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a b s t r a c t

Scientists investigate the dynamics of complex systems with quantitative models, employ-

ing them to synthesize knowledge, to explain observations, and to forecast future system

behavior. Complete specification of systems is impossible, so models must be simplified

abstractions. Thus, the art of modeling involves deciding which system elements to include

and determining how they should be represented. We view modeling as search through a

space of candidate models that is guided by model objectives, theoretical knowledge, and

empirical data. In this contribution, we introduce a method for representing process-based

models that facilitates the discovery of structures that explain observed behavior. This

representation casts dynamic systems as interacting sets of processes that act on entities.

Using this approach, a modeler first encodes relevant ecological knowledge into a library of

generic entities and processes, then instantiates these theoretical components, and finally

assembles candidate models from these elements. We illustrate this methodology with a

model of the Ross Sea ecosystem.
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1. Introduction and motivation

Models are critical tools for determining how elements

combine to generate the complex system dynamics that we

observe in nature. Ecologists use models to synthesize existing

system knowledge into a concise form that guides empirical

research programs (Osidele and Beck, 2004; Whipple et al.,

2005), but they also use statistical models to describe patterns

in their data (Underwood, 1997), and simulation models both

to explain and predict system behavior (Ford, 2000; Jørgensen

and Bendoricchio, 2001; Melillo et al., 1993; Clark et al., 2001).

Models also let scientists perform thought experiments that

would not otherwise be possible or ethical. Due to this

advantage, ecologists have used models to build ecological

theory (Abrams, 1993, 2000; Jørgensen, 2002; Pulliam and

Danielson, 1991; Carpenter et al., 1985) and to guide environ-
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mental assessment and management (Brando et al., 2004;

Costanza and Ruth, 1998; Jørgensen, 1994; Reckhow, 1994; Sage

et al., 2003; Korfmacher, 2001; Maguire, 2003).

Quantitative models in ecology and environmental science

are often categorized by the degree to which their structure

corresponds to a real system (Levins, 1966, 1993; Orzack and

Sober, 1993; Reckhow, 1994; Bossel, 1992; Hilborn and Mangel,

1997; Zeigler, 1974). This realism continuum begins with

empirical models and ends with mechanisms. Empirical

models (e.g., regression-based models) stem solely from

observed relationships among variables, provide a statistical

summary of the data, and ignore mechanisms determining

the behavior. In contrast, mechanistic models contain

unobserved relationships, explain system dynamics, and

emphasize the physical, chemical, and biological processes

that generate system behavior. Ecologists use mechanistic

mailto:sborrett@stanford.edu
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models to understand how system behavior may change in

response to changing environmental conditions. A central

problem of building models with more realistic structures is

determining which entities and processes to include and

which mathematical representation is most appropriate.

Following Langley et al. (1987), we claim that model

construction involves search through a space of possible

models for ones that fit system observations. This space

contains alternative model structures (entities, processes and

the connections among them), mathematical formulations,

and parameter values. The immense number of possible

models challenges scientists, who navigate this space by

selecting the set of objects or entities used to represent the

system and the relationships that link these objects to each

other and their environment. When establishing the entities,

scientists must address three questions: (1) which entities

should be included, (2) how detailed should they be, (3) and

how should they be represented? The answers determine

object aggregations and system boundaries, both of which are

rarely obvious and can significantly influence model results

(Cale and Odell, 1979; Gardner et al., 1982; Rastetter et al., 1992;

Loehle, 1987a; Abarca-Arenas and Ulanowicz, 2002; Ahl and

Allen, 1996). After defining the objects, the scientist can state

their relationships by deciding which ones to include and how

to model them. This task requires the specification of each

relationship’s mathematical formulation, which often

involves selection from several possibilities. For example,

the Ivlev function and Holling’s Disk Equation may be used to

model predation, but the alternative formulations make

different claims about how the process operates. Finally,

the scientist must set the numeric parameters. In some cases,

empirical estimates of parameter values exist, but more often

the values are largely unknown (Beck, 1987; Reckhow, 1994).

Uncertainty enters the model at each decision point (Loehle,

1987a; Jørgensen and Bendoricchio, 2001; Reynolds and Ford,

1999; Beck, 1987; Reckhow, 1994; Krupnick et al., 2001),

complicating the search for plausible explanations.

Searching for models presents two additional challenges,

one related to the selection criteria and the other centered on

the search procedure. Scientists require criteria for ranking

and evaluating models (Oreskes, 1998; Oreskes et al., 1994;

Hilborn and Mangel, 1997; Reynolds and Ford, 1999; Jost and

Arditi, 2001), which usually include one or more quantitative

measures of goodness-of-fit of the predictions to observed

data. However, selecting a model based on its accuracy alone

is insufficient since very different models can generate similar

behavior (Cale et al., 1989). To overcome this problem,

additional criteria such as a model’s complexity, uncertainty

and generality may be used. If the model should explain

system behavior, then its structure must also be sufficiently

realistic (Levins, 1966; Zeigler, 1974; Bossel, 1992). The second

challenge is that the search procedure is cumbersome. In

ecology, this search is typically a manual effort guided by an

expert’s domain knowledge (e.g., aquatic ecosystems) and

modeling experience, along with the data. Given a model

structure and mathematical formulation, some methodolo-

gies assist with fitting parameters and quantifying parameter

uncertainty (e.g., Hornberger and Spear, 1980; Spear and

Hornberger, 1980; Osidele and Beck, 2004; Saltelli et al., 2000).

