences across the years had little effect on phytoplank-
ton growth, although this had originally seemed to us a likely
explanation of differences between the two years.

But recall that initial values for unobservable variables are
fit by RPM along with other parameters, and our test run as-
sumed these were the same for the second year. It seemed
plausible that differences in these values, especially for zoo-
plankton, might account for the altered behavior. Thus, we ran
the parameter estimation module on the revised model, let-
ting it alter the initial values on the second year’s data while
retaining other parameters found on the first year.
and examined the results.
On this run, the best-scoring candidate on the training data

remained the revised model we have already discussed, but
the second best model included the new process that reduces
nitrate concentration when light is not abundant. The mean
squared errors were 4.639 for phytoplankton and 2.911 for ni-
trate on the first (training) year, whereas they were 21.039 and
9.414, respectively, for the second (test) year. Both the training
and test errors are nearly as low as those for the best model.
Fig. 4 presents the predicted trajectories for both years, which
indicates that the qualitative fit is good and that the inferred
levels for zooplantkon are closer in the two curves, so that the
explanatory power comes from the new nitrate-using process.

An alternative, but roughly equivalent, interpretation is
that the nitrogen-to-carbon ratio for phytoplankton varies as
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Fig. 4 – Observed phytoplankton and nitrate concentrations in the Ross Sea, along with predictions from the second-best
revised model, for training (left) and test (right) data.

a function of light availability. This insight is an important
one from the perspective of ecological modeling, in that pre-
vious accounts have assumed phytoplankton’s nitrogen quota
is constant. If the revised process model is correct in claiming
that reduced light levels (caused by heavier ice cover) increase
nitrogen requirements,2 then this suggests we should reex-
amine models for a broad class of aquatic ecosystems that
operate under similar environmental conditions.

3.4. Additional analyses of model revision

Earlier in the paper, we argued that revising a process model
had advantages over inducing a similar model from scratch.
We were especially interested in how model quality varied
with distance from the initial candidate, which we measured
as the symmetric structural difference between the processes
in the initial model and revised one.

Fig. 5 plots the training and test error for Ringkøbing Fjord
against the distance from the initial model for the revisions
suggested by RPM. The error decreases initially as one moves
away from the initial model, but after a distance of two the
errors increase again. This is not surprising if the ‘true’ model
falls at an intermediate distance from the initial one. More
interesting is that the curves for training and test set error are
similar, which suggests our revision method does not overfit
the training data in this domain, despite the fact that RPM
includes no explicit features to guard against this danger.
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does not follow the systematic U shape of the training curve. In
addition, we trained IPM on the first year’s data and tested its
results on the second year. The program took about 20 hours
to explore 121 different model structures, considerably more
time than RPM, which took 5 hours to consider 40 candidate
structures. The best-scoring models produced by the two sys-
tems had very similar structures and comparable error rates
on the training and test years.

These results provide evidence that, by revising an initial
model instead of learning from scratch, RPM can use relatively
little search to find alternatives. These altered models improve
greatly on the original model structure in terms of predictive
accuracy while remaining consistent with domain knowledge,
and the system finds them in a fraction of the time required
to construct a model entirely from generic processes.

4. Related and future work

Computational methods for model revision are certainly not
a new idea. Early research (e.g., Towell, 1991) focused on
supervised learning for classification tasks, but supported
modification of models with theoretical terms and offered
a general framework from which we have borrowed. For
instance, Ourston and Mooney’s (1990) Either utilized search
operators for adding and deleting rules, which correspond to
our operators for adding and removing processes. They also
For comparison purposes, we also ran IPM on the same set
f processes and training data for Ringkøbing Fjord. The IPM
lgorithm took about six times longer than RPM to finish in-
estigating its model space, which consisted of 217 different
odel structures. The best-scoring model found by IPM had
ean squared error on the test data (0.0081) that was slightly

ower than the best induced by RPM (0.0099), but it fared much
orse in terms of qualitative prediction. In fact, this model did
ot track any of the major variations in water height because

t predicted a nearly flat trajectory over time.
Analogous distance curves for the Ross Sea data sets also

ppear in Fig. 5. In this case, the minimum error for both curves
ccurs with four structural revisions, although the test curve

2 Needoba and Harrison (2003) present more direct evidence that
uch a mechanism exists, which lends credibility to our proposal.
included ones for adding and removing conditions on rules,
which are quite different from our scheme for parameter
revision. Still, their view of model revision as searching from
an initial model, guided by fit to training data, is a general one
that is relevant to revision of quantitative process models.