Nevertheless, search through the space of model structures,
mathematical formulations, and parameter values remains a

challenging and time-consuming chore.

In this paper we describe a method for representing and

building models designed to:
� f
acilitate construction of process-based models;
� e
xpedite search through the space of candidate model

structures;
� r
oot model development in domain theory; and
� b
ind models to empirical observations.

We first describe a new formalism for representing models

as interacting sets of entities and processes. We claim that this

formalism captures how scientists understand complex

system dynamics, and therefore eases model communication.

This representation also simplifies the comparison of a

model’s structure to the relevant domain theory. We then

show how this formalism facilitates search through the space

of plausible model structures and illustrate the use of this

approach by re-representing an existing model of the Ross Sea.

Finally, we discuss related work and propose some directions

for future research.
2. Process modeling

In this section, we introduce the method for representing and

constructing explanatory models. The approach has two core

elements: entities, which are the objects or actors in the

system, and processes, which are the actions or activities of

the entities that generate system dynamics. Abstract forms of

processes and entities encode domain knowledge, which is

then used to construct models with realistic structure.

Scientists combine instantiated versions of the abstract

elements to construct models of specific systems. We

conclude this section by briefly describing software we are

developing to support this modeling approach.

2.1. Entities

In process models, entities are actors and receivers of action

that are characterized by a combination of variables and

parameters. For example, in a soil ecosystem model the

collection of nematodes could be an entity with variables that

describe its total carbon concentration and the number of

individual organisms. Depending on the model objectives and

the processes included, a variety of parameters associated

with the nematodes may be of interest, including their

maximum intrinsic growth rate, carrying capacity, and death

rate.

In ecological models, entities are rarely differentiated from

variables, which works well when there is only one state

variable for each entity. In such cases, ecologists commonly

associate parameters with an entity by using the state

variable’s name as a subscript (see Section 3 for an example).

However, making entities explicit provides a natural way to

group variables and parameters and more closely resembles

how scientists think about real systems.

To make entities explicit in the process modeling repre-

sentation, a scientist specifies a set of generic entity types,



Table 1 – The syntax for defining a generic entity type

aDescriptions can be any text.
bCombining schemes state how the effects of multiple processes

operating on a variables will be aggregated.
cParameter ranges delineate legal values, which are determined

from mathematical constraints, domain theory, and empirical

observations.

Table 3 – An example of a generic process for exponential
death and an instantiated version of the process
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each of which defines the properties of a class of objects.

Multiple instantiated versions of these generic entities can be

included in a model. For example, an ecologist could create a

generic entity for birds, and then instantiate it as a sparrow or

a hawk by changing the values of class properties.

Todorovski et al. (2005) report an initial formalism for

specifying entities in process models that we build upon here

in Table 1. The formal generic entity has a name and a set of

properties. Entities may contain both variables and para-

meters, where variables change in the context of the model

and parameters do not. Variables must have a name and a rule

that determines how the effects of multiple processes are

aggregated (e.g., summed, multiplied). Parameters must have

a name and an interval that delineates their possible values.

For both variables and parameters, there is an optional slot to

provide a brief description. In instantiated entities the

variables are either associated with data or given initial

values, the parameter values are assigned real values, and a

field following the name indicates the parent generic entity.

To use an entity in a model, we need a notation that allows

access to its fields. We have chosen a dot notation that

concatenates the variable or parameter name with the entity

name. For example, to refer to the chlorophyll a concentration

(chla) of a phytoplankton entity instantiated for Phaeocystis

antarctica (Phaeo), we write chla:Phaeo.

2.2. Processes

Processes are the physical, chemical, or biological actions

that drive change in dynamic models. For example, growth is
Table 2 – The syntax for defining a generic process

aEach role may be played by multiple objects instantiated from

different generic entities.
bEquations describe the effects of the process on the entities.
cConditions control when the process is active.
a biological process that occurs in many ecological models,

whereas oxidation–reduction, photolysis, and sorption are

examples of chemical and physical processes from biogeo-

chemistry. The process modeling framework employs two

forms of processes: generic and instantiated. Table 2 shows

the syntax for generic processes, which define the basic

properties of a class of processes. Generic processes must

include a name, a statement of which generic entities or

entity types can be involved, and a set of equations. The

‘‘relates’’ statement identifies unique entity roles in the

process and the entity types that can fill those roles. A generic

process can also include a set of Boolean conditions that

control whether the process is inactive. For example, we

could set the conditions so that the environmental variable

light must be positive for the photosyntheses process to occur

(light:environment>0). Such statements turn processes on and

off, making the model structurally dynamic. The set of

generic processes are collected with the generic entities into

one library.

The second form of process is the instantiated version of a

generic process, which is bound to specific entities and has

specific values for parameters. Each instantiated process has a

specific name and instantiated entities fill the roles in the

equations. The process naming scheme first identifies the

process and then the entities the process affects. For example,

we might name an exponential growth rprocess that operates

on a phytoplankton entity ‘exp_growth_phyto’.

Table 3 illustrates the difference between instantiated and

generic processes. Both representations refer to an exponen-

tial death process. The generic process specifies two roles that

entities play in this process. The first role, played by the

organism that dies, can be filled by either the phytoplankton or

zooplankton entity types. The equations indicate that these

types must contain a variable called conc (the concentration)

and a parameter named d (the death rate). The second role can

only be filled by the detritus entity type, which must also have

a conc variable. In the instantiated process, the name of the

instantiated entity replaces the role name in the equations.

Thus, the first role was filled by a phytoplankton entity named

Phaeocystis, whereas the second role was filled by the detritus

entity named Detritus.
aThis notation indicates a first order equation differentiated with

respect to time. Also, although we have used an equals sign in this

equation, the right hand side may only represent one component

of the full equation that will be assembled for the variable on the

left hand side.
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A key distinction of this representation is that elements of

the model equations that pertain to a process are grouped

together. This organization communicates how a process is

formulated, what entities drive it, and how it affects particular

entities. This process centered association also facilitates the

assembly of the system of equations for a model from these

fragments.

2.3. Modeling procedure

The modeling procedure described here resembles the

traditional recipe found in many texts on quantitative

modeling (e.g., Jørgensen and Bendoricchio, 2001; Grant

et al., 1997; Gold, 1977), but it bears two distinctive features.

First, the procedure is organized as a search through a space of

candidate models for those that explain a set of empirical

observations. Second, the method assembles candidate

models from libraries of generic entities and processes. To

implement this approach, we must define the search space,

describe a search mechanism, and specify criteria for selecting

among alternative models. In this paper we assume that the

structural search is exhaustive, the parameter search is

accomplished using existing algorithms such as gradient

descent, and that the selection criteria include quantitative

measures of goodness-of-fit (e.g., sum of squared errors, r2)

and the realism of the model structure. These assumptions

allow us to focus our discussion on the search space.

As described in the introduction, the search space is

determined by alternative model structures and sets of

parameters. While this space can be quite large, our method

of representing and developing models constrains it in two

ways. First, a model’s structure comprises entities linked by

processes. The space of possible model structures is circum-

scribed by a domain-specific library of generic entities and

processes thought to occur in the system, and specific entities

to be related. The generic types dictate how instantiated

processes and entities can be combined. Second, the entity

types specify the possible ranges for each parameter, limiting

the parameter space. The range defined in the generic entity

may be wide if we have little knowledge about the appropriate

values, but additional knowledge, such as empirical estimates,

can support a narrower range.

In the ideal case, one or more libraries of generic entities

and processes will already exist for the domain being

investigated. In that case, the challenge is to select the most

relevant library and adapt it as needed. For example, it will be

necessary to adapt a library when observations of the physical

system suggest alternative entity definitions, or when the

modeling objective is to determine the significance of a

conjectured new process.

If no appropriate library exists, then an investigator must

construct one to support the modeling task. Although this

requirement introduces an additional step to the modeling

task, we believe that the advantages of using an explicit library

of entities and processes outweigh the cost of its construction.

Specifically, the generic entities and processes define the

search space. From the generic definitions, the library

determines the possible entities and processes the model

can include, their possible structural relationships, alternative

mathematical formulations, and the parameter ranges.
Further, to the degree that the library reflects existing domain

knowledge, it also determines the space of theoretically

plausible or realistic models. In addition, a key idea in this

approach is that these libraries form a repository of domain

knowledge or theory that can be reused for different modeling

projects. We expect this to both expedite the modeling process

and constrain model structures to reflect existing domain

knowledge. At the very least, we expect it will ease review of

the domain theory and modeling assumptions used.

Given the space of plausible models, the investigator must

search through it for models that explain the empirical

observations. This search has three steps:
(1) b
ind entities to selected generic processes and combine

these components into a model structure;
(2) u
se estimation routine to identify parameters that gen-

erate predictions that best fit the observed variables; and
(3) e
valuate the resultant model’s performance using a set of

model selection criteria.

In this way, multiple alternative models are constructed

and evaluated. This model search can be implemented by

hand, but the formalism also allows both the structure and

parameter search to be automated. Automatic model induc-

tion is beyond the scope of this paper, but see Langley et al.

(2002, 2003, 2006), Langley (2000) and George et al. (2003) for

details on how this can be accomplished.

2.4. Prometheus

To encourage the process modeling approach, we have

developed a software environment called Prometheus that

is designed to support model building from conceptual

development to evaluation, use, and publication (Sánchez

and Langley, 2003). This program has six principal features.