A different tradition has explored methods for revising
qualitative causal models of scientific phenomena. Early ex-
amples included Rajamoney’s (1990) Coast system, which
used ideas from qualitative physics to improve models of fluid
and heat flow, and Kulkarni and Simon’s (1990) Kekada, which
reproduced many steps in Krebs’ discovery of the urea cycle.
These systems altered their models incrementally, but later
work has utilized nonincremental methods with simpler rep-
resentations of causal connections. Recent examples include
Bay et al.’s (2003) method for revising qualitative models of
gene regulation, which carries out greedy search guided by
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Fig. 5 – Training and testing errors for best RPM models for Ringkøbing Fjord (left) and the Ross Sea (right) as a function of
distance from initial model.

candidate models’ fits to the data. Bryant et al. (2001) report a
different approach that uses abductive logic programming to
extend a qualitative model of metabolic control.

A more closely related line of research has addressed the
revision of quantitative models of ecosystem behavior. Chown
and Dietterich (2000) report a system that improves the pa-
rameters in a complex ecosystem model by decomposing
it into more tractable subproblems. Both Saito et al. (2001)
and Todorovski et al. (2003) describe methods that revise the
parameters and functional forms in a nondynamic ecosys-
tem model. A key difference is that our approach introduces
the notion of processes, which provides a useful framework
for encoding domain knowledge that constrains search and
produces more interpretable results. However, Whigham and
Recknagel (2001) have also explored methods for inducing
ecosystem models cast in process terms, as has Todorovski
(2003) in his recent work on dynamical systems.

Although most research has emphasized automated
revision methods, a few groups have developed interactive
systems. For instance, Mitchell et al.’s (1997) program encour-
ages metallurgists to actively direct its search for quantitative
relations, whereas Mahidadia and Compton (2001) report
an environment for the interactive revision of qualitative
causal models in neuroendocrinology. We believe that most
scientists will prefer computational discovery tools that keep
them involved in the revision effort, and we intend to embed
future versions of RPM in such an interactive environment for

techniques and incorporating uncertainty explicitly in the
estimated parameters used for simulation. We should also
introduce guards against overfitting in the search for model
structures. Some variation on minimum description length is
an obvious choice, but this should incorporate a bias toward
candidates with structures similar to the initial model. Saito
et al. (2002) such a “minimal change principle” in their
work on revision of qualitative biological models, whereas
Todorovski et al. (2003) have proposed a similar idea in the
context of revising quantitative ecological models.

Finally, RPM’s current reliance on exhaustive search lets
it handle only relatively small model spaces. Future ver-
sions should replace this approach with a heuristic method
that scales to more complex models and to more extensive
changes. The generation of model structures should be more
closely linked to parameter estimation, thus making both
more efficient. We should also extend the framework to sup-
port revision of models with subsystems, which ecosystem
modelers often utilize when dealing with complex domains.
This would reduce search by drawing on knowledge about
likely subsystems rather than isolated processes, and thus fur-
ther improve scaling ability.

5. Concluding remarks

In this paper, we reported an approach to computational scien-
scientific model development.
Naturally, we also intend to extend our revision methods

on various fronts. One drawback of the current system is that
parameter estimation takes 99.9% of the computation time,
which limits the number of models with different structure
it can consider effectively. Preliminary studies with a hierar-
chical method for multiple shooting (Horbelt et al., 2001) have
shown promise for speeding this component. More rapid tech-
niques for parameter fitting should also let us augment RPM
to consider new conditions on processes during the revision
effort, thus increasing its flexibility.

Although we found little evidence for overfitting in our
three domains, we also plan to investigate several methods
for mitigating this problem when it does occur. These include
averaging parameter estimates with statistical resampling
tific modeling that focuses on the revision of existing models
rather than on their construction. Unlike earlier work in this
area, we utilized the formalism of quantitative process mod-
els, which support explanatory accounts of continuous time
series in terms of unobservable variables and processes. Our
specific algorithm, RPM, lets users specify an initial model, a
data set, and a set of allowed revisions. The latter can include
specific processes that may be deleted, specific processes for
which the parameters may be altered, and generic processes
that may be added. We demonstrated this system’s abilities in
three environmental domains, one involving changes in water
height in a Danish Fjord and another concerning population
dynamics in the Ross Sea.

Our experimental results were generally encouraging.
In each domain, we showed that RPM found meaningful
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revisions that had substantially lower error than the original
model structure. Moreover, we found that these models were
generally as accurate as those produced by IPM, which com-
poses models entirely from generic processes, but were ob-
tained with less search and in less time. However, we also
identified some limitations of the system that future work
should address. In summary, our approach builds on previ-
ous research in model revision and scientific discovery, but
extends their ideas in ways that are useful for fields like envi-
ronmental science, which often utilize quantitative models of
dynamical systems.
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