First, it provides an interactive way for a user to add and edit

generic processes to a domain library. Second, it allows

manual construction of instantiated models from a domain

library in an interactive and graphic environment. For

example, to add a process the user selects a generic process

from the library, which opens a dialogue box that guides the

user through binding the entity roles and parameters in the

generic process to specific entities in the model. The user can

also specify the values of process level parameters in this

dialogue. Given an instantiated model, a third feature of the

program is to assemble and simulate the model equations. The

user can then view the equations and graph the simulated

trajectories. The fourth feature is Prometheus’ ability to

automatically search through candidate models derived from

a library. The program returns a reduced set of the models

with trajectories that best match the observed data based on

sum of squared errors. A fifth feature is the ability to

automatically revise an existing model. Through an inter-

active dialogue, the user can ask Prometheus to add or delete

whole processes, and to revise parameters within processes.

The final feature is a graphical representation of the model

structure in which entity variables are linked through

processes. This representation of instantiated models pro-

vides another way for users to view and analyze their models

(see Section 3.2.3 for more details on the model diagrams).
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Collectively, these features provide a comprehensive toolbox

for process modeling.
3. Ross Sea ecosystem model

In this section, we illustrate the process modeling approach

with a version of the Ross Sea ecosystem embedded in the

Ross Sea Coupled Ice And Ocean (CIAO) model (Arrigo et al.,

2003; Worthen and Arrigo, 2003). The original ecosystem

model has six state variables, including P. antarctica (P1),

diatoms (P2), detritus (D), zooplankton (Z), nitrate (NO3) and

iron (Fe). In CIAO, this ecosystem model is coupled to a

modified version of the Princeton Ocean Model, which is a

physical ocean model that predicts the three dimensional

structure of temperature, salinity, and velocity in response to

both surface and lateral boundary conditions of heat, salt, and

momentum. Arrigo et al. (2003) used CIAO to investigate

factors controlling phytoplankton production and taxonomic

composition in the Ross Sea, and Worthen and Arrigo (2003)

used it to explore the interannual variability of primary

production. More recently, Tagliabue and Arrigo (2005) added

more detailed mechanisms for iron cycling, the carbonate

system, and the air–sea CO2 exchange. They used this

enhanced model to investigate the sensitivity of the ecosys-

tem dynamics to changes in taxon-specific nutrient utilization

parameters. They also explored the impact of differing iron

fertilization regimes on the ability of the system to sequester

carbon (Arrigo and Tagliabue, 2005). In addition, Asgharbeygi

et al. (2006) employed a modified version of the ecosystem

model to demonstrate the usefulness of new inductive tools

for model revision.

To more clearly demonstrate the process modeling

approach, we simplified the Ross Sea ecosystem model in

two ways. First, we extracted the ecosystem model from CIAO,

and focused on activity near the ocean surface. In this simplified

model, there are three driving variables: daily mean photo-

synthetically usable radiation at the surface (PURe) and center

(PURc) of the modeled volume and water temperature (TH2O).

Second, we represent phytoplankton with one state-variable (P)

rather than two. The variables C, Z, and D represent the carbon

concentration in the three entities, and NO3 and Fe represent

the concentration of nitrate and iron in the water, respectively.

3.1. Differential and algebraic equation representation

As is common in ecological modeling, the original Ross Sea

ecosystem model was originally formulated as a set of

ordinary differential and algebraic equations, which were

implemented as a Fortran program. The modified differential

equations for the five state-variables are

dP
dt
¼ ðð1� ePÞm� dP � vPÞP� gZ; (1)

dZ

dt
¼ ðgZg� dZ � rZÞZ; (2)

dD
dt
¼ ð1� bÞ½ð1� gZÞgZþ dPPþ dZZ� � ðrD þ vDÞD; (3)
dNO3

dt
¼ �fðP;N=CÞmP; (4)

and

dFe
dt
¼ fðD;Fe=CÞrDD� fðP;Fe=NÞmP: (5)

In Eq. (1), the balance between the rates of growth (m), death

(dP), exudation (eP), grazing (g), and sinking (vP) determine the

change in phytoplankton concentration (P). The product of the

grazing rate (g), the zooplankton assimilation efficiency (gZ),

and the phytoplankton being grazed, as well as the zooplank-

ton death (dZ) and respiration (rZ) rates determine the changes

in zooplankton (Z) abundance as shown in Eq. (2). Additions to

the detrital (D) pool, modeled in Eq. (3), include the particulate

fractions (1� b) of unassimilated grazing (i.e., fecal pellets)

and dead phytoplankton and zooplankton. Losses are from

remineralization (rD) and sinking (vD). Phytoplankton nitrate

uptake is assumed to be proportional to the magnitude of

phytoplankton growth (mP), and determines the Nitrate (NO3)

concentration as Eq. (4) illustrates. We then multiply this

quantity by the phytoplankton nitrogen to carbon ratio

(fðP;N=CÞ). There are no significant nitrate inputs during the

growing season. In Eq. (5), iron concentration (Fe) is a function

of detrital remineralization (adjusted by the Fe/C ratio, fðD;Fe=CÞ)

and phytoplankton production multiplied by the phytoplank-

ton Fe/C ratio (fðP;Fe=CÞ).

Phytoplankton growth rate (m) and zooplankton grazing

rate (g) are variables in this model. We formulated the

phytoplankton growth rate as

m ¼ m0max eð0:06933TH2OÞmin ðik lim;n lim; fe limÞ; (6)

where m0max is the maximum unlimited growth rate at 0 � C

and TH2O is the water temperature. Light and nutrients limit

growth based on Liebig’s Law of the Minimum. That is, only

the resource in shortest supply relative to demand retards the

maximum growth rate. We calculated light limitation (ik lim)

as

ik lim ¼ a� eð�PURc=ikÞ eð�PURc=photoinhibitionÞ (7a)

ik ¼ ikmax

ðaþ 2:50 eðPURe eð1:089�1:12 log 10 ðikmax ÞÞÞÞ
(7b)

where a is a fitting parameter, PURc and PURe are the mean

daily photosynthetically usable radiation (m mol photons

m�2 s�1) in the center of the mixed ocean layer and at the

mixed layer edges, respectively, photoinhibition represents the

negative impact of high light on phytoplankton growth, and

ikmax is the upper limit of ik. Nitrate (n lim) and iron ( fe lim)

limitation are modeled with Monod functions, giving

n lim ¼ NO3

NO3 þ kNO3

(8a)

and

fe lim ¼ Fe
Feþ kFe

; (8b)



Table 4 – Entity types for the Ross Sea process model
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where kNO3
and kFe are the half-saturation constants for

growth on nitrate and iron, respectively.

Grazing assumes a Holling Type II functional relationship,

g ¼ gmax h

hþ gcap

(9a)

h ¼ P� ðPmin þ glimÞ; (9b)

where gmax is the maximum grazing rate of Z on P, gcap is the

capture rate, and h represents the phytoplankton concentra-

tion susceptible to grazing. Here, Pmin is a modeling measure

to ensure that phytoplankton concentrations remain positive,

and glim represents the biological limitation of zooplankton

grazing on phytoplankton.

Representing the model as a system of differential and

algebraic equations has advantages, in that it clearly identifies

the model variables and the full equations such that

translating them into computer code for simulation would

be relatively trivial. The differential equations imply the

entities Phytoplankton, Zooplankton, Detritus, Nitrogen, and

Iron. Parameters associated with an entity have its state-

variable as a subscript. Although the entities are implicit, the

identities of the causal processes are obscured. Close inspec-

tion of the equations reveals that certain elements correspond

to specific physical, chemical, and biological processes.

Unfortunately, no specific markers for the processes exist,

and in some cases the processes include elements from

multiple equations.

3.2. Process modeling representation

Here, we illustrate the process modeling approach and

provide a corresponding representation of the Ross Sea

ecosystem. We designed the modeling procedure to facilitate

the construction of new models, but the task here differs

somewhat in that we are translating an existing model. This

presents additional challenges that highlight important

features of the approach.

As discussed in Section 2.3, the first step of the process

modeling procedure is to create or to select a library of entity

types and generic processes. In this case, we need to generate a

new library; therefore, we must identify the entities, entity

types, processes and generic processes we expect to be

significant in the model. Here, we infer these items from

the existing equations. We conclude this section by demon-

strating how to build the instantiated model of the Ross Sea

ecosystem using the library.

3.2.1. Ross Sea entities
As already stated, entities are implicit in the original Ross Sea

model; we can infer them from the equations by examining

the variables and parameters. Each of the variables in the left

hand side of the differential Eqs. (1)–(5) describe separate

entities that are associated with parameters through sub-

scripts. In addition, we associate the driving variables (PURe,

PURc and TH2O) with a separate entity we label Environment.

Further, we assign the variables characterizing phytoplankton

growth rate (m) and light and nutrient growth rate limitations

to the phytoplankton entity.
The grazing rate (g) presents complications. This variable

forms from the interaction of two entities, and it does not

necessarily belong to either one. We might associate it with a

grazing process, but this is problematic. We show later that we

need this variable to operate in multiple processes, but in our

framework variables and parameters associated with a

process cannot be accessed by another process. We could

create a new entity to house this variable, but for now we

associate it with Environment.

The next task is to determine if these entities are unique

types, or if one or more might be derived from the same

general class. To make this decision, we examined the

parameters associated with each entity along with the roles

the entities play in the model. Since nitrate and iron are both

nutrients and operate similarly in the model, we decided to

create a generic entity called Nutrient. The remaining entities

have unique types.

Tables 4 and 5 define the entity types (Phytoplankton,

Zooplankton, Detritus, Nutrient, and Environment) using the

process modeling formalism. Presently, Phytoplankton and

Environment are the only entity types with more than one

variable, which reflects the central roles they play in the Ross

Sea model. In addition to the driving variables and the grazing

rate, we associated the parameter b with Environment. This

parameter determines the soluble and insoluble fractions of

organic matter, and supplants modeling the detailed pro-

cesses of adsorption, aggregation, and dissolution. While we

designed these five entity types to support the Ross Sea model,

they could easily be modified to support other aquatic

ecosystem models.



Table 5 – Entity types for the Ross Sea process model
(continued)

Table 7 – Generic process library used to construct a
revised Ross Sea ecosystem model (continued)
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3.2.2. Ross Sea processes
To generate a generic process library we must know what

physical, chemical, and biological processes might be relevant

in the target model. Again, we analyzed Eqs. (1)–(9) to identify

the processes required in our library. Our knowledge of the

system, aquatic ecosystems in general, and ecological theory

guided this analysis and the construction of the library. We

present the resulting generic process library in Tables 6 and 7.

In our analysis, we found that parameters in the original

model guided the identification of processes because they

were originally selected to represent particular aspects of the
Table 6 – Generic process library used to construct a
revised Ross Sea ecosystem model
real system. To use these tags, we fully expanded the

differential equations and marked equation elements that

seemed to correspond to processes. For example, we rewrote

and labeled Eq. (1) as

dP
dt
¼ mP
|{z}

Growth

� ePmP
|ffl{zffl}

Exudation

� dPP
|{z}

Death

� vPP
|{z}

Sinking

� gZ
|{z}

Grazing

: (10)

We initially identified five processes in this equation:

growth, exudation, death, sinking, and grazing. However,

growth and exudation are not independent in the mathema-

tical formulation because exudation is a constant proportion

of the amount of new growth (mP). When we applied the same

procedure to the remaining differential equations we found

that what we initially identified as a nutrient uptake process in

Eqs. (4) and (5)(�fðP;C=NÞmP and �fðP;C=FeÞmP, respectively) was

also formulated as a direct proportion of the amount grown.

Therefore, we treated exudation and nutrient uptake as sub-

processes of growth, and bundled them into one phytoplank-

ton growth process. We made this decision to improve the

understandability and causal flow of the process model.

Although we divided the differential equations into

different processes, we generally mapped the algebraic

Eqs. (6)–(9) into separate processes (Table 7). While bundling

the calculation of the grazing rate (9) into the grazing process,

and the equations for growth rate (6) with its nutrient and light

limitations (7a), (8a) and (8b) is conceptually reasonable, we

chose to disaggregate these processes so that we could track

them individually. In addition, segregating these limitation

processes lets us easily construct alternative processes with a

different formulation. For example, we could construct an

alternative light limitation process that does not include the

photoinhibition term. In total, we encoded 11 generic

processes that could operate in the Ross Sea ecosystem model.

The process modeling formalism encodes a new layer of

information into the model that reflects additional modeling

decisions regarding entities and processes. The growth

process provides a good example. As we described earlier,

we chose to include exudation and nutrient uptake in the

phytoplankton growth process because they were not mod-

eled as independent processes. However, this decision

obscures the identity of these subprocesses. If the modeling

task required that we maintain their identities, we could

define a new variable associated with the phytoplankton



Table 9 – A select portion of the instantiated Ross Sea
Ecosystem model represented in the process modeling
formalism

Table 8 – Alternative processes to explicitly model
growth, exudation, and nutrient uptake

anew_growth.P is a new variable we are creating that represents the

amount of new phytoplankton biomass grown over each time

step.
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entity to represent the instantaneous amount of new

phytoplankton growth (new growth:P). With this new variable,

we show how we could formulate separate processes for

exudation and the nutrient uptake in Table 8. This technique

of identifying hidden variables is especially useful when

multiple processes that might be considered sub-processes

impact the product of a process, or when we want a series of

sub-processes to be explicit. These additional decisions make

it a non-trivial task to translate from equations to entities and

processes or to construct an initial library, while assembling

the equations from entities and processes is simple.

3.2.3. Instantiated model
Given a library of generic entities and processes, we

instantiate candidate models using two steps. In the first

step, we specify the instantiated entities. For the Ross Sea

model, we instantiated one entity for Phytoplankton (P),

Zooplankton (Z), Detritus (D), and Environment (E). We also

instantiated two Nutrient entities named NO3 and Fe. In the

second step, we bind specific instances of generic processes to

members of the entity set. Then, using the modeling

procedure described in Section 2.3, we can consider multiple

models with different structures. With the library in Tables 6

and 7, one of the possible candidate models will have the same

structure as the original Ross Sea model, while the remaining

candidates will have a subset of the original model’s structure.

We could expand the number of candidate models and

increase the number of processes in the model by adding

new generic processes or alternative formulations of existing

ones to the library.

We present a portion of the original Ross Sea ecosystem

model specified with this formalism in Table 9. The instan-

tiated model begins with the model name, after which come

the instantiated entities and their types.1 The next line

declares the observed variables (i.e., those for which data

are available). The set of instantiated processes follows. The

complete instantiated model (not shown) contains 13 pro-

cesses. Although this view of the model is not as concise as the

final set of equations, it conveys more information about the

model structure.

Fig. 1 shows the causal graph of the full Ross Sea process

model drawn by Prometheus. Model variables are represented
1 In this example we retain the parameter symbols, rather than
providing parameter values.
as ovals, processes are rectangles, and influence is shown by

arrows. This diagram shows explicitly which processes and

variables are included in the model, how they are linked

directly, and where indirect pathways of influence occur. The

ontological commitments forbid the direct connection of two

variables. Instead, the influence must be mapped through

specific processes. This lets us explicitly map two or more

minimum causal paths (variable1!process! variable2)

between two variables. Inspection of the diagram reveals

three feedback loops. The first, conc:P! grazing rate!
g:E! grazing! conc:P, shows the density dependence of graz-

ing on the phytoplankton. Two additional loops show

the feedback of phytoplankton growth into itself through

the two nutrient entities (e.g., growth Phyto! conc:NO3

!Monod limitation nitrate !n lim:P!growth rate phyto !
m:P!growth Phyto). Feedback loops are difficult to see in

either the equation or process model representations alone, but

they stand out in the network representation, which also

enables further systems analysis (e.g., Allesina et al., 2005;

Borrett et al., 2007).

Along with recovering the original model, the process

modeling approach lets users explore alternative model

structures with relative ease. Exhaustively searching the

library, we would also find many subsets of the original

model that may fit the observed data. Consider the alternative

structure suggested by Tagliabue and Arrigo’s (2003) finding

that zooplankton may not be a significant factor in the

plankton dynamics of the Ross Sea. To explore this possibility,

we could instantiate a model that excludes the zooplankton

entity and its related processes. Within our framework, we

would then compare the performance of this model to the

original one to help determine which is most appropriate. If we

wanted to expand the model so that it differentiates between

P. antarctica and the diatom phytoplankton, we could simply

instantiate the phytoplankton entity type twice (e.g., replace

PfPhyto planktong in the entity declaration line with



Fig. 1 – Graph of the process representation of the Ross Sea ecosystem model. Variables are represented as ovals and

processes as rectangles. Arrows indicate direct causal influence between processes and entity variables. Light arrows

indicate an algebraic relations, while dark arrows signify differential equation-based relationship. Observed and driving

variables are highlighted with a bold outline.

e c o l o g i c a l c o m p l e x i t y 4 ( 2 0 0 7 ) 1 – 1 2 9
phaeofPhyto planktong and diatomsfPhyto planktong) and then

instantiate the processes associated with phytoplankton a

second time, assigning one set to each phytoplankton group. If

the scientists do not believe the same processes impact the

two groups, they can search through alternative process

instantiations. Again, we can add new generic processes or

alternative formulations of generic processes to the library

and implement them with little difficulty. The ease with which

users can develop and evaluate alternative model structures is

one of the primary advantages of the process model formula-

tion.
4. Related research

The process modeling framework builds upon and relates to

ideas already present in the literature. Here, we characterize

the work’s relevance and novelty.

Modeling the processes that generate system dynamics is

not a new idea in ecology. In their textbook, Jørgensen and

Bendoricchio (2001) make a strong commitment to modeling

specific processes. In their Chapter 3, the authors describe

several mathematical formulations of physical, chemical,

and biological processes that commonly occur in ecological

models. Gurney and Nisbet (1998) also discuss the importance

of processes in modeling ecological dynamics, stating

‘‘formulation of a dynamic model always starts by identifying

the fundamental processes in the system under investiga-

tion.’’ However, both texts switch to sets of equations after

processes are considered during model formulation. An

additional emphasis on processes in ecological modeling

appears in the growing use of process-based models (e.g.,

Landsberg and Waring, 1997; Simioni et al., 2000; McMurtrie,

1985; Brugnach, 2005; Melillo et al., 1993; Reynolds and Ford,

1999; Galbraith et al., 1980). With an emphasis on processes,
these models resemble those built with the approach

described in this paper. Brugnach (2005) shows clearly that

process-based models are conceptualized as a network of

data flowing between processes that operate on the data.

However, model actors or entities are not clearly delineated in

this approach.

In an effort to create a general theory of modeling and

simulation, Zeigler (1974) presents a framework that is very

similar to the representation we describe. He describes models

using three elements: components, descriptive variables, and

component interactions. Components are the parts of the

system from which the model is constructed. Variables (and

parameters) characterize the properties of the individual

components, and collectively portray the system’s behavior.

Component interactions are the relationships linking compo-

nents. From this description, it is seems that entities in our

framework captures both Zeigler’s components and descrip-

tive variables. Our processes are a subset of Zeigler’s

component interactions. The difference between our repre-

sentation and Zeigler’s approach stems from his desire to

construct a general theory of modeling. In contrast, we focus

on constructing continuous-time, simulation models of

mechanisms.

Our conceptual framework is perhaps most similar to one

described by Machamer et al. (2000) in their discussion of

mechanisms in biology. They claim that mechanisms are

composed of entities and activities. As in our framework,

entities are the actors in a system, both creating and being

affected by activities, which produce change in the system.

Their activities seem equivalent to our processes, although the

authors discuss and apply the framework to scientific reason-

ing in neurobiology and molecular biology. They do not show

how it relates to the mathematical models that arise in

ecology, and they do not develop their ideas into a clear

working methodology.
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As in the process modeling approach, some ecological

research generates and tests alternative possibilities. At the

broadest level, if we consider each candidate model structure

as a hypothesis of the system’s structure and function or an

alternative explanation for observed behavior, then search-

ing the space of hypotheses is an extreme form of evaluating

multiple alternative hypotheses (e.g., Loehle, 1987b; Carpen-

ter et al., 1998; Hilborn and Mangel, 1997). More closely

related is the work of Jost and Arditi (2001), who manually fit

models with alternative formulations of the predation

process to several predator–prey data sets. Their objective

was to determine whether predation was best explained by

predator density-dependent or -independent processes.

Although they compared alternative processes, they view

their modeling approach as a statistical fitting and selection

of nonlinear models to population data, a methodology

gaining prominence in population ecology (e.g., Jost and

Arditi, 2000, 2001; Hilborn and Mangel, 1997; Carpenter et al.,

1994). However, their approach lacks an explicit notion of

modeling as search.

The most closely related research is the approach to model

revision introduced by Reynolds and Ford (1999). They

describe a multi-criteria assessment technique for evaluating

process-based models that is used in an iterative modeling

cycle to guide revision of both model structure and parameter

selection. Like the modeling approach discussed in this paper,

the goal is to discover better model formulations. Two

important differences stem from the fact that their approach

does not provide a way to specify domain theory a priori. First,

their procedure only allows revision of an existing model; It

cannot guide search for the initial model. Second, the

methodology detects and generally locates model deficiencies,

but it cannot suggest specific model revisions to make. The

scientist must manually revise the model and then reapply the

multi-criteria assessment.
5. Directions for future work

As the Ross Sea model shows, the approach described in this

paper can be an effective tool for constructing, organizing,

and communicating complicated models. However, there

remain several ways in which the approach can be advanced.

In particular, we see three ways of extending our approach

to improve its utility for modeling environmental phenom-

ena.

The first extension involves implementing a hierarchical

organization of both entities and processes. Part of the

complexity of environmental systems is that their compo-

nents operate and interact with each other at multiple scales

of space and time. Hierarchical entities and processes are one

way to capture this complexity that matches how biologist and

ecologists tend to think about them (Ahl and Allen, 1996; Allen

and Starr, 1982; O’Neill et al., 1986). For example, organisms

are classified using a taxonomic hierarchy. The White-

throated Sparrow (Zonotrichia albicollis) is in the family

Emberizidae, which is in the class Aves of the Animal kingdom

(National Geographic Society, 1999). Members of each taxo-

nomic level share certain properties that are used to classify

them. We may also use hierarchical entities to encode spatial
phenomena. We envision using a set of entities to represent

different physical locations, where each ‘‘spatial entity’’

contains relevant entities and processes for that space. For

example, in a lake ecosystem model we might represent the

areas above and below the thermocline as two distinct

entities. Finally, hierarchical processes would let us explicitly

represent exudation and nutrient uptake in the Ross Sea

ecosystem model as subprocesses of growth. We have already

begun work on developing ways to represent and use such

hierarchical processes (Todorovski et al., 2005).

The second extension addresses the criteria for selecting

models. Information about ecological systems is typically

heterogeneous; ecologists generally know more about some

parts of the system than others. For example, they may have

continuous-time observations for some system variables but

only know the appropriate ranges or general trajectory shapes

for others. Scientists often evaluate the plausibility of

simulation models using all of these criteria (e.g., Arrigo

et al., 2003). At present, Prometheus only provides information

about standard goodness-of-fit measures for the variables

with continuous-time data. Although we may use this

additional information to evaluate the models manually, we

may also be able to encode the information and use it to guide

automated search and selection of appropriate models.

Finally, this modeling methodology creates new possibi-

lities for analyzing system behavior. Sensitivity analysis is

commonly used in ecological modeling to determine the effect

of varying one or more parameters on the model behavior.

However, we expect that performing a process-level sensitiv-

ity analysis will lead to increased understanding of system

dynamics because it will reveal which processes are primarily

responsible for dynamics at a given time. This information will

be useful for guiding additional experimental work, as well as

assisting environmental assessment and management. Using

the more common process-based ecological modeling

approach, Brugnach (2005) provides an initial example of

how such process sensitivity analysis might work.
6. Summary

In this paper, we described a novel method for representing

and developing simulation models of complex ecological and

environmental systems. The representation builds on a two-

part ontology that includes entities and processes. With this

formalism, we represent quantitative models in a way that

approximates how scientists think about systems. We also

develop reusable libraries of generic entities and processes

based on existing ecological knowledge. We claim that these

libraries link model development to existing theory, facilitate

model evaluation, and expedite model construction.

Two features contribute to the novelty of our modeling

approach. First, we view model construction as search

through a space of possible models. Second, we instantiate

model elements from generic components. The space of

theoretically plausible models and the generic components

are defined in libraries of domain specific entities and

processes. We expect this approach to facilitate the construc-

tion of ecological models both for theoretical development and

for environmental assessment and management.
